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1. Introduction

Yano [1] has led up to the groundwork of S-manifolds and has defined the concept of f-structures in M2"+S
manifolds. Almost complex (s = 0) and almost contact (s = 1) structures are examples of f-structures.
Goldberg and Yano [2] have defined the concept of the framed f-structures. Moreover, they have suggested a
complex structure by the concept of f-structures. Furthermore, they have proposed the concept of framed
metric manifolds by examining the normality condition of a metric framed structure. Blair [3] has introduced
S-manifolds, generalizing almost complex Kaehler and almost contact Sasakian structures. Sarkar et al. [4]
have found the curvature and torsion of Legendre curves in 3-dimensional trans-Sasakian manifolds with
respect to the semisymmetric metric connection. Ozgiir and Giiveng [5] have propounded biharmonic Legendre
curves in S-space forms. They have analyzed characterizations of the curvature of the biharmonic Legendre
curves in 4 cases.

This paper is organized as follows: Section 2 provides the concept of S-manifolds and some of their basic
properties. Section 3 generalizes the new cross-product in a 3-dimensional almost contact metric manifolds
defined by Camci [6] and defines a generalized cross-product in (2 + s)-dimensional S-manifolds. Besides, it
demonstrates that this cross-product in R* is coherent with a triple product [7] by an example. In addition,
Section 3 provides the basic properties of the generalized cross-product. Section 4 calculates the curvature of
Legendre curves using the generalized cross-product and demonstrated that (2 + 3)-dimensional S-manifolds
are imbedded in 3-dimensional space. Finally, the need for further research is discussed.
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2. Preliminaries

This section provides the concept of S-manifolds and some of their basic properties.

Definition 2.1. [1] Let (M, g) be a Riemannian manifold with dim M = 2n + s. It is said to be a framed f-
structure if £ is a tensor field of type (1, 1) and rank 2n satisfying f3 + f = 0.

Definition 2.2. [2] Let M?™*S be a manifold with an f-structure of rank 2n. Then, f-structure is said to be
has completed frames if there exists vector fields &;,&,, -+, & on M?™*S and 14,15, -+, 1 are 1-forms, then

mof=0fod=0andf?=-I+¥_;m ®%&.

Definition 2.3. [8] Let M2™+S be an f-structure with completed frames. The framed f-structure is normal if
the tensor field S of type (1,2) given by

S=Iff1+2) dn ®¢
i=1

vanishes.
Definition 2.4. [2] Let M2™*S be a manifold. Then, M is said to be an S-manifold if the f-structure is normal.

Definition 2.5. [1] Let M2™*S be a Riemannian manifold. The distribution on M spanned by the structure
vector fields is denoted by M, and its complementary orthogonal distribution is denoted by D. Consequently,
TM = D @ M. Moreover, if X € D, thenn;(X) = 0, forany i € {1,2,---,s}, and if X € M, then fX = 0.

Definition 2.6. [2] Let M2™*S has an f-structure with completed frames. If there exists a Riemannian metric
g on M?"*s sych that

gV = gUEX V) + ) mCOmi(Y)
i=1

and X,Y € y(M?™+5), then M2™*S is called that has a metric f-structure.

From now on, the notation ¢ is used instead of f.

Definition 2.7. [3] Let M2™*S be an S-manifold. The covariant differentiation V of M2"*S satisfies
Vyéi = —¢X, i€{1,2,-,s}

and

(V)Y = D [g(@X, ¢V + iV )$?X]
i=1

for all X,Y € y(M). Besides, for all i € {1,2,:-,5}, ny An, A---Ang A(dn;))™ # 0 and & = dn; on an S-
manifold such that @ is the fundamental 2-form defined by

DX, Y) =g(X,¢Y), X,Y€ETM
Definition 2.8. [9] A submanifold of an S-manifold is called an integral submanifold if
ni(X) =0, i€{1,2,--,s}, forall X € y(M)

Definition 2.9. [5] A 1-dimensional integral submanifold of an S-manifold (M2"+5, o, fi,nj,g), i,j €
{1,2,---,s} is called a Legendre curve of M. In other words, a curve y:I — M is called a Legendre curve if
n;(T) =0, forall i € {1,2,---, s} such that T is the tangent vector field of y.
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3. Generalized Cross product in (2 + s)-dimensional Framed Metric Manifolds

This section, firstly, generalizes the cross-product in a 3-dimensional almost contact metric manifolds defined
by Camci [5] and defines a generalized cross-product in (2 + s)-dimensional S-manifolds.

