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Research Article 

Abstract − This study generalizes the cross product defined in 3-dimensional almost contact metric 

manifolds and describes a new generalized cross product for 𝑛 = 1 in (2𝑛 + 𝑠)-dimensional framed metric 

manifolds. Moreover, it studies some of the proposed product’s basic properties. It also performs 

characterizations of the curvature of a Legendre curve on an 𝑆-manifold and calculates the curvature of a 

Legendre curve. Furthermore, it shows that Legendre curves are also biharmonic curves. Next, this study 

observes that a Legendre curve of osculating order 5 on 𝑆-manifolds is imbedded in the 3-dimensional 𝐾-

contact space. Lastly, the current paper discusses the need for further research. 

Keywords Generalized cross product, 𝑆-manifolds, Legendre curves 

Mathematics Subject Classification (2020) 53D10, 53A04 

1. Introduction 

Yano [1] has led up to the groundwork of 𝑆-manifolds and has defined the concept of 𝑓-structures in 𝑀2𝑛+𝑠 

manifolds. Almost complex (𝑠 = 0) and almost contact (𝑠 = 1) structures are examples of 𝑓-structures. 

Goldberg and Yano [2] have defined the concept of the framed 𝑓-structures. Moreover, they have suggested a 

complex structure by the concept of 𝑓-structures. Furthermore, they have proposed the concept of framed 

metric manifolds by examining the normality condition of a metric framed structure. Blair [3] has introduced 

𝑆-manifolds, generalizing almost complex Kaehler and almost contact Sasakian structures. Sarkar et al. [4] 

have found the curvature and torsion of Legendre curves in 3-dimensional trans-Sasakian manifolds with 

respect to the semisymmetric metric connection. Özgür and Güvenç [5] have propounded biharmonic Legendre 

curves in 𝑆-space forms. They have analyzed characterizations of the curvature of the biharmonic Legendre 

curves in 4 cases. 

This paper is organized as follows: Section 2 provides the concept of 𝑆-manifolds and some of their basic 

properties. Section 3 generalizes the new cross-product in a 3-dimensional almost contact metric manifolds 

defined by Camcı [6] and defines a generalized cross-product in (2 + 𝑠)-dimensional 𝑆-manifolds. Besides, it 

demonstrates that this cross-product in ℝ4 is coherent with a triple product [7] by an example. In addition, 

Section 3 provides the basic properties of the generalized cross-product. Section 4 calculates the curvature of 

Legendre curves using the generalized cross-product and demonstrated that (2 + 3)-dimensional 𝑆-manifolds 

are imbedded in 3-dimensional space. Finally, the need for further research is discussed. 
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2. Preliminaries 

This section provides the concept of 𝑆-manifolds and some of their basic properties. 

Definition 2.1. [1] Let (𝑀, 𝑔) be a Riemannian manifold with dim𝑀 = 2𝑛 + 𝑠. It is said to be a framed 𝑓-

structure if 𝑓 is a tensor field of type (1, 1) and rank 2𝑛 satisfying 𝑓3 + 𝑓 = 0. 

Definition 2.2. [2] Let 𝑀2𝑛+𝑠 be a manifold with an 𝑓-structure of rank 2𝑛. Then, 𝑓-structure is said to be 

has completed frames if there exists vector fields 𝜉1, 𝜉2,⋯ , 𝜉𝑠 on 𝑀2𝑛+𝑠, and 𝜂1, 𝜂2, ⋯ , 𝜂𝑠 are 1-forms, then 

𝜂𝑖 ∘ 𝑓 = 0, 𝑓 ∘ 𝜉𝑖 = 0, and 𝑓2 = −𝐼 + ∑ 𝜂𝑖⊗ 𝜉𝑖
𝑠
𝑖=1 . 

Definition 2.3. [8] Let 𝑀2𝑛+𝑠 be an 𝑓-structure with completed frames. The framed 𝑓-structure is normal if 

the tensor field 𝑆 of type (1,2) given by  

𝑆 = [𝑓, 𝑓] + 2∑𝑑𝜂𝑖⊗𝜉𝑖

𝑠

𝑖=1

 

vanishes. 

Definition 2.4. [2] Let 𝑀2𝑛+𝑠 be a manifold. Then, 𝑀 is said to be an 𝑆-manifold if the 𝑓-structure is normal. 

Definition 2.5. [1] Let 𝑀2𝑛+𝑠 be a Riemannian manifold. The distribution on 𝑀 spanned by the structure 

vector fields is denoted by ℳ, and its complementary orthogonal distribution is denoted by 𝐷. Consequently, 

𝑇𝑀 = 𝐷⊕ℳ. Moreover, if 𝑋 ∈ 𝐷, then 𝜂𝑖(𝑋) = 0, for any 𝑖 ∈ {1,2,⋯ , 𝑠}, and if 𝑋 ∈ ℳ, then 𝑓𝑋 = 0. 

Definition 2.6. [2] Let 𝑀2𝑛+𝑠 has an 𝑓-structure with completed frames. If there exists a Riemannian metric 

𝑔 on  𝑀2𝑛+𝑠 such that 

𝑔(𝑋, 𝑌) = 𝑔(𝑓𝑋, 𝑓𝑌) +∑𝜂𝑖(𝑋)𝜂𝑖(𝑌)

𝑠

𝑖=1

 

and 𝑋, 𝑌 ∈ 𝜒(𝑀2𝑛+𝑠), then 𝑀2𝑛+𝑠 is called that has a metric 𝑓-structure. 

From now on, the notation 𝜙 is used instead of 𝑓. 

