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Abstract. In this paper we set-valued analyze the problem of asymp-
totic stabilizing the tumor size. A mathematical model of exponential
tumor growing caused by carcinogenic substance is considered, with
chemotherapy, immunotherapy, and radiotherapy effects. We control the
model to be viable in therapeutic domains, and reverse the exponential
growing of the tumor size. The obtained controls derive from the deriva-
tive cone of therapeutic domains as solution of minimizing problem.
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1 Introduction

Many studies have been conducted on combined therapies to cope with can-
cer, by different approaches for various mathematical models based on ordinary
differential equations ODEs, partial differential equations PDEs, fractional dif-
ferential equations FDEs, and delayed differential equations DDEs.

ODEs: [1] Develops a model to describe the interactions between immune and
tumor cells, as well as to simulate the interventions of chemotherapy and im-
munotherapy on the dynamics of tumor cells growth, by using the Runge-Kutta
method compared with the explicit Euler and Heun’s methods. [2] Constructs
a nonlinear model of dynamics between tumor cells, immune cells, and three
forms of therapy: chemotherapy, immunotherapy, and radiotherapy, as well as to
generate optimized combination therapy plans using optimal control theory. [3]
Applies the singular perturbed vector field SPVF method, to identify the equi-
librium points of a chemo-immunotherapy model and investigate their stability.
[4] Performs a stability analysis of a chemo-immunotherapy model, to determine
conditions for tumor-free equilibrium to be stable. [5] Sets up an optimal con-
trol problem relative to a chemo-immunotherapy model, so as to minimize the
number of tumor cells, and the chemotherapeutic and immunotherapeutic drugs
administration. [6] Investigates the action of the immun system, as well as the
role of chemo-immunotherapy in promoting cancer cure, by means of numerical
simulations and the classical linear stability analysis. [7] Extends a model of tu-
mor growth, to include the effects of radiotherapy, chemotherapy, and combined
radiotherapy and chemotherapy, as well as to make effective therapy. [8] Models
the tumor immune microenvironment TIME, and the effects of radiation and
immunotherapy thereon. [9] Adds the radiotherapy to a Kuznetsov model, for
the interaction between effector cells and cells in a growing tumor, and uses the
computing environment Matlab to obtain the therapeutic diagrams, in which
case the tumor is reduced to the subclinical stage. [10] Shows how the anti-
angiogenic agent may help the chemotherapy agent in controlling the cancer.
[11] Develops a near optimization model, to maximize total weighted damage
of cancer cells, minimize total weighted side effect, and minimize total dose re-
lated therapy costs. [12] Presents an optimizing algorithm of radiotherapy, in
order to increase the efficiency in combination with anti-angiogenic therapy. [13]
Investigates combined radiotherapy and anti-angiogenic therapy under varied
tumor radiosensitivity. [14] Predicts how to coordinate anti-angiogenic therapy
with radiotherapy or chemotherapy, to maximize therapeutic effects. [15] De-
velops a biomathematical model of combined immun-chemotherapy, in order to
predict yet untested therapy regimen. [16] Develops a model involving periodic
applications of immunotherapy with chemotherapy (radiotherapy), to investi-
gate how to enhance the efficacy of chemotherapy (radiotherapy) and reduce its
side-effects. [17] Checks the controllability and observability for a mathemati-
cal model of immunotherapy and chemotherapy for cancer. [18] Uses set-valued
analysis to approach the problem of decreasing and asymptotically stabilizing
tumor cells, by anti-angiogenic therapy combined with radiotherapy, as well as in
in [19] by tumor-immune with chemotherapy, so as in [20, 21] by anti-angiogenic
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therapy with chemotherapy, while in [22] chemotherapy is used alone. [23] Stud-
ies the optimal effects of immuno-chemotherapy in the presence of gene therapy.
[24] Focuses on the effects of chemotherapy and immunotherapy, used singulary
or in combination on two cancer populations. [25] Solves ODEs part of system
modeling chemo-radiotherapy within the Caratheodory framework, and plugs
the solution into PDEs part which is solved by using a fixed-point theorem, the
mixing of treatments ensures significant reduction of the population of cancer
cells.