Definition 3.1. Let A be a matrix of type s X (s + 1). Then,
i. A;j, such that i,k € {1,2,---,s}and j € {i + 1,i + 2, -, s + 1} is the matrix obtained by deleting the i*"
and j*" columns and k" row of the matrix A. Specially, for s = 1, detA;,; = 1.

ii. jmn such thatm € {2,3,---,s}andn € {m + 1,m + 2,---,s + 1} is the matrix obtained by deleting the i*"
and j*" columns of the matrix A and adding the first column of the matrix A to the left of the first column as a
new column.

For example, for s = 3, let

a117 Q12 Q13 Qg4
A =01 Gz aGz3 0G4,
az1 Q32 033 043z
Then,
Hour = [‘121 ‘124]
231 az1 Az
and

. i1 411 Q14
Ayz3 =|Q21 Q21 Q24
az1 0dz1 Q3a
Definition 3.2. Let M = (M?*S,¢,¢,m;,9), i,j € {1,2,-+,s}, be a framed metric manifold in (2 + s)-
dimensional space. We define a generalized cross-product x by

¢X1 ¢X2 ¢Xs+1
s s, s+t X)) mXz) - ni(Xsi1)
Xy X Xy X oo X Xgpq = (—D™+kd(X, X;) det Ay | & + (1)
Ns(X1) ns(Xz2) - Ns(Ks1)
such that Xy, X,, -+, Xs41 € TM and
M1 (X1) m&Xz) o m1(Xsp1)]
N2(X1) M2(Xz) - m2(Xs41)
A=
-ns(Xl) ns(XZ) ns(Xs+1)—

Moreover,AUk, i,ke{1,2,-,standj e {i +1,i + 2,---,s + 1}, isas in Definition 3.1. For example, for s =
1, we obtain

X1 X Xy = ®(X1,X2)&1 + 11 (X)X, — 11 (X)X, 2

Equation 2 gives the cross product in 3-dimensional almost contact metric manifolds defined in [6]. For s = 2,
the generalized cross-product is
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X1 XXy X X3 = (¢(X1'X2)772(X3) — DX, X3)n(X3) + ¢(X2:X3)772(X1))f1
+(=P X1, XN (X3) + (X, X3)n1 (X)) — (KXo, X3)11 (X1))E,

(o). €] PX; PX;3
+mX) mE) nXs)
(X)) m(Xz) 1n2(X3)

Secondly, it demonstrates that this cross-product in R* is coherent with a triple product [7] by an example.

Example 3.3. For the subspace V = {(xy,x3,0,0) | x;,x, € R} of the 4-dimensional Euclidean space
R* (x4, x5, x3,%,), the projection function m(x, x5, x3,x,) = (%4,%5,0,0), and the almost complex plane
J (x4, %9, %3, x4) = (X3, —Xq1, —X4, X3), (R4(x1,x2,x3,x4),¢, fi,r)j,g), i,j €{1,2}, is a framed metric
manifold such that ¢ =] om, n, = dx3, n, = dxy, ¢ = (0,0,1,0), & = (0,0,0,1), and g is the standard
Euclidean metric. As aresult, X; X X, X X3 = X; A X, A X5 suchthat X; A X, A X is the triple product in R*
provided in [7].

Finally, this section provides some of the basic properties of the generalized cross-product.