Definition 2.7. [3] Let 𝑀2𝑛+𝑠 be an 𝑆-manifold. The covariant differentiation ∇ of 𝑀2𝑛+𝑠 satisfies 

∇𝑋𝜉𝑖 = −𝜙𝑋,    𝑖 ∈ {1,2,⋯ , 𝑠} 

and 

(∇𝑋𝜙)𝑌 =∑[𝑔(𝜙𝑋,𝜙𝑌)𝜉𝑖 + 𝜂𝑖(𝑌)𝜙
2𝑋]

𝑠

𝑖=1

 

for all 𝑋, 𝑌 ∈ 𝜒(𝑀). Besides, for all 𝑖 ∈ {1,2,⋯ , 𝑠}, 𝜂1 ∧ 𝜂2 ∧ ⋯∧ 𝜂𝑠 ∧ (𝑑𝜂𝑖)
𝑛 ≠ 0 and Φ = 𝑑𝜂𝑖 on an 𝑆-

manifold such that Φ is the fundamental 2-form defined by 

Φ(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌),    𝑋, 𝑌 ∈ 𝑇𝑀 

Definition 2.8. [9] A submanifold of an 𝑆-manifold is called an integral submanifold if 

𝜂𝑖(𝑋) = 0,    𝑖 ∈ {1,2,⋯ , 𝑠}, for all 𝑋 ∈ 𝜒(𝑀) 

Definition 2.9. [5] A 1-dimensional integral submanifold of an 𝑆-manifold (𝑀2𝑛+𝑠, 𝜙, 𝜉𝑖 , 𝜂𝑗, 𝑔), 𝑖, 𝑗 ∈

{1,2,⋯ , 𝑠} is called a Legendre curve of 𝑀. In other words, a curve 𝛾: 𝐼 → 𝑀 is called a Legendre curve if 

𝜂𝑖(𝑇) = 0, for all 𝑖 ∈ {1,2,⋯ , 𝑠} such that 𝑇 is the tangent vector field of 𝛾. 
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3. Generalized Cross product in (𝟐 + 𝒔)-dimensional Framed Metric Manifolds 

This section, firstly, generalizes the cross-product in a 3-dimensional almost contact metric manifolds defined 

by Camcı [5] and defines a generalized cross-product in (2 + 𝑠)-dimensional 𝑆-manifolds. 

Definition 3.1. Let 𝐴 be a matrix of type 𝑠 × (𝑠 + 1). Then, 

i. �̃�𝑖𝑗𝑘 such that 𝑖, 𝑘 ∈ {1,2,⋯ , 𝑠} and 𝑗 ∈ {𝑖 + 1, 𝑖 + 2,⋯ , 𝑠 + 1} is the matrix obtained by deleting the 𝑖𝑡ℎ 

and 𝑗𝑡ℎ columns and 𝑘𝑡ℎ row of the matrix 𝐴. Specially, for 𝑠 = 1, det �̃�121 = 1. 

ii. �̃̃�𝑚𝑛 such that 𝑚 ∈ {2,3,⋯ , 𝑠} and 𝑛 ∈ {𝑚 + 1,𝑚 + 2,⋯ , 𝑠 + 1} is the matrix obtained by deleting the 𝑖𝑡ℎ 

and 𝑗𝑡ℎ columns of the matrix 𝐴 and adding the first column of the matrix 𝐴 to the left of the first column as a 

new column. 

For example, for 𝑠 = 3, let 

𝐴 = [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34

]. 

Then, 

�̃�231 = [
𝑎21 𝑎24
𝑎31 𝑎34

] 

and 

�̃̃�23 = [

𝑎11 𝑎11 𝑎14
𝑎21 𝑎21 𝑎24
𝑎31 𝑎31 𝑎34

] 

Definition 3.2. Let 𝑀 = (𝑀2+𝑠, 𝜙, 𝜉𝑖, 𝜂𝑗, 𝑔), 𝑖, 𝑗 ∈ {1,2,⋯ , 𝑠}, be a framed metric manifold in (2 + 𝑠)-

dimensional space. We define a generalized cross-product × by 

𝑋1 × 𝑋2 ×⋯× 𝑋𝑠+1 =∑(∑ ∑ (−1)𝑖+𝑗+𝑘Φ(𝑋𝑖 , 𝑋𝑗) det �̃�𝑖𝑗𝑘

𝑠+1

𝑗=𝑖+1

𝑠

𝑖=1

)𝜉𝑘

𝑠

𝑘=1

 +

|

|

𝜙𝑋1 𝜙𝑋2 ⋯ 𝜙𝑋𝑠+1

𝜂1(𝑋1) 𝜂1(𝑋2) ⋯ 𝜂1(𝑋𝑠+1)

⋮ ⋮ ⋱ ⋮

𝜂𝑠(𝑋1) 𝜂𝑠(𝑋2) ⋯ 𝜂𝑠(𝑋𝑠+1)

|

|

 (1) 

such that 𝑋1, 𝑋2,⋯ , 𝑋𝑠+1 ∈ 𝑇𝑀  and 

𝐴 =

[
 
 
 
 
 
 
𝜂1(𝑋1) 𝜂1(𝑋2) ⋯ 𝜂1(𝑋𝑠+1)

𝜂2(𝑋1) 𝜂2(𝑋2) ⋯ 𝜂2(𝑋𝑠+1)

⋮ ⋮ ⋱ ⋮

𝜂𝑠(𝑋1) 𝜂𝑠(𝑋2) ⋯ 𝜂𝑠(𝑋𝑠+1)]
 
 
 
 
 
 

 

Moreover, �̃�𝑖𝑗𝑘, 𝑖, 𝑘 ∈ {1,2,⋯ , 𝑠} and 𝑗 ∈ {𝑖 + 1, 𝑖 + 2,⋯ , 𝑠 + 1}, is as in Definition 3.1. For example, for 𝑠 =