PDEs: [26] Models the combination therapy comprising chemotherapy and
immunotherapy, controlled with optimized drugs. [27] Develops a mathematical
model of the spatiotemporal dynamics of chemovirotherapy treatment to can-
cer, and uses traveling wave solutions, to determine the minimum wave speed
of tumor invasion, and simulates the effective of chemovirotherapy to either
chemotherapy or virotherapy. [28] Inspects a spatiotemporal model, in order to
minimize the evolution of the tumor, by an optimal combination of virotherapy
with Mitogen-activated protein kinase MEK inhibitors. [29] Presents a model
of the TIME within cancer-associated fibroblasts CAFs and angiogenic cells in
the microenvironment, and quantifies three states: elimination, equilibrium, and
escape from cancer immunoediting. [30] Derives from a PDEs cancer model of
chemotherapeutic effects on tumor cells, normal cells, and immune cells with
an external source rate, a system of FDEs and explores the application of the
reduced differential transform method RDTM.

FDEs: [31] Examines existence and uniqueness of the solution of mixed
chemotherapy and immunotherapy cancer treatment model, by using the fixed-
point theorem. [32] Reviews some cancer models of combined immunotherapy
and chemotherapy. [33] Investigates as an optimal control problem the effects of
chemotherapy treatment on the growth of tumors, by using a model of tumor-
immune surveillance. [34] Models the effects of obesity on cancerous tumors
growth with Caputo time fractional derivative, and compares three different
treatment strategies: chemotherapy, immunotherapy and their combination. [35]
Optimally controls the variables of immunotherapy and anti-angiogenic therapy,
to reduce the load of cancer cells with a discrete time-delay. [36] Investigates the
optimal control of combined chemo-immunotherapy.

DDEs: [37] Uses the Pontryagin minimum principle with delays in both state
and control, to minimize the side effects as well as the cost of the treatment,
on fighting cancer tumor growth, by a combination of oncolytic virotherapy
and chemotherapy. [38] Applies optimal control theory on a model, to mini-
mize the cost associated with the immuno-chemotherapy, and to reduce load
of tumor cells. [39] Analyzes an optimal control problem of a delayed tumor-
immune model system, that reveals the effects of combined immunotherapy and
chemotherapeutic drug.

Another interesting works in the literature should be cited therein: [40] Uses
a randomized methodology, in order to probabilistically certify the existence of
a control structure for cancer model including chemotherapy and immunother-
apy. [41] Introduces a mathematical model of radio-immunotherapy for tumor, in
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linear and exponential spatial dependency forms, and formulates the dose distri-
butions model of radiotherapy with immune response. [42] Reviews the biological
modeling of thermoradiotherapy, and uses temperature dependent model param-
eters, to evaluate the effectiveness of different treatment strategies. [43] Derives a
Takagi-Sugeno fuzzy model from an ODEs Stepanova model, and designs strat-
egy for cancer treatment, by resorting to the combination of immunotherapy
and chemotherapy, with an effective positive control. [44] Introduces an opti-
mized radial basis function RBF neural network for breast cancer classification.
[45] Improves immunovirotherapies by first conducting extensive mathematical
investigations using relevant data, before proceeding to pre-clinical and finally
clinical trials.

In this paper we propose to extend the set-valued method of papers [18–
21] into non autonomous model of three mixed therapies of immunotherapy,
chemotherapy, and radiotherapy. Section 2 presents the model and states the
associated control problem in the viability form. Section 3 approaches the via-
bility problem in the frame-work of the set-valued analysis. Section 4 discretizes
the controlled model by combined methods of Euler and Uzawa, to simulate
numerically the tumor state and controls solutions. Section 5 recaps the theo-
retical and numerical results, and concludes with a remark on the effectiveness
of combination therapies in tumor reducing.

2 Mathematical model presentation and control problem
statement

2.1 The model

The model under consideration from [46] is a system of four ordinary differential
equations, which describes the dynamical interactions in time t ≥ 0, between
tumor size y(t) and drugs of chemotherapy M(t) ∈ [0,Mmax], immunotherapy
I(t) ∈ [0, Imax], and radiotherapy Rd(t) ∈ [0, Rmax

d ], which are controllable by
vM (t), vI(t), and hm(t) respectively.