Theorem 3.4. Let M = (M?*S,¢,§;,n,9), i,j € {1,2,--,s} be a framed metric manifold in (2 + s)-

dimensional space. Then, for all X;,X,,---,Xs,1 € TM, the generalized cross-product has the following
properties:

i. The generalized cross-product is bilinear and antisymmetric.
. X; X X, X -+ X Xg,1 is perpendicular to each of X4, X5, -+, Xs11-
“l (I)X:fl sz X"'XESXX.

Proor.
i. The proof is straightforward from the fundamental 2-form & and the determinant function’s bilinearity.

ii. We need to show that g(X; X X, X ==+ X X, 1,X;) =0, fort € {1,2,--,s + 1}. For t = 1, from Equation
1, we obtain

0 g(PX2,X1) - g(@Xsi1,X1)
g(Xy X Xy X -+ X Xop1, X1) =i<i i (_1)i+i+k<p(xi,xl-)det/iijk>nk(x1)+ PO ey 3
k=1 \i=1 j=T1 : : :
ns(X)  ns(X2) o ns(Xern)
Thus,
0 g(@Xz,X1) - g(@Xss1, X1)
mX)  ml) o m(Xea) s /sl .
- Z <Z(—1)f+"<p(xl,xj) detzljk)nk(xl) (4)
k=1 \j=2
ns(X)  ns(X2) o ns(Xsan)
If we substitute Equation 4 for Equation 3, we get
s s+1

g( Xy X Xy X X3 X -+ X X9, X1) = Z Z (—1)i+jq)(Xier) detji}'

i=2 j=it+1
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Here, the A
Therefore,

ij

gXy XXy X X3 XX Xg11,X1) =0
Similarly, it is proved that g(X; X X, X X3 X -+ X X¢11,X;) =0, fort € {2,3,--,s + 1}.
i, If§ =Y, foralli € {1,2,---,s},and X = Yy, forall X,&;,&,,-+,& € TM, from Equation 1,

oY oY, o PYsn
S s stl m) m2) - (Vo)
EXEXWXEXX =Y XYy X (X Yoy = Z Z Z (D™**(Y,,Y;) det Ay | & +
k=1 \i=1 j=i+1
Tls(Y1) WS(YZ) Us(Ys+1)
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i€{23,-,s}and jef{i+1,i+2,---,s + 1}, is as in Definition 3.1. Thus, detﬁij =0.

®)

From Equation 5, CD(YL-,}G-) =0,i,j €{1,2,--,s + 1}. Then, if we substitute the expressions ¢Y; = ¢p&; =0

and Y., = X in Equation 5, we get &; X &, X ... X { X X = ¢pX. O

4. Legendre Curves in S-manifolds

Let y:1 - M be a unit-speed curve in an n-dimensional Riemannian manifold (M, g) and k4, k5, -, k, be
positive functions on 1. If there is an orthonormal basis {V;,V,, -, V,} along y that satisfies the following

Frenet equations, y is called a Frenet curve of osculating order r:
=y’
VV1V1 =k,V,
Vi, Vo = =k Vi + k,V3

VV1Vr = —kr_1Vrq

Theorem 4.1. Let M = (M?*S,¢,&;,m;,9), i,j € {1,2,--,n} be an S-manifold and y: 1 - M be a Legendre

curve of osculating order (2 + s). Then, for ¢ = +1, the following equations are obtained:

Vo = eV
S
v, =~ 25
3= T~ s
\/Ea=1
k2 = \/E
and
k3 = 0
Proor.