1, we obtain 

𝑋1 × 𝑋2 = Φ(𝑋1, 𝑋2)𝜉1 + 𝜂1(𝑋2)𝜙𝑋1 − 𝜂1(𝑋1)𝜙𝑋2 (2) 

Equation 2 gives the cross product in 3-dimensional almost contact metric manifolds defined in [6]. For 𝑠 = 2, 

the generalized cross-product is 
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𝑋1 × 𝑋2 × 𝑋3 = (Φ(𝑋1, 𝑋2)𝜂2(𝑋3) − Φ(𝑋1, 𝑋3)𝜂2(𝑋2) + Φ(𝑋2, 𝑋3)𝜂2(𝑋1))𝜉1 

  +(−Φ(𝑋1, 𝑋2)𝜂1(𝑋3) + Φ(𝑋1, 𝑋3)𝜂1(𝑋2) − Φ(𝑋2, 𝑋3)𝜂1(𝑋1))𝜉2 

  + |

𝜙𝑋1 𝜙𝑋2 𝜙𝑋3
𝜂1(𝑋1) 𝜂1(𝑋2) 𝜂1(𝑋3)
𝜂2(𝑋1) 𝜂2(𝑋2) 𝜂2(𝑋3)

| 

Secondly, it demonstrates that this cross-product in ℝ4 is coherent with a triple product [7] by an example. 

Example 3.3. For the subspace 𝑉 = {(𝑥1, 𝑥2, 0,0) | 𝑥1, 𝑥2 ∈ ℝ} of the 4-dimensional Euclidean space 

ℝ4(𝑥1, 𝑥2, 𝑥3, 𝑥4), the projection function 𝜋(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1, 𝑥2, 0,0), and the almost complex plane 

𝐽(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥2, −𝑥1, −𝑥4, 𝑥3), (ℝ
4(𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝜙, 𝜉𝑖 , 𝜂𝑗 , 𝑔), 𝑖, 𝑗 ∈ {1,2}, is a framed metric 

manifold such that 𝜙 = 𝐽 ∘ 𝜋, 𝜂1 = 𝑑𝑥3, 𝜂2 = 𝑑𝑥4, 𝜉1 = (0,0,1,0), 𝜉2 = (0,0,0,1), and 𝑔 is the standard 

Euclidean metric. As a result, 𝑋1 × 𝑋2 × 𝑋3 = 𝑋1 ∧ 𝑋2 ∧ 𝑋3 such that  𝑋1 ∧ 𝑋2 ∧ 𝑋3 is the triple product in ℝ4 

provided in [7]. 

Finally, this section provides some of the basic properties of the generalized cross-product. 

Theorem 3.4. Let 𝑀 = (𝑀2+𝑠, 𝜙, 𝜉𝑖 , 𝜂𝑗, 𝑔), 𝑖, 𝑗 ∈ {1,2,⋯ , 𝑠} be a framed metric manifold in (2 + 𝑠)-

dimensional space. Then, for all 𝑋1, 𝑋2, ⋯ , 𝑋𝑠+1 ∈ 𝑇𝑀, the generalized cross-product has the following 

properties: 

i. The generalized cross-product is bilinear and antisymmetric. 

ii. 𝑋1 × 𝑋2 ×⋯× 𝑋𝑠+1  is perpendicular to each of 𝑋1, 𝑋2, ⋯ , 𝑋𝑠+1. 

iii. 𝜙𝑋 = 𝜉1 × 𝜉2 ×⋯× 𝜉𝑠 × 𝑋. 

PROOF.  

i. The proof is straightforward from the fundamental 2-form Φ and the determinant function’s bilinearity. 

ii. We need to show that 𝑔(𝑋1 × 𝑋2 ×⋯× 𝑋𝑠+1, 𝑋𝑡) = 0, for 𝑡 ∈ {1,2,⋯ , 𝑠 + 1}. For 𝑡 = 1, from Equation 

1, we obtain 

𝑔(𝑋1 × 𝑋2 ×⋯× 𝑋𝑠+1, 𝑋1) = ∑(∑ ∑ (−1)𝑖+𝑗+𝑘𝛷(𝑋𝑖 , 𝑋𝑗) det �̃�𝑖𝑗𝑘

𝑠+1

𝑗=𝑖+1

𝑠

𝑖=1

)𝜂𝑘(𝑋1)

𝑠

𝑘=1

+

|

|

|

0 𝑔(𝜙𝑋2, 𝑋1) ⋯ 𝑔(𝜙𝑋𝑠+1, 𝑋1)

𝜂1(𝑋1) 𝜂1(𝑋2) ⋯ 𝜂1(𝑋𝑠+1)

⋮ ⋮ ⋱ ⋮

𝜂𝑠(𝑋1) 𝜂𝑠(𝑋2) ⋯ 𝜂𝑠(𝑋𝑠+1)

|

|

|

 (3) 

Thus, 

|

|

|

0 𝑔(𝜙𝑋2, 𝑋1) ⋯ 𝑔(𝜙𝑋𝑠+1, 𝑋1)

𝜂1(𝑋1) 𝜂1(𝑋2) ⋯ 𝜂1(𝑋𝑠+1)

⋮ ⋮ ⋱ ⋮

𝜂𝑠(𝑋1) 𝜂𝑠(𝑋2) ⋯ 𝜂𝑠(𝑋𝑠+1)

|

|

|

= ∑ (∑(−1)
𝑗+𝑘
𝛷(𝑋1,𝑋𝑗)det �̃�1𝑗𝑘

𝑠+1

𝑗=2

)

𝑠

𝑘=1

𝜂𝑘(𝑋1) (4) 

If we substitute Equation 4 for Equation 3, we get 

𝑔( 𝑋1 × 𝑋2 × 𝑋3 ×⋯× 𝑋𝑠+1, 𝑋1) =∑ ∑ (−1)𝑖+𝑗Φ(𝑋𝑖 , 𝑋𝑗) det �̃̃�𝑖𝑗

𝑠+1

𝑗=𝑖+1

𝑠

𝑖=2
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Here, the �̃̃�𝑖𝑗, 𝑖 ∈ {2,3,⋯ , 𝑠} and 𝑗 ∈ {𝑖 + 1, 𝑖 + 2,⋯ , 𝑠 + 1}, is as in Definition 3.1. Thus, det �̃̃�𝑖𝑗 = 0. 