ẏ = γ1e
α1ty − α2My − α3Iy − α4Rdy, (1)

Ṁ = vM − d4M, (2)

İ = vI − d5I, (3)

Ṙd = hm − d6Rd, (4)

with the initial states

y(0) = y0,M(0) = M0, I(0) = I0, Rd(0) = R0d. (5)

Table 1 describes the parameters model, and Table 2 gives their numerical values.
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Equation Parameter Description Source

γ1 tumor causing agent or substance in the body [46]
α1 tumor growth rate and proliferation [46]
α2 elimination rate of tumor cells by interacting [46]

(1) with chemotherapeutic drugs
α3 elimination rate of tumor cells by interacting [46]

with immunotherapeutic drugs
α4 elimination rate of tumor cells by coming in [46]

contact with radiation treatment

(2) d4 fading rate of chemotherapy drug from the body [46]

(3) d5 fading rate of immunotherapy drug from the body [46]

(4) d6 fading rate of radiothrerapy drug from the body [46]

Table 1. Parameters descriptions.

2.2 The problem

The paper [46] solves analytically the problem of controlling tumor size y(t),
by the application of mixed combination of therapies (M(t), I(t), Rd(t)), for
faster reducing of the tumor size y(t), obtained solutions of chemotherapy vM (t),
immunotherapy vI(t), and radiotherapy hm(t) are independent and developed
by numerical simulations codes using Wolfram Mathematica Software.
This paper proposes to solve the following problem of tumor size y(t) stabilizing

Problem 1. Find a control u = (vM , vI , hm)T from-in

U = [0, d4M
max]× [0, d5I

max]× [0, d6R
max
d ], (6)

to reduce tumor size y, in the asymptotic stability sense

lim
t→∞

y(t) = 0. (7)

Let be the tube Kα, i.e., the set-valued map t Kα(t), from [0,∞[ to R+×R3
+,

such that
Kα(t) = {(y, x) ∈ R+ × U,ψ(t, y, x) ≤ −α}, (8)

with x = (M, I,Rd)
T ,

where the function

ψ(t, y, x) = γ1e
α1t − α2M − α3I − α4Rd, (9)

with α ∈ R∗+.

Proposition 1. If there exists a control u such that the tube Kα by (8) is viable
under the model (1-2-3-4-5), then the control u is a solution to the Problem 1.

Proof. Kα is viable under the model (1-2-3-4-5) means that it has a differentiable
viable solution (y, x) in the sub-set Kα(t), i.e., for all t ≥ 0 we have the belonging

(y(t), x(t)) ∈ Kα(t),
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which implies by (1) and (9) that

ẏ(t) = ψ(t, y, x)y ≤ −αy(t), (10)

and by integrating

y(t) ≤ y0e−αt, (11)

then

lim
t→∞

y(t) = 0.

Remark 1. Thanks to the dynamics (1) the tumor size solution y may be written
as

y(t) = y0e
γ1
α1

(eα1t−1) × e
−

t∫
0

(α2M(τ)+α3I(τ)+α4Rd(τ)) dτ
,

by which y(t) 6= 0 for all t ≥ 0, when the initial size y0 6= 0, whence the choice
of the control objective (7).

Remark 2. In addition to the asymptotic stability (7), the tumor size y is a
decreasing function, since the derivative ẏ is strictly negative as (10), and the
Graph(y) is convex which rends the decreasing more considerable, however large
values of the parameter α may decrease further the tumor size y.

3 Set-valued analysis approach

3.1 Contingent derivative characterization

Theorem 1. Let be α > α1.

If there exists a control u such that for all t ≥ 0 and for all (y, x) ∈ Kα(t)

f(t, y, x, u) ∈ DKα(t, y, x)(1), (12)

where

f(t, y, x, u) = (ψ(t, y, x)y, vM − d4M, vI − d5I, hm − d6Rd)T , (13)

and

DKα(t, y, x)(1) = {(ȳ, x̄) ∈ R4,

lim inf
h↓0

d
(

(ȳ, x̄),
Kα(t+ h)− (y, x)

h

)
= 0}, (14)

is the contingent derivative of the tube Kα at (t, y, x) in the forward direction 1.