For the function o;;: 1 - R defined by oy;(s) = g(V;,¢;), fori € {1,2,--+,s + 2}and j € {1,2, -+

s+2

fj = ZO'ijVi, jE {1,2,"',5}

i=1

(6)
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Let y be a Legendre curve. Then,

011 =01 = =015 =0 (7
Moreover, from Theorem 3.4,
Voo V3o Ve Vepo
021 031 - O+11 O(s+2)1
$Vy = (=1)S*1|022 032 - Ost1)2 O(s+2)2 (8)
O2s 03s =+ O(s+1)s O(s+2)s

If we take the derivative from a,; = 0 = g(V;,&;), then

021 =0z =03 =" =025 =0 ©))
From Equations 8-10,
031 - OG+1)1 O(s+2)1
032 -+ O(s+1)2 O(s+2)2
oV, = (=D , 2 (10)
035 - O(s+1)s O(s+2)s

If we substitute Equations 7 and 9 in Equation 6, then

€171 931 %41 -+ O+2)1q[ Vi T
& 032 042 - O@se22|| V,
N ; : (11)
&1 LO3s 042 o O(s42)s LV, 5]
B

Since {&,,&,, ..., &} and {Vs, ..., V., } are orthonormal systems, B is an orthonormal matrix. In this case, |B| =
+1 where |B| is the determinant of the matrix B. From Equation 10, for ¢ = +1,

PV, = €V, (12)
From Equation 12,

PV, = €V (13)
If we take the derivative from a,; = g(V,,¢;) =0,i € {1,2,:-, s},

kyo3, = g(Vp, ¢V1), k€{1,2,-,s} (14)



Journal of New Theory 42 (2023) 94-107 / Generalized Cross Product in (2 4+ s)-Dimensional Framed Metric ---

From Equation 8,

gV, dVy) =1

Then, from Equations 14 and 15,
k20-3k = 1, k € {1,2,"',5}

In this case,
1
O3k = o ke{12,--,s}
2

Since B is an orthonormal matrix,

Z (03k)2 =1
k=1

From Equations 16 and 17, for e = +1,

O3 = ke{12,--,s}

&
\/E'

and

If we take the derivative from Equation 17, then
—k2g(V2,81) + k3g(Va, §1) + g(V3,9V1) = 0
From Equations 9 and 12, Equation 19 becomes
k3o41 =0

Similarly,

k304, = k3043 = -+ = k3045 = 0
As the matrix B is orthonormal,

(041)% + (042) + -+ (045)* = 1

From Equations 20-22,
k3 - 0

Since B is an orthonormal matrix, we can write Equation 11 as follows:

V3 El
VS +2 ES

100

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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From Equations 11 and 18,

& & &

sV Vs
T 0-4_1 0-42 ew 0-4_5

[0(s+2)1  O(s+2)2 " O(s+2s)s
and from Equations 23 and 24,
S
V=~ 25
3= = a
\/E a=1

is obtained. O

Remark 4.2. In [5], Ozgiir and Giiveng assumed that V, = ¢V, and obtained the same results as in Theorem
4.1 for biharmonic Legendre curves. Thus, Legendre curves are also biharmonic.

In [10], Hasegawa et al. have introduced R?*5(—3s) space as follows: Let the coordinate functions’ set of
M = R?*S be {x,y, z;, -, zs}. In this space,

0
&=2—, 1€{1,2,-,5}

aZl"
1 .
77] = Z(dzj _ydx); ] € {llzr"'fs}
(25)
and
1 S
g =Z(dx2 +dy?) +Zn,~ ®n;
j=1
with

X = 6+ a+i g € y(M
_elax ezay ' lfiazi x(M)
1=

Thus, (M = R**%,¢,¢;,1;, g) is an S-space form with the constant ¢-sectional curvature ¢ = —3s. Besides,
{e, pe, &, &,, -+, &} is an orthonormal basis on R?+$(—3s) such that

N
) 0 0
= =2—’ — — R |, — —_—, 1 2,0,
eg=e e, = e 2<ax+nyl> and & ZaZi ie{1,2,-,s}
1=

According to this basis, the Levi-Civita connection is calculated as

Vee = Vgepe =0

Vepe = zs: $i
=1

(26)
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and

VpeSi = Ve, e = e

We will examine Legendre curves in R2¥5(—3s). Let y: I - R2%5(—3s) be a Legendre curve. Let