Therefore, 

𝑔(𝑋1 × 𝑋2 × 𝑋3 ×⋯× 𝑋𝑠+1, 𝑋1) = 0 

Similarly, it is proved that 𝑔(𝑋1 × 𝑋2 × 𝑋3 ×⋯× 𝑋𝑠+1, 𝑋𝑡) = 0, for 𝑡 ∈ {2,3,⋯ , 𝑠 + 1}. 

iii. If 𝜉𝑖 = 𝑌𝑖, for all 𝑖 ∈ {1,2,⋯ , 𝑠}, and 𝑋 = 𝑌𝑠+1, for all 𝑋, 𝜉1, 𝜉2, ⋯ , 𝜉𝑠 ∈ 𝑇𝑀, from Equation 1, 

𝜉1 × 𝜉2 ×…× 𝜉𝑠 × 𝑋 = 𝑌1 × 𝑌2 ×…× 𝑌𝑠+1 =∑(∑ ∑ (−1)𝑖+𝑗+𝑘𝛷(𝑌𝑖 , 𝑌𝑗) det �̃�𝑖𝑗𝑘

𝑠+1

𝑗=𝑖+1

𝑠

𝑖=1

) 𝜉𝑘

𝑠

𝑘=1

+

|

|

|

𝜙𝑌1 𝜙𝑌2 ⋯ 𝜙𝑌𝑠+1

𝜂1(𝑌1) 𝜂1(𝑌2) ⋯ 𝜂1(𝑌𝑠+1)

⋮ ⋮ ⋮ ⋮

𝜂𝑠(𝑌1) 𝜂𝑠(𝑌2) ⋯ 𝜂𝑠(𝑌𝑠+1)

|

|

|

 (5) 

From Equation 5, Φ(𝑌𝑖 , 𝑌𝑗) = 0, 𝑖, 𝑗 ∈ {1,2,⋯ , 𝑠 + 1}. Then, if we substitute the expressions 𝜙𝑌𝑖 = 𝜙𝜉𝑖 = 0 

and 𝑌𝑠+1 = 𝑋 in Equation 5, we get 𝜉1 × 𝜉2 ×…× 𝜉𝑠 × 𝑋 = 𝜙𝑋. ◻ 

4. Legendre Curves in 𝑺-manifolds 

Let 𝛾: 𝐼 → 𝑀 be a unit-speed curve in an 𝑛-dimensional Riemannian manifold (𝑀, 𝑔) and 𝑘1, 𝑘2,⋯ , 𝑘𝑟 be 

positive functions on 𝐼. If there is an orthonormal basis {𝑉1, 𝑉2,⋯ , 𝑉𝑟} along 𝛾 that satisfies the following 

Frenet equations, 𝛾 is called a Frenet curve of osculating order 𝑟: 

𝑉1 = 𝛾
′ 

∇𝑉1𝑉1 = 𝑘1𝑉2 

∇𝑉1𝑉2 = −𝑘1𝑉1 + 𝑘2𝑉3 

⋮ 

∇𝑉1𝑉𝑟 = −𝑘𝑟−1𝑉𝑟−1 

Theorem 4.1. Let 𝑀 = (𝑀2+𝑠, 𝜙, 𝜉𝑖 , 𝜂𝑗, 𝑔), 𝑖, 𝑗 ∈ {1,2,⋯ , 𝑛} be an 𝑆-manifold and 𝛾: 𝐼 → 𝑀 be a Legendre 

curve of osculating order (2 + 𝑠). Then, for 𝜀 = ±1, the following equations are obtained: 

𝑉2 = 𝜀𝜙𝑉1 

𝑉3 =
𝜀

√𝑠
∑ 𝜉𝑠

𝑠

𝛼=1

 

𝑘2 = √𝑠 

and 

𝑘3 = 0 

PROOF.  

For the function 𝜎𝑖𝑗: 𝐼 → ℝ defined by 𝜎𝑖𝑗(𝑠) = 𝑔(𝑉𝑖, 𝜉𝑗), for 𝑖 ∈ {1,2,⋯ , 𝑠 + 2} and 𝑗 ∈ {1,2,⋯ , 𝑠}, 

𝜉𝑗 =∑𝜎𝑖𝑗𝑉𝑖

𝑠+2

𝑖=1

,    𝑗 ∈ {1,2,⋯ , 𝑠} (6) 
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Let 𝛾 be a Legendre curve. Then, 

𝜎11 = 𝜎12 = ⋯ = 𝜎1𝑠 = 0 (7) 

Moreover, from Theorem 3.4, 

𝜙𝑉1 = (−1)
𝑠+1

|

|

|

𝑉2 𝑉3 … 𝑉𝑠+1 𝑉𝑠+2

𝜎21 𝜎31 … 𝜎(𝑠+1)1 𝜎(𝑠+2)1

𝜎22 𝜎32 … 𝜎(𝑠+1)2 𝜎(𝑠+2)2

⋮ ⋮ ⋮ ⋮ ⋮

𝜎2𝑠 𝜎3𝑠 … 𝜎(𝑠+1)𝑠 𝜎(𝑠+2)𝑠

|

|

|

 (8) 