Then the tube Kα is viable under the model (1-2-3-4-5), and the control u is
a solution to the Problem 1.
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Proof. The function f of (13) is continuous from R+ ×R+ ×R3
+ ×R3

+, and has
uniform linear growth in the sense that

∃c > 0,∀t ≥ 0,∀(y, x) ∈ Kα(t),∀u ∈ U, ‖f(t, y, x, u)‖ ≤ c(‖(y, x)‖+ 1),

where the constant

c = max(α2M
max, α3I

max, α4R
max
d , γ1y0, d4, d5, d6, d4M

max, d5I
max, d6R

max
d ),

indeed

‖f(t, y, x, u)‖ = ‖(ψ(t, y, x)y, vM − d4M, vI − d5I, hm − d6Rd)‖,
= |ψ(t, y, x)|y + |vM − d4M |+ |vI − d5I|+ |hm − d6Rd|,
≤ γ1eα1ty + α2M

maxy + α3I
maxy + α4R

max
d y

+ d4M
max + d4M

+ d5I
max + d5I

+ d6R
max
d + d6Rd,

by (11)

‖f(t, y, x, u)‖ ≤ γ1eα1ty0e
−αt + α2M

maxy + α3I
maxy + α4R

max
d y

+ d4M
max + d4M

+ d5I
max + d5I

+ d6R
max
d + d6Rd,

≤ (α2M
max + α3I

max + α4R
max
d )y + d4M + d5I + d6Rd

+ γ1y0e
(α1−α)t + d4M

max + d5I
max + d6R

max
d ,

or α > α1, then e(α1−α)t < 1, by consequent

‖f(t, y, x, u)‖ ≤ (α2M
max + α3I

max + α4R
max
d )y + d4M + d5I + d6Rd

+ γ1y0 + d4M
max + d5I

max + d6R
max
d ,

≤ c(‖(y, x)‖+ 1),

then by [47] the tube Kα is viable under the model (1-2-3-4-5), and by the
Proposition 1 the control u is solution to the Problem 1.

Lemma 1 ([47]). The graph of the contingent derivative of the tube Kα is the
contingent cone to its graph

∀(t, y, x) ∈ Graph(Kα), Graph(DKα(t, y, x)) = TGraph(Kα)(t, y, x), (15)

TGraph(Kα)(t, y, x) = {(t̄, ȳ, x̄) ∈ R5,

lim inf
h↓0

d((t+ ht̄, y + hȳ, x+ hx̄), Graph(Kα))

h
= 0}. (16)



Viability Control of Chemo-Immunotherapy and Radiotherapy... 47

Lemma 2 ([19]). The contingent cone TGraph(Kα)(t, y, x) in (16) is explicitly
described as follows

– For ψ(t, y, x) < −α
TGraph(Kα)(t, y, x) = R5.

– For ψ(t, y, x) = −α

(t̄, ȳ, x̄) ∈ TGraph(Kα)(t, y, x),

iff

ψ̇(t, y, x)(t̄, ȳ, x̄) ≤ 0,

and 
t̄ ≥ 0 if t = 0,
ȳ ≥ 0 if y = 0,
M̄ ≥ 0 if M = 0,
Ī ≥ 0 if I = 0,

R̄d ≥ 0 if Rd = 0,

and  M̄ ≤ 0 if M = Mmax,
Ī ≤ 0 if I = Imax,

R̄d ≤ 0 if Rd = Rmax
d .

3.2 Scalar projection characterization

Corollary 1. f(t, y, x, u) ∈ DKα(t, y, x)(1) iff{
u ∈ U if ψ(t, y, x) < −α,
〈~, u〉 ≥ `(t, x) if ψ(t, y, x) = −α, (17)

where

`(t, x) = γ1α1e
α1t + α2d4M + α3d5I + α4d6Rd, (18)

and

~ = (α2, α3, α4)T . (19)

Proof. By Lemma 2, the elements u such that f(t, y, x, u) ∈ DKα(t, y, x)(1) are
characterized as follows

– For ψ(t, y, x) < −α

∀u ∈ U, f(t, y, x, u) ∈ DKα(t, y, x)(1) = R4.

