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Abstract

The classical SIRD model is extended to the conformable fractional stochastic SIRD model.
The differences between the fractional stochastic SIRD model and the integer stochastic
SIRD model are analyzed and compared using COVID-19 data from India. The results
show that when the order of the fractional stochastic SIRD model is between [0.93,0.99],
the root mean square error between the simulated value and the real value of the number of
infections is smaller than that of the integer stochastic SIRD model. Then, the maximum
likelihood estimation of the parameters of the conformable fractional stochastic SIRD
model is carried out, and compared with the maximum likelihood estimation results of the
parameters of the integer stochastic SIRD model, It can be seen that the root mean square
error of the fractional stochastic SIRD model is smaller when the fractional order is between
[0.93,0.99].

1. Introduction

In recent years, with the wide spread of COVID-19, the loss of individuals and society has gradually increased. And the
study of mathematical models of infectious diseases has become an increasingly important topic, which can be divided into
deterministic models and stochastic models [1]. Stochastic models have been studied mainly for models corresponding to
transitions of individuals into different epidemic regimes over time.
The SIR model was first proposed by Kermack and Mckendrick in 1927 [2], which laid the foundation for the study of
the dynamics of infectious diseases. Becker used the least square method and maximum likelihood method to estimate the
parameters of the model and defined the initial infection rate [3]. Timmer discussed the parameter estimation problem of
nonlinear stochastic differential equations based on the sampled time series [4]. Buckingham-Jeffery et al. considered the
Gaussian process approximation based on the approximation of random moment closure and the approximation based on the
approximation of linear time non-uniform SDE to infer the parameter characteristics of the random SEIR model [5]. Senel
proposed a single-parameter estimation method to avoid potential problems such as limited and noisy data when using SIR
Model to estimate COVID-19 [6]. Morato et al. formulated a nonlinear model predictive control scheme based on the SIRD
model with time-varying parameters, and they proposed an identification method consisting of analytical regression, least
squares optimization, and autoregressive model fitting, which can fully predict the infection curve in a large range [7].
In recent years, fractional infectious disease models have begun to attract a surge of research. Farman et al. applied the
Laplace Adomian decomposition method to give the approximate solution of the nonlinear system of the Caputo SEIR
model [8]. Rajagopal et al. compared the predictive ability of the fractional SEIRD model and the classical SEIRD model by
using Italian COVID-19 data [9]. Basti et al. proposed an improved mathematical model for fractional SIRD in the sense
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of Caputo-Katugampola fractional derivatives. The existence and uniqueness of the solution of the improved SIRD model
are studied by applying the properties of Schauder and Banach’s fixed point theorems [10]. Mohammadi et al. proposed a
SIRD model in the sense of Caputo fractional order, discussed the stability of the model and the existence and uniqueness of
nonnegative solutions, and obtained approximate responses by implementing the fractional Euler method [11]. Fouladi et al.
analyzed the identifiability and sensitivity of the integer and Caputo fractional SEIRD models and proved that the fractional
infectious disease model was more suitable for predicting the real situation by comparing the quality of fitting [12].
In 2014, Khalil et al. proposed Conformable fractional derivatives, which is a natural expansion of integer derivatives [13].
Several scholars have applied conformable fractional derivatives to models in mathematics, physics, transportation, and other
fields. In 2021, Akinyemi et al. established a time-varying nonlinear differential equation in the sense of conformable fractional
order and obtained the exact solution of the equation by using the sub-equation method [14]. In 2022, Ashraf et al. studied
the (2+1) dimensional Conformable fractional transmission line equation in a nonlinear system. By combining exponential,
polynomial, trigon, and hyperbolic functions, Multi-wave, M-shaped rational, and interaction solutions are obtained [15].
In 2022, Yuxiao Kang et al. established a conformable fractional time-varying gray Riccati traffic flow model based on
viscoelastic fluid and applied it to modeling traffic flow and traffic congestion degree in multiple scenarios [16]. The relevant
definitions and properties are introduced below.

Definition 1.1 ( [13]). Given the function f (t) : [0,∞)→ R, for all t > 0, α ∈ (0,1], the α-order conformable fractional
derivative of f (t) is defined as

Tα f (t) = lim
ε→0

f
(
t + εt1−α

)
− f (t)

ε
,

when t = 0, Tα f (0) = lim
t→0+

Tα f (t).

Lemma 1.2 ( [13]). The relationship between the α-order conformable fractional derivative of f (t) and the first derivative of
f (t) can be represented as

Tα f (t) = t1−α d f (t)
dt

,

specifically, T1 f (t) = d f (t)
dt .