If we take the derivative from 𝜎11 = 0 = 𝑔(𝑉1, 𝜉1), then 

𝜎21 = 𝜎22 = 𝜎23 = ⋯ = 𝜎2𝑠 = 0 (9) 

From Equations 8-10,  

𝜙𝑉1 = (−1)
𝑠+1

|

|

𝜎31 … 𝜎(𝑠+1)1 𝜎(𝑠+2)1

𝜎32 … 𝜎(𝑠+1)2 𝜎(𝑠+2)2

⋮ ⋮ ⋮ ⋮

𝜎3𝑠 … 𝜎(𝑠+1)𝑠 𝜎(𝑠+2)𝑠

|

|

𝑉2 (10) 

If we substitute Equations 7 and 9 in Equation 6, then 

[
 
 
 
 
 
 
𝜉1

𝜉2

⋮

𝜉𝑠]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝜎31 𝜎41 … 𝜎(𝑠+2)1

𝜎32 𝜎42 … 𝜎(𝑠+2)2

⋮ ⋮ ⋮ ⋮

𝜎3𝑠 𝜎42 … 𝜎(𝑠+2)𝑠 ]
 
 
 
 
 
 

⏟                
𝐵

[
 
 
 
 
 
 
𝑉3

𝑉4

⋮

𝑉𝑠+2]
 
 
 
 
 
 

 
(11) 

Since {𝜉1, 𝜉2, … , 𝜉𝑠} and {𝑉3, … , 𝑉𝑠+2} are orthonormal systems, 𝐵 is an orthonormal matrix. In this case, |𝐵| =

±1 where |𝐵| is the determinant of the matrix 𝐵. From Equation 10, for 𝜀 = ±1, 

𝜙𝑉1 = 𝜀𝑉2 (12) 

From Equation 12, 

𝜙𝑉2 = 𝜀𝑉1 (13) 

If we take the derivative from 𝜎2𝑖 = 𝑔(𝑉2, 𝜉𝑖) = 0, 𝑖 ∈ {1,2,⋯ , 𝑠}, 

𝑘2𝜎3𝑘 = 𝑔(𝑉2, 𝜙𝑉1),    𝑘 ∈ {1,2,⋯ , 𝑠} (14) 
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From Equation 8, 

𝑔(𝑉2, 𝜙𝑉1) = 1 (15) 

Then, from Equations 14 and 15, 

𝑘2𝜎3𝑘 = 1,    𝑘 ∈ {1,2,⋯ , 𝑠} 

In this case, 

𝜎3𝑘 =
1

𝑘2
,    𝑘 ∈ {1,2,⋯ , 𝑠} (16) 

Since 𝐵 is an orthonormal matrix, 

∑(𝜎3𝑘)
2 = 1

𝑠

𝑘=1

 (17) 

From Equations 16 and 17, for 𝜀 = ±1, 

𝜎3𝑘 =
𝜀

√𝑠
,    𝑘 ∈ {1,2,⋯ , 𝑠} (18) 

and 

𝑘2 = √𝑠 

If we take the derivative from Equation 17, then 

−𝑘2𝑔(𝑉2, 𝜉1) + 𝑘3𝑔(𝑉4, 𝜉1) + 𝑔(𝑉3, 𝜙𝑉1) = 0 (19) 

From Equations 9 and 12, Equation 19 becomes 

𝑘3𝜎41 = 0 (20) 

Similarly, 

𝑘3𝜎42 = 𝑘3𝜎43 = ⋯ = 𝑘3𝜎4𝑠 = 0 (21) 

As the matrix 𝐵 is orthonormal, 

(𝜎41)
2 + (𝜎42)

2 +⋯+ (𝜎4𝑠)
2 = 1 (22) 

From Equations 20-22, 

𝑘3 = 0 

Since 𝐵 is an orthonormal matrix, we can write Equation 11 as follows: 

[
 
 
 
 
𝑉3

𝑉4

⋮

𝑉𝑠+2]
 
 
 
 

= 𝐵𝑇

[
 
 
 
 
𝜉1

𝜉2

⋮

𝜉𝑠]
 
 
 
 

 (23) 
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From Equations 11 and 18, 

𝐵𝑇 =

[
 
 
 
 
 
 

𝜀

√𝑠

𝜀

√𝑠
…

𝜀

√𝑠

𝜎41 𝜎42 … 𝜎4𝑠

⋮ ⋮ ⋮ ⋮

𝜎(𝑠+2)1 𝜎(𝑠+2)2 ⋯ 𝜎(𝑠+2𝑠,)𝑠]
 
 
 
 
 
 

 (24) 

and from Equations 23 and 24, 

𝑉3 =
𝜀

√𝑠
∑ 𝜉𝛼

𝑠

𝛼=1

 

is obtained. ◻ 

Remark 4.2. In [5], Özgür and Güvenç assumed that 𝑉2 = 𝜙𝑉1 and obtained the same results as in Theorem 

4.1 for biharmonic Legendre curves. Thus, Legendre curves are also biharmonic. 

In [10], Hasegawa et al. have introduced ℝ2+𝑠(−3𝑠) space as follows: Let the coordinate functions’ set of 

𝑀 = ℝ2+𝑠 be {𝑥, 𝑦, 𝑧1,⋯ , 𝑧𝑠}. In this space, 

𝜉𝑖 = 2
𝜕

𝜕𝑧𝑖
,    𝑖 ∈ {1,2,⋯ , 𝑠} 

𝜂𝑗 =
1

2
(𝑑𝑧𝑗 − 𝑦𝑑𝑥),    𝑗 ∈ {1,2,⋯ , 𝑠} 

and 

𝑔 =
1

4
(𝑑𝑥2 + 𝑑𝑦2) +∑𝜂𝑗⊗

𝑠

𝑗=1

𝜂𝑗 

(25) 

with 

𝑋 = 𝑒1
𝜕

𝜕𝑥
+ 𝑒2

𝜕

𝜕𝑦
+∑𝜉𝑖

𝜕

𝜕𝑧𝑖

𝑠

𝑖=1

∈ 𝜒(𝑀) 