– For ψ(t, y, x) = −α
if

ψ̇(t, y, x)(1, f(t, y, x, u)) ≤ 0,
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and 
1 ≥ 0 if t = 0,

ψ(t, y, x)y ≥ 0 if y = 0,
vM − d4M ≥ 0 if M = 0,
vI − d5I ≥ 0 if I = 0,

hm − d6Rd ≥ 0 if Rd = 0,

and  vM − d4M ≤ 0 if M = Mmax,
vI − d5I ≤ 0 if I = Imax,

hm − d6Rd ≤ 0 if Rd = Rmax
d .

As 
1 ≥ 0 for t = 0,
0 ≥ 0 for y = 0,

vM ≥ 0 for M = 0,
vI ≥ 0 for I = 0,
hm ≥ 0 for Rd = 0,

and  vM − d4M ≤ 0 if M = Mmax, for vM ≤ d4Mmax,
vI − d5I ≤ 0 if I = Imax, for vI ≤ d5Imax,

hm − d6Rd ≤ 0 if Rd = Rmax
d , for hm ≤ d6Rmax

d .

Then

f(t, y, x, u) ∈ DKα(t, y, x)(1) ⇐⇒ ψ̇(t, y, x)(1, f(t, y, x, u)) ≤ 0,

or

ψ̇(t, y, x)(1, f(t, y, x, u)) =
∂ψ

∂t
(t, y, x)× 1 +

∂ψ

∂y
(t, y, x)f1(t, y, x, u)

+
∂ψ

∂M
(t, y, x)f2(t, y, x, u) +

∂ψ

∂I
(t, y, x)f3(t, y, x, u) +

∂ψ

∂R
(t, y, x)f4(t, y, x, u),

then

ψ̇(t, y, x)(1, f(t, y, x, u)) = γ1α1e
α1t

+0× (γ1e
α1t − α2M − α3I − α4R)

−α2(vM − d4M)− α3(vI − d5I)− α4(hm − d6R),

thus

ψ̇(t, y, x)(1, f(t, y, x, u)) = γ1α1e
α1t

+α2d4M + α3d5I + α4d6R

−α2vM − α3vI − α4hm,

by (18) and (19)

ψ̇(t, y, x)(1, f(t, y, x, u)) = `(t, x)− 〈~, u〉.
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Corollary 2. The control

u(t, x) = min
u∈U
{〈~, u〉 ≥ `(t, x)}, (20)

is a solution to the Problem 1.

Proof. The control (20) is solution to the characterization (17):

– For ψ(t, y, x) < −α
u(t, x) ∈ U.

– For ψ(t, y, x) = −α
〈~, u(t, x)〉 ≥ `(t, x).

4 Numerical resolution

4.1 Numerical model

In what follows we give a numerical scheme based on combined methods of Euler
and Uzawa, to solve the controlled model by (vM (t), vI(t), hm(t)) = u(t, x) (20)

ẏ = γ1e
α1ty − α2My − α3Iy − α4Rdy, (21)

Ṁ = vM (t,M, I,Rd)− d4M, (22)

İ = vI(t,M, I,Rd)− d5I, (23)

Ṙd = hm(t,M, I,Rd)− d6Rd. (24)

4.2 Algorithm

1. Initialization
(a) t0 ∈ R+,
(b) (y0,M0, I0, R0d) ∈ Kα(t0),
(c) λ0 ∈ R6

+,
2. Iteration

(a) tn+1 = tn + h,
(b) 

yn+1 = yn + h(γ1e
α1tnyn − α2Mnyn − α3Inyn − α4R

d
nyn),

Mn+1 = Mn + h(vM (tn,Mn, In, R
d
n)− d4Mn),

In+1 = In + h(vI(tn,Mn, In, R
d
n)− d5In),

Rdn+1 = Rn + h(hm(tn,Mn, In, R
d
n)− d6Rdn),

(25)