In this paper, we propose a stochastic SIRD model in the sense of conformable fractional order and obtain maximum likelihood
estimates for the model parameters, taking into account the impact of various uncertainties on infectious diseases in real-world
situations. Finally, the COVID-19 data from April 1, 2020, to July 31, 2020, in India is used for example analysis to compare
the effect of fitting the raw data with a fractional stochastic SIRD model at different fractional orders. The parameter estimates
for the fractional stochastic SIRD model are computed using maximum likelihood estimation. The results show that when the
order of the fractional stochastic SIRD model is between [0.93,0.99], the root mean square error between the simulated value
and the real value of the number of infections is smaller than that of the integer stochastic SIRD model. Moreover, compared
with the maximum likelihood estimation of the parameters of the integer stochastic SIRD model, it can be seen that when the
fractional order is between [0.93,0.99], the root mean square error of the fractional stochastic SIRD model is smaller.

2. Model Introduction

The SIRD model divides the tested population into Susceptible(S), Infected(I), Recovered(R), and Dead(D) populations. A
susceptible person is a person who has not been infected, lacks immunity and is susceptible to infection after contact with an
infected person; An infected population is already infected; Recovered populations are those that have been cured of their
disease; Dead populations refers to a person who has died as a result of illness and is no longer involved in the process of
infection and contagion. The classical SIRD model can be expressed as the following system of differential equations [17]

dS(t)
dt

=−βS(t)I(t)
N

,

dI(t)
dt

=
βS(t)I(t)

N
− γI(t)−µI(t),

dR(t)
dt

= γI(t),

dD(t)
dt

= µI(t),

(2.1)

where t ≥ 0, S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0. Let the total population of the area be N, satisfying
S(t)+ I(t)+R(t)+D(t) = N. β is the infection rate, and it represents the probability of a susceptible person being in-
fected; γ is the recovery rate, and it indicates the likelihood of recovery of the infected person; µ is the mortality rate, all of
which are positive numbers.
The classical SIRD model has a stable and interference-resistant performance, and considering the advantage that the fractional
SIRD model can better fit the data by adjusting the order of the fractional derivatives in the model, in this paper we extend
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the classical SIRD model to the conformable fractional SIRD model by using the definition and properties of conformable
fractional derivatives. 

Tα S(t) = t1−α dS(t)
dt

=−βS(t)I(t)
N

,

Tα I(t) = t1−α dI(t)
dt

=
βS(t)I(t)

N
− γI(t)−µI(t),

Tα R(t) = t1−α dR(t)
dt

= γI(t),

Tα D(t) = t1−α dD(t)
dt

= µI(t).

(2.2)

α is the order of the fractional order derivative of conformable, and α ∈ (0,1]. Since the parameters β , γ , and µ of the real-life
SIRD model are easily affected by the variable environment, and there is some randomness in the number of susceptibilities,
infections, recoveries, and deaths at the next moment, we give a conformable fractional stochastic SIRD model.
Let B1(t), B2(t), B3(t), B4(t) be a set of mutually independent standard Brownian motions, σi (i = 1,2,3,4) be a non-negative
white noise intensity, and build the following Conformable fractional stochastic SIRD model

dS(t) =−tα−1 βS(t)I(t)
N

dt +σ1S(t)dB1(t),

dI(t) = tα−1
(

βS(t)I(t)
N

− γI(t)−µI(t)
)

dt +σ2I(t)dB2(t),

dR(t) = tα−1
γI(t)dt +σ3R(t)dB3(t),

dD(t) = tα−1
µI(t)dt +σ4D(t)dB4(t).

(2.3)

Parameter estimation is an extremely important ingredient in the study of infectious disease models. Considering that the
maximum likelihood estimator is widely used and converges well, the following discussion deals with the maximum likelihood
estimator for the parameters β , γ , and µ of the conformable fractional stochastic SIRD model.

3. Parameter Estimation

The discretization of equation (2.3) using Euler’s method gives

S(t +1) = S(t)− tα−1 βS(t)I(t)
N

∆t +σ1S(t)∆B1(t),

I(t +1) = I(t)+ tα−1
(

βS(t)I(t)
N

− γI(t)−µI(t)
)

∆t +σ2I(t)∆B2(t),

R(t +1) = R(t)+ tα−1
γI(t)∆t +σ3R(t)∆B3(t),

D(t +1) = D(t)+ tα−1
µI(t)∆t +σ4D(t)∆B4(t),

(3.1)

where ∆Bi(t) = Bi(t +∆t)−Bi(t), i = 1,2,3,4. Taking into account the reasonableness of the division of time, let ∆t = 1.
Since B1(t), B2(t), B3(t), B4(t) are independent of each other. Based on the properties of the multidimensional normal
distribution [18], we can get the probability density function of the fractional stochastic SIRD model as

f (t) =
1
A

exp

−
1
2


(

S(t+1)−S(t)+tα−1 βS(t)I(t)
N

σ1S(t)

)2

+

(
I(t+1)−I(t)−tα−1(

βS(t)I(t)
N −γI(t)−µI(t))

σ2I(t)

)2

+
(

R(t+1)−R(t)−tα−1γI(t)
σ3R(t)

)2
+
(

D(t+1)−D(t)−tα−1µI(t)
σ4D(t)

)2


 (3.2)

where A = 4π2σ1S(t)σ2I(t)σ3R(t)σ4D(t). The joint probability density function, the maximum likelihood function L(θ), is
computed from the above equations as follows.