Thus, (𝑀 = ℝ2+𝑠, 𝜙, 𝜉𝑖 , 𝜂𝑗, 𝑔) is an 𝑆-space form with the constant 𝜑-sectional curvature 𝑐 = −3𝑠. Besides, 

{𝑒, 𝜙𝑒, 𝜉1, 𝜉2,⋯ , 𝜉𝑠} is an orthonormal basis on ℝ2+𝑠(−3𝑠) such that 

𝑒1 = 𝑒 = 2
𝜕

𝜕𝑦
, 𝑒2 = 𝜙𝑒 = 2(

𝜕

𝜕𝑥
+ 𝑦∑𝜉𝑖

𝑠

𝑖=1

), and 𝜉𝑖 = 2
𝜕

𝜕𝑧𝑖
,    𝑖 ∈ {1,2,⋯ , 𝑠} 

According to this basis, the Levi-Civita connection is calculated as 

∇𝑒𝑒 = ∇𝜙𝑒𝜙𝑒 = 0 

∇𝑒𝜙𝑒 =∑𝜉𝑖

𝑠

𝑖=1

 

 

(26) 

 

 



102 

 

Journal of New Theory 42 (2023) 94-107 / Generalized Cross Product in (2 + 𝑠)-Dimensional Framed Metric ⋯ 

∇𝜙𝑒𝑒 = −∑𝜉𝑖

𝑠

𝑖=1

 

∇𝑒𝜉𝑖 = ∇𝜉𝑖𝑒 = −𝜙𝑒 

and 

∇𝜙𝑒𝜉𝑖 = ∇𝜉𝑖𝜙𝑒 = 𝑒 

 

 

(26) 

We will examine Legendre curves in ℝ2+𝑠(−3𝑠). Let 𝛾: 𝐼 → ℝ2+𝑠(−3𝑠) be a Legendre curve. Let 

𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧1(𝑡), … , 𝑧𝑠(𝑡)) 

such that 𝑡 is the arc-length parameter. If the tangent vector field of 𝛾 is 𝑉1, then 𝜂𝑗(𝑉1) = 0, 𝑗 ∈ {1,2,⋯ , 𝑠} 

since 𝛾 is a Legendre curve. From Equation 25, 

𝑧1
′(𝑡) = 𝑧2

′ (𝑡) = ⋯ = 𝑧𝑠
′(𝑡) = 𝑦(𝑡)𝑥′(𝑡) 

If 𝑧𝑖(𝑡) = 𝑓(𝑡), then 

𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑓(𝑡) + 𝑐1, 𝑓(𝑡) + 𝑐2,⋯ , 𝑓(𝑡) + 𝑐𝑠) 

If the tangent vector field of the curve 𝛾 in terms of basis {𝑒, 𝜙𝑒, 𝜉1, 𝜉2, … , 𝜉𝑠} is as follows: 

𝑉1 =
1

2
(𝑦′𝑒 + 𝑥′𝜙𝑒) 

Since 𝛾 is a unit speed curve, 

(𝑥′)2 + (𝑦′)2 = 4 

Hence, we have the following example: 

Example 4.3. 𝛾: 𝐼 → ℝ2+𝑠(−3𝑠), 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑓(𝑡) + 𝑐1, 𝑓(𝑡) + 𝑐2, … , 𝑓(𝑡) + 𝑐𝑠) is a unit speed 

Legendre curve such that 

𝑥(𝑡) =
2

𝑐
cos𝜃(𝑡) + 𝑥0 

𝑦(𝑡) =
2

𝑐
sin 𝜃(𝑡) + 𝑦0 

𝑓(𝑡) =
1

𝑐2
sin 2𝜃 +

2𝑦0
𝑐
cos 𝜃 −

2

𝑐
𝑡 

and 

𝜃(𝑡) = 𝑐𝑡 + 𝑐0 

The tangent vector field of  𝛾 in terms of basis {𝑒, 𝜙𝑒, 𝜉1, 𝜉2, … , 𝜉𝑠} is 𝑉1 = cos 𝜃 𝑒 − sin 𝜃 𝜙𝑒. From 26, 

∇𝑉1𝑒 = sin 𝜃∑𝜉𝑖

𝑠

𝑖=1

 

∇𝑉1𝜙𝑒 = cos𝜃∑𝜉𝑖

𝑠

𝑖=1

 

∇𝑉1𝜉𝑖 = −sin𝜃 𝑒 − cos𝜃 𝜙𝑒,    𝑖 ∈ {1,2,⋯ , 𝑠} 

∇𝑉1𝑉1 = −𝑐 sin 𝜃 𝑒 − 𝑐 cos 𝜃 𝜙𝑒 
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and 

𝑘1 = 𝑐 

Then, 𝑉2 = −(sin𝜃 𝑒 + cos 𝜃 𝜙𝑒) and 𝜙𝑉1 = cos 𝜃 𝜙𝑒 + sin𝜃 𝑒 = −𝑉2. If 

𝐸1 = 𝛾
′ = 𝑉1 

𝐸2 = ∇𝑉1𝑉1 

and 

𝐸3 = ∇𝑉1(∇𝑉1𝑉1) −
〈∇𝑉1(∇𝑉1𝑉1), ∇𝑉1𝑉1〉

〈∇𝑉1𝑉1, ∇𝑉1𝑉1〉
∇𝑉1𝑉1 −

〈∇𝑉1(∇𝑉1𝑉1), 𝑉1〉

〈𝑉1, 𝑉1〉
𝑉1 

then 

𝑉3 =
𝐸3
‖𝐸3‖

 

and 

∇V1(∇𝑉1𝑉1) = −𝑐
2 cos 𝜃 𝑒 + 𝑐2 sin 𝜃 𝜙𝑒 − 𝑐∑𝜉𝑖

𝑠

𝑖=1

 