Y(t) = (X(t), }’(t)»Z1(t); e Zs(t))

102

(26)

such that t is the arc-length parameter. If the tangent vector field of y is Vy, then n;(V;) = 0, j € {1,2,---, s}

since y is a Legendre curve. From Equation 25,
21(8) = z3(8) = - = z;(t) = y(O)x' ()
If z;(t) = f(¢t), then
y(@) = (x(@®),y(®), f() + c1, f(O) + ¢z, 0, f(E) + ¢5)

If the tangent vector field of the curve y in terms of basis {e, ¢e, &, &5, ..., &} is as follows:
1
Vi=50'e+x'¢e)
Since y is a unit speed curve,

)2+ (/)2 = 4
Hence, we have the following example:

Example 4.3. y:I - R?*5(=35),y(t) = (x(t), y(t), f(t) + c1, f(t) + cy, ..., f(£) + ¢5) is a unit speed

Legendre curve such that

2
x(t) = Zcos 0(t) + xo

2
y() = Zsin6(8) + o

1 2o 2
f(t) =—=sin26 + ——cosf ——t
c c c

and

0(t) =ct+cy

The tangent vector field of y in terms of basis {e, ¢e, &1, &5, ..., &5} ISV, = cos @ e — sin 6 ¢pe. From 26,

S
Vy, e = sin 92 &
i=1

S
Vy, e = cos o Z &
i=1

Vy,§i = —sinfe —cosf ¢e, i€{1,2-,s}

Vy, Vi = —csinf e — ccos 6 pe
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and
ki=c

Then, V, = —(sinf e + cos 6 ¢e) and ¢pV; = cos O ¢pe +sinf e = —V,. If

E,=y' =W
Ez = VV1V1
and
(Vy, (Vy, V1), Vi, V1) (Vy, (Vy, V1), V1)
E; = VVI(VV1V1) - (1V Vl- v Vl) V1 — 1(V 1V) 1
ViV Vv Va1 1. V1
then
E3
Vs =
> IEl
and
S
Vy, (Vy, V1) = —c%cosB e + c?sin b pe — CZ &
i=1
Then,
(Vy, (Vy, V1), Wy, V1) = 0
(Vy, (Vy, V1), Vp) = —c?
S
E; = —CZ $i
i=1
and
S
— Lij= fl
Vo = i=1
’ Vs

From k, = (Vy, V,,V3) and

N
Vy,V, = —<cc059e —csinf ¢e +Zfi)
i=1

we obtain k, = /s. Similarly, since
Vy, V3 = Vs(sin6 e + cos 6 ge)
and
Vy, Vs = —k,V, + k3,

we obtain k3V, = 0. Thus, k3 = 0. O

103

Let a: 1 — M be a unit-speed curve in a 4-dimensional Riemannian manifold (M, g). The Frenet vectors of the

curve a are

12

a v a xa’ xa
T e xa xa

V1 =0(', Vz = and V3 =V4XV1XV2

(27)
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and the system {V;,V,, V5, V,} is an orthonormal system in 4-dimensional space [11]. From Equation 27,
V4 - _V1 X Vz X V3 (28)

is obtained.
Theorem 4.4. Let M = (M?*2,¢,;,1;,9), i,j € {1,2}, be an S-manifold and y:1 - M?*Z be a Legendre

curve of osculating order 4. Then, V, = % (& —&).

Proor.