L(θ) =
n−1

∏
t=1


1
A

exp

−
1
2



(
S(t +1)−S(t)+ tα−1 βS(t)I(t)

N
σ1S(t)

)2

+

(
D(t +1)−D(t)− tα−1µI(t)

σ4D(t)

)2

+

 I(t +1)− I(t)− tα−1
(

βS(t)I(t)
N − γI(t)−µI(t)

)
σ2I(t)

2

+

(
R(t +1)−R(t)− tα−1γI(t)

σ3R(t)

)2






, (3.3)
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Taking the logarithm of L(θ), this gives the log-likelihood function of the fractional stochastic SIRD model as

lnL(θ) =−
n−1

∑
t=1


lnA− 1

2


(

S(t +1)−S(t)+ tα−1 βS(t)I(t)
N

σ1S(t)

)2

+

 I(t +1)− I(t)− tα−1
(

βS(t)I(t)
N − γI(t)−µI(t)

)
σ2I(t)

2

+

(
R(t +1)−R(t)− tα−1γI(t)

σ3R(t)

)2

+

(
D(t +1)−D(t)− tα−1µI(t)

σ4D(t)

)2




. (3.4)

The maximum likelihood estimates of the parameters β , γ and µ in the fractional stochastic SIRD model are thus obtained as β̂

γ̂

µ̂

=

 σ2
2 C2 +σ2

1 C1 −σ2
1 NC3 −σ2

1 NC3
−σ2

3 C3 σ2
3 NC4 +σ2

2 NC5 σ2
3 NC4

−σ2
4 C3 σ2

4 NC4 σ2
4 NC4 +σ2

2 NC6

−1 σ2
1 NA2−σ2

2 NA1
σ2

2 NA4−σ2
3 NA3

σ2
2 NA5−σ2

4 NA3

 , (3.5)

where

A1 =
n−1

∑
t=1

tα−1(S(t +1)−S(t))I(t)
S(t)

, A2 =
n−1

∑
t=1

tα−1(I(t +1)− I(t))S(t)
I(t)

, A3 =
n−1

∑
t=1

tα−1 (I(t +1)− I(t))
I(t)

,

A4 =
n−1

∑
t=1

tα−1(R(t +1)−R(t))I(t)
R2(t)

, A5 =
n−1

∑
t=1

tα−1 (D(t +1)−D(t)) I(t)
D2(t)

,

C1 =
n−1

∑
t=1

t2α−2S2(t), C2 =
n−1

∑
t=1

t2α−2I2(t), C3 =
n−1

∑
t=1

t2α−2S(t), C4 =
n−1

∑
t=1

t2α−2, C5 =
n−1

∑
t=1

t2α−2I2(t)
R2(t)

, C6 =
n−1

∑
t=1

t2α−2I2(t)
D2(t)

.

Maximum likelihood estimates of infection rate β , recovery rate γ , and mortality rate µ can are obtained by calculating equation (3.5) using
MATLAB software. The fractional stochastic SIRD model can have the lowest possible estimation error by finding a suitable value between
(0,1].

4. Example Analysis

Data for the COVID-19 epidemic in India from April 1, 2020, to July 31, 2020, are summarized from Worldometers and the WHO website,
and the raw data for the number of infections are plotted in MATLAB as shown in Figure 4.1.
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Figure 4.1: Graph of raw data on the number of infections

According to the parameter values of the SIRD model in reference [19], the initial parameters β = 0.0559, γ = 7.3594× 10−4 and
µ = 1.3030×10−5 of the fractional SIRD model are obtained by using the lsqcurvefit function in MATLAB software. Using the second-
order Adams-Bashforth method [20], numerical solutions of the number of infected people when α is 1,0.99, and 0.98 are obtained, as
shown in Figure 4.2. The three curves in Figure 4.2 are in good agreement with the true data curves in Figure 4.1, but there is a gap between
the simulated and true values for the number of infected people at the intermediate epoch. The fractional SIRD model can make the simulated
values of the number of infections as close as possible to the true values by a reasonable choice of the fractional order. The fractional order
was continuously adjusted to observe the effect of fitting the fractional SIRD model to the raw data, and the fit was found to be better when α

was equal to 0.99. Consider next the stochastic SIRD model. Here α = 1, the fractional SIRD model, is the integer SIRD model.
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Figure 4.2: Simulation of the number of infected people in the fractional SIRD model

A series of simulation values for the number of infected individuals can be obtained by adjusting the values of the fractional order α , and the
noise strength σ2, of the stochastic SIRD model of the infected population. It can be seen from Table 4.1 that under different noise intensities,
when α = 0.98, the root mean square error reaches the minimum. And α is between [0.93,0.99], the root mean square error of the fractional
stochastic SIRD model is smaller than that of the integer stochastic SIRD model. The smaller the value of the root mean square error, the
better the fit, so the fractional stochastic SIRD model has a better fit than the integer stochastic SIRD model when α ∈ [0.93,0.99], and the
best result is when α = 0.98, respectively.