Then, 

〈∇𝑉1(∇𝑉1𝑉1), ∇𝑉1𝑉1〉 = 0 

〈∇𝑉1(∇𝑉1𝑉1), 𝑉1〉 = −𝑐
2 

𝐸3 = −𝑐∑𝜉𝑖

𝑠

𝑖=1

 

and 

𝑉3 =
−∑ 𝜉𝑖

𝑠
𝑖=1

√𝑠
 

From 𝑘2 = 〈∇𝑉1𝑉2, 𝑉3〉 and 

∇𝑉1𝑉2 = −(𝑐 cos𝜃 𝑒 − 𝑐 sin𝜃 𝜙𝑒 +∑𝜉𝑖

𝑠

𝑖=1

) 

we obtain 𝑘2 = √𝑠. Similarly, since 

∇𝑉1𝑉3 = √𝑠(sin 𝜃 𝑒 + cos 𝜃 𝜙𝑒) 

and 

∇𝑉1𝑉3 = −𝑘2𝑉2 + 𝑘3𝑉4 

we obtain 𝑘3𝑉4 = 0. Thus, 𝑘3 = 0. ◻ 

Let 𝛼: 𝐼 → 𝑀 be a unit-speed curve in a 4-dimensional Riemannian manifold (𝑀, 𝑔). The Frenet vectors of the 

curve 𝛼 are 

𝑉1 = 𝛼
′,    𝑉2 =

𝛼′′

‖𝛼′′‖
,    𝑉4 = −

𝛼′ × 𝛼′′ × 𝛼′′′

‖𝛼′ × 𝛼′′ × 𝛼′′′‖
,    and    𝑉3 = 𝑉4 × 𝑉1 × 𝑉2 (27) 
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and the system {𝑉1, 𝑉2, 𝑉3, 𝑉4} is an orthonormal system in 4-dimensional space [11]. From Equation 27,  

𝑉4 = −𝑉1 × 𝑉2 × 𝑉3 (28) 

is obtained. 

Theorem 4.4. Let 𝑀 = (𝑀2+2, 𝜙, 𝜉𝑖 , 𝜂𝑗, 𝑔), 𝑖, 𝑗 ∈ {1,2}, be an 𝑆-manifold and 𝛾: 𝐼 → 𝑀2+2 be a Legendre 

curve of osculating order 4. Then, 𝑉4 =
𝜀

√2
(𝜉1 − 𝜉2). 

PROOF.  

From Equations 1 and 28, 

𝑉4 = (𝑔(𝑉1, 𝜙𝑉2)𝜂2(𝑉3) − 𝑔(𝑉1, 𝜙𝑉3)𝜂2(𝑉2) + 𝑔(𝑉2, 𝜙𝑉3)𝜂2(𝑉1))𝜉1 

(29) 

  +(−𝑔(𝑉1, 𝜙𝑉2)𝜂1(𝑉3) + 𝑔(𝑉1, 𝜙𝑉3)𝜂1(𝑉2) − 𝑔(𝑉2, 𝜙𝑉3)𝜂1(𝑉1))𝜉2 +  |
|

𝜙𝑉1 𝜙𝑉2 𝜙𝑉3

𝜂1(𝑉1) 𝜂1(𝑉2) 𝜂1(𝑉3)

𝜂2(𝑉1) 𝜂2(𝑉2) 𝜂2(𝑉3)

|
| 

From Equations 9, 12, 13, 18, 28, and 29, 

𝑉4 =
𝜀

√2
(𝜉1 − 𝜉2) 

is obtained. ◻ 

Example 4.5. Let 𝑐1, 𝑐2 ∈ ℝ. Then, the curve 𝛾: 𝐼 → ℝ2+2(−6) defined by 

𝛾(𝑡) = (2 ln |√1 + 𝑡2 + 𝑡| , 2√1 + 𝑡2, 4𝑡 + 𝑐1, 4𝑡 + 𝑐2) 

is a unit speed Legendre curve. The tangent vector field of 𝛾 in terms of basis {𝑒, 𝜙𝑒, 𝜉1, 𝜉2} is 

𝑉1 =
𝑡

√1 + 𝑡2
𝑒 +

1

√1 + 𝑡2
𝜙𝑒 

From Equation 26, 

∇𝑉1𝑒 = −
1

√1 + 𝑡2
(𝜉1 + 𝜉2) 

∇𝑉1𝜙𝑒 =
𝑡

√1 + 𝑡2
(𝜉1 + 𝜉2) 

∇𝑉1𝜉𝑖 =
1

√1 + 𝑡2
(𝑒 − 𝑡𝜙𝑒),    𝑖 ∈ {1,2} 

∇𝑉1𝑉1 =
1

(1 + 𝑡2)
3
2⁄
𝑒 −

𝑡

(1 + 𝑡2)
3
2⁄
𝜙𝑒 

and 

𝑘1 =
1

1 + 𝑡2
 

then  

𝑉2 =
1

√1+𝑡2
𝑒 −

𝑡

√1+𝑡2
𝜙 and 𝜙𝑉1 = −𝑉2 
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Thus, 