(c) vM (tn,Mn, In, R
d
n) = −λn6α2 + λn4 − λn1 ,

vI(tn,Mn, In, R
d
n) = −λn6α3 + λn5 − λn2 ,

hm(tn,Mn, In, R
d
n) = −λn6α4 + λn6 − λn3 ,

(26)
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Parameter value Source

t0 0 —

y0 50 [46]
M0 50 [46]
I0 50 [46]
R0d 50 [46]

α 77 −ψ(t0, y0,M0, I0, R0d)

Mmax Not specified —
Imax Not specified —
Rmax

d Not specified —

γ1 20 [46]
α1 0.35 [46]
α2 0.54 [46]
α3 0.65 [46]
α4 0.75 [46]
d4 0.3 [46]
d5 0.6 [46]
d6 0.8 [46]

Table 2. Parameters values.

(d) 

λn+1
1 = max(λn1 + σ(vM (tn,Mn, In, R

d
n)− vmax

M ), 0),
λn+1
2 = max(λn2 + σ(vI(tn,Mn, In, R

d
n)− vmax

I ), 0),
λn+1
3 = max(λn3 + σ(hm(tn,Mn, In, R

d
n)− hmax

m ), 0),
λn+1
4 = max(λn4 − σvM (tn,Mn, In, R

d
n), 0),

λn+1
5 = max(λn5 − σvI(tn,Mn, In, R

d
n), 0),

λn+1
6 = max(λn6 − σhm(tn,Mn, In, R

d
n), 0),

λn+1
7 = max(λn7 + σ(〈~, u(tn,Mn, In, R

d
n)〉

− `(tn, yn,Mn, In, R
d
n)), 0),

(27)

with 0 < σ < 2
‖~‖ , where the norm ‖~‖ =

√
α2
1 + α2

2 + α2
3.

Remark 3. The variant of an infeasible interior-point algorithm presented in [48],
may be also used to solve the problem of minimization (20).

Remark 4. As Mmax, Imax, and Rmax
d , are not specified, the norm of the control

u(t, x) may be explicitly obtained by doing projection of 0R3 on the hyper-planes

H = {(u1, u2, u3) ∈ R3
+, α1u1 + α2u2 + α3u3 ≥ `(t, x)}, (28)

with the expression

‖u(t, x)‖ =
|α1 × 0 + α2 × 0 + α3 × 0− `(t, x)|√

α2
1 + α2

2 + α2
3

=
|`(t, x)|√

α2
1 + α2

2 + α2
3

. (29)
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Fig. 1. Exponential tumor size y increase without any therapy, from the initial state
y0 = 50.

Fig. 2. Exponential tumor size y decrease under combined therapy (M, I,Rd), from
the initial state y0 = 50, with the initial therapy (M0, I0, R0d) = (50, 50, 50).
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Fig. 3. Applied control (vM , vI , hm) = u(t, x) given by (20).

Fig. 4. Comparison of tumor size y reduction under multi-therapies x = (M, I,Rd), and
mono-therapies M , I, and Rd, from the initial size y0 = 50, with the initial therapies
M0 = I0 = R0d = 50.
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5 conclusion

The exponential growth of tumor size y(t) = y0e
γ1
α1

(eα1t−1) of the dynamics (21)
in the absence of therapy (vI(t), vM (t), hm(t)) = (0, 0, 0), see Fig. 1, is reversed
to an upper exponential decreasing y(t) ≤ y0e

−αt (11) with α > α1, towards
null limit (7), see Fig. 2, by the therapy (vI(t), vM (t), hm(t)) = u(t, x) solution
to the minimization problem (20), which is numerically solved in the Section 4
by Uzawa method (26-27) of parameter (λ, σ), to get numerical solution (y, x) of
discretized model (25) by Euler method of step h, see Fig. 3. The control u(t, x) is
characterized by the contingent derivative DKα (14), where the tube Kα by (8)
is viable under the model (21-22-23-24). The interest of therapies combination is
manifested in Fig. 4, where the tumor size y(x) under all therapies with the total
amount (29), is much lower than other sizes y(M), y(I), and y(Rd) corresponding
to the mono-therapies, i.e., y(x) < min(y(M), y(I), y(Rd)).
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