σ2 = 0.0001 σ2 = 0.0002 σ2 = 0.0003 σ2 = 0.0004
α = 1 1.36×105 1.38×105 1.39×105 1.40×105

α = 0.99 8.04×104 8.10×104 8.16×104 8.19×104

α = 0.98 5.25×104 5.28×104 5.28×104 5.30×104

α = 0.97 5.91×104 5.88×104 5.85×104 5.81×104

α = 0.93 1.34×105 1.33×105 1.33×105 1.33×105

α = 0.92 1.46×105 1.46×105 1.46×105 1.45×105

Table 4.1: RMSE of the number of infected people in the stochastic SIRD model

The maximum likelihood estimates of the parameters β , γ , and µ of the integer and fractional stochastic SIRD models are carried out
respectively, the root mean square error between the simulation value and the true value of the number of infected people is calculated at the
same time. The parameter results and root mean square errors are shown in Table 4.2. It can be seen from Table 4.2 that when α = 0.98, the
root mean square error reaches the minimum 5.2452×104, and when α ∈ [0.93,0.99], the root mean square error of the fractional stochastic
SIRD model is smaller than that of the integer stochastic SIRD model. Thus, when α ∈ [0.93,0.99], the maximum likelihood estimator for
the fractional stochastic SIRD model yields better results than that for the integer stochastic SIRD model.

β̂ γ̂ µ̂ RMSE
α = 1 0.0559 7.3646×10−4 1.3046×10−5 1.3589×105

α = 0.99 0.0559 7.3647×10−4 1.3047×10−5 7.9728×104

α = 0.98 0.0559 7.3652×10−4 1.3048×10−5 5.2452×104

α = 0.97 0.0559 7.3660×10−4 1.3057×10−5 5.9574×104

α = 0.93 0.0559 7.3669×10−4 1.3069×10−5 1.3407×105

α = 0.92 0.0559 7.3678×10−4 1.3077×10−5 1.4668×105

Table 4.2: Maximum likelihood estimation results and RMSE of stochastic SIRD model parameters

This section analyzes the goodness-of-fit of the fractional stochastic SIRD model and the integer stochastic SIRD model to the raw data
and compares and analyzes the maximum likelihood estimation results for the parameters of the integer stochastic SIRD model and the
fractional stochastic SIRD model. The results show that when the value of α is between [0.97,0.99], the root mean square error estimated by
the fraction stochastic SIRD model is smaller than that of the integer stochastic SIRD model, indicating that the fraction stochastic SIRD
model has better estimation effect than the integer stochastic SIRD model, which also indicates that the fraction stochastic SIRD model is
more suitable for the actual situation.
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5. Conclusion

In this paper, we propose a conformable fractional stochastic SIRD model and perform maximum likelihood estimation of the parameters in
the model. Moreover, data from the COVID-19 outbreak in India is used for example analysis. By comparing the simulation graphs of the
number of infected persons between the integer stochastic SIRD model and the fractional stochastic SIRD model, the results show that the
fitting ability of the original data can be greatly improved by adjusting the order of the fractional stochastic SIRD model reasonably. Also,
maximum likelihood estimation results for the parameters of the integer and fractional stochastic SIRD models are compared. It is found
that the root mean square error of the fractional stochastic SIRD model is smaller than that of the integer stochastic SIRD model when the
fractional order number is between [0.97,0.99], and when the fractional order is 0.98, the fractional stochastic SIRD model has the best
parameter estimation effect. It has been shown that a reasonable choice of the fractional order has a certain effect on the correct understanding
and estimation of the model parameters of infectious diseases, and a positive effect on the prediction and prevention of infectious diseases.
In recent years, infectious diseases have been ravaging the globe. The study of infectious diseases has become a hot topic. With the deepening
of infectious disease models, the estimation of model parameters is becoming more and more important. In future studies, parameter
estimation of more complex fractional infectious disease models, such as the SEIRDV model, or models that take into account parameters
such as vaccine coverage and level of government intervention, should be considered. It can better adapt to the more complex situation in the
present era and optimize parameter estimation methods to reduce estimation errors, leading to more accurate predictions of infectious disease
trends and reasonable measures to control the epidemic situation promptly.
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