∇𝑉1𝑉2 = −
𝑡

(1+𝑡2)
3
2⁄
𝑒 −

1

(1+𝑡2)
3
2⁄
𝜙𝑒 − (𝜉1 + 𝜉2)  

and  

∇𝑉1𝑉2 = −𝑘1𝑉1 + 𝑘2𝑉3 

Therefore, we obtain 

𝑘2 = √2 and 𝑉3 = −
𝜉1+𝜉2

√2
 

Since ∇𝑉1𝑉3 = −
√2

√1+𝑡2
(𝑒 + 𝑡𝜙𝑒) and ∇𝑉1𝑉3 = −𝑘2𝑉2 + 𝑘3𝑉4, we obtain 𝑘3 = 0. From Equation 28, 

𝑉4 =

|

|

𝑒 𝜙𝑒 𝜉1 𝜉2
1

√1 + 𝑡2
−

𝑡

√1 + 𝑡2
0 0

𝑡

√1 + 𝑡2

1

√1 + 𝑡2
0 0

0 0 −
1

√2
−
1

√2

|

|

=
1

√2
(𝜉2 − 𝜉1) 

is obtained. ◻ 

Theorem 4.6. Let 𝑀 = (𝑀2+3, 𝜙, 𝜉𝑖 , 𝜂𝑗, 𝑔), 𝑖, 𝑗 ∈ {1,2,3}, be an 𝑆-manifold and 𝛾: 𝐼 → 𝑀2+3 be a Legendre 

curve of osculating order 5. 𝛾 is imbedded in the 3-dimensional 𝐾-contact space. 

PROOF.  

Let 

𝑈1 = cos 𝜃 𝑉4 − sin 𝜃 𝑉5 

𝑈2 = sin 𝜃 𝑉4 + cos 𝜃 𝑉5 
(30) 

such that 

𝜃(𝑠) = ∫𝑘4𝑑𝑠 (31) 

From Equations 30 and 31, 

∇𝑉1𝑈1 = 0 

and 

∇𝑉1𝑈2 = 0 

Therefore, 𝑈1 and 𝑈2 are constant. From Equation 30, {𝑉1, 𝑉2, 𝑉3, 𝑈1, 𝑈2} is an orthonormal basis. For the 

functions 

𝑓𝑖 : 𝐼 → ℝ 

  𝑠 → 𝑓𝑖(𝑠) = 〈𝛾(𝑠) − 𝛾(0), 𝑈𝑖〉    

such that 𝑖 ∈ {1,2} from Equations 30 and 31, we get, for all 𝑠 ∈ 𝐼, 

𝑓𝑖
′(𝑠) = 〈𝑉1, 𝑈𝑖〉 = 0 

𝑓𝑖(𝑠) = 𝑐 ∈ ℝ 
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and 

𝑓𝑖(0) = 〈𝛾(0) − 𝛾(0), 𝑈𝑖〉 = 𝑐 = 0 

Hence, for all 𝑠 ∈ 𝐼, 

𝑓𝑖(𝑠) = 0,    𝑖 ∈ {1,2} 

Then, 𝛾(𝑠) − 𝛾(0) ∈ Sp{𝑉1, 𝑉2, 𝑉3}. Let 𝜔 = {𝑋 ∈ 𝜒(𝑀) ∶  𝑔(𝑋, 𝑈1) = 0 ∧ 𝑔(𝑋, 𝑈2) = 0}. Since  

𝜔 = Sp{𝑉1, 𝑉2, 𝑉3} and 𝛾(𝑠) − 𝛾(0) ∈ 𝜔 

For the function 

𝜋 : 𝜒(𝑀) → 𝜔 

  𝑋 → 𝜋(𝑋) = �̅� +
𝜆1 + 𝜆2 + 𝜆3

3
𝜉 

such that �̅� ∈ 𝐷 = {𝑋 ∈ 𝜒(𝑀) ∶  𝜂𝑖(𝑋) = 0, ∀𝑖 ∈ {1,2,3}}, 𝑋 = �̅� + 𝜆1𝜉1 + 𝜆2𝜉2 + 𝜆3𝜉3, and 𝜉 =
𝜉1+𝜉2+𝜉3

3
, if 

we get 𝜂 = 𝜂1 + 𝜂2 + 𝜂3, �̃� = 𝜙, and �̃� = 3𝑔, then (𝑤3, �̃�, 𝜉, 𝜂, �̃�) is a 𝐾-contact space. Since �̃� = 3𝑔, then 

Γ̃𝑖𝑗
𝑘 = Γ𝑖𝑗

𝑘 and ∇̃= ∇. Because 𝑑𝜂 = 𝑑𝜂1 + 𝑑𝜂2 + 𝑑𝜂3 = 3𝑑𝜂1 = 3Φ = 3𝑔 = �̃�, then Φ̃ = 𝑑𝜂. Moreover, 

∇̃𝜋𝑋𝜉 = ∇𝜋𝑋 (
𝜉1 + 𝜉2 + 𝜉3

3
) =

1

3
(∇𝜋𝑋𝜉1 + ∇𝜋𝑋𝜉2 + ∇𝜋𝑋𝜉3) =

−3

3
𝜙(𝜋𝑋) = −𝜙(𝜋𝑋) = −�̃�(𝜋𝑋) 

As 

𝜂(𝑉1) = (𝜂1 + 𝜂2 + 𝜂3)(𝑉1) = 𝜂1(𝑉1) + 𝜂2(𝑉1) + 𝜂3(𝑉1) = 0 

The curve 𝛾 is also a Legendre curve at 𝜔. ◻ 

5. Conclusion 

This study generalized the cross product defined in 3-dimensional almost contact metric manifolds and defined 

a new generalized cross product in (2𝑛 + 𝑠)-dimensional framed metric manifolds such that 𝑛 = 1. Moreover, 

it characterized the curvatures of Legendre curves in 𝑆-manifolds. Moreover, this study proved that Legendre 

curves are biharmonic. Besides, it demonstrated that (2 + 3)-dimensional 𝑆-manifolds are imbedded in 3-

dimensional space. In future studies, researchers can investigate Slant curves in 𝑆-manifolds using the 

generalized cross product herein. 
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