From Equations 1 and 28,

Vy = (Q(Vl: PV, (V3) — g(Vy, pV3)n, (V) + Q(V2:¢V3)772(V1))f1

| $V1 oV, dV3 | (29)

+(—g(V1,¢V2)7]1(V3)+g(V1,¢V3)771(V2)—g(V2,¢V3)r]1(V1))€2+ ni (V) ni(Vz) 0 (V3)
(V1) n2(V2) np(V3)

From Equations 9, 12, 13, 18, 28, and 29,

n=%&—w

is obtained. O
Example 4.5. Let ¢;, ¢, € R. Then, the curve y: I - R?*2(—6) defined by

y(®) = (21n|\/1 +t2 4 t|,2\/1 + 2,4t + ¢y, At + c2)

is a unit speed Legendre curve. The tangent vector field of y in terms of basis {e, ¢e, &, ¢, } is
v t 4 1 "
= e e
Vit i+

From Equation 26,
1

Vye=— +
Vi m(fl 52)
t
Vy. pe = +
V1¢ m(fl 52)
1
Vy & =——=(€e—tde), i€{l,2
V1El m( ¢) { }
t
AL e— pe
Aty a+ene
and
k. = 1
T 1+e2
then

£ V2

1 t
= Taat T imatand el = -
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Thus,
Vy V= ——t e — L e — (& + &)
i'2 7 2y (1+t2)°/2 12
and
VV1V2 = _k1V1 + k2V3
Therefore, we obtain
§1t+¢
kz = \/zand V3 = —%
Since Vy, V5 = —%(e + tgpe) and Vy, V5 = —k,V, + k3V,, we obtain k3 = 0. From Equation 28,
e pe 31 P
1 t
— 0
Vi+e2  V1+1¢2 1
V., = t 1 — —
4- 2 2 0 '\/E (62 El)
Vi+t2 1+t
0 0 1 1
V2 V2

is obtained. O
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Theorem 4.6. Let M = (M?*3,¢,¢;,m;,9), i,j € {1,2,3}, be an S-manifold and y: I - M?*3 be a Legendre
curve of osculating order 5. y is imbedded in the 3-dimensional K-contact space.

Proor.

Let

such that

From Equations 30 and 31,

and

U, =cos8V, —sinf Vs
U, =sin@V, +cos8 Vs

6(s) = fk4ds
VV1U1 =0
VV1U2 = 0

(30)

(31)

Therefore, U; and U, are constant. From Equation 30, {V;,V,, Vs, Uy, U,} is an orthonormal basis. For the

functions

fi:I=>R

s = fi(s) = {y(s) —v(0),U;)

such that i € {1,2} from Equations 30 and 31, we get, forall s € I,

fi(s) =(V,U)=0
fis)=c€eR
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and
fi(0) =(y(0) —y(0),U;) =c=0
Hence, forall s € I,
fi(s) =0, i€{1,2}
Then, y(s) — y(0) € Sp{V,V,, V3}. Letw = {X € y(M) : g(X,U;) = 0A g(X,U,) = 0}. Since
w = Sp{V,Vy, Vel and y(s) —y(0) € w
For the function
m:x(M) - w
_ M+ +A
X »nX)=X+ 1#23
suchthat X € D = {X € y(M) : 1;(X) = 0,Vi € {1,2,3}}, X = X + 1,&; + 1,&, + 1365, and & = @ it

we getn =mn;, + 1, + 13, ¢ = ¢, and § = 3g, then (w3, $, ¢, 7, §) is a K-contact space. Since § = 3g, then
I =T/ and V= V. Because dn = dn; + dn, + dn; = 3dn, = 3® = 3g = g, then & = dn. Moreover,

S1+é6+4;

1 —3 5
2703) = 2 (Vs + e + V) = - GGX) = —p(X) = —G ()

vnxéT = VnX(
As
n(V) =y +n2 +n3)(V) =n.(V) + (V) +13(V1) =0
The curve y is also a Legendre curve at w. O
5. Conclusion

This study generalized the cross product defined in 3-dimensional almost contact metric manifolds and defined
anew generalized cross product in (2n + s)-dimensional framed metric manifolds such that n = 1. Moreover,
it characterized the curvatures of Legendre curves in S-manifolds. Moreover, this study proved that Legendre
curves are biharmonic. Besides, it demonstrated that (2 + 3)-dimensional S-manifolds are imbedded in 3-
dimensional space. In future studies, researchers can investigate Slant curves in S-manifolds using the
generalized cross product herein.
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