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Abstract 

In this paper We propose a comprehensive fault-domain-driven (FDD) approach for hydraulic systems to 

circumvent the constraints of supervised diagnostic tools in identifying atypical and beyond-label failures. 

This approach requires the inclusion of a categorization phase step prior to the diagnosis. Thus, the limits 

of supervised diagnostic procedures may be circumvented. In this part, we avoid the problem at hand by 

doing detection and diagnosis independently. Long Short-Term Memory (LSTM) autoencoders are used 

during the fault detection phase. In the subsequent phase, known as diagnostic, ML and DL classifiers are 

employed to identify the nature of the discovered defects. Even though there is evidence in the research 

pointing to the existence of this strategy, our work surpasses the previous art in the following respects: (1) 

The information collected from hydraulic test rigs has never been employed in conjunction with this specific 

schema. Two exhaustive trials demonstrated how this strategy may be used to resolve sensor and component 

difficulties. We used a unique LSTM autoencoder design in the third step, which was the detection phase. 

(4) During the autoencoder's detection phase, we devised a unique criterion for calculating the divergence 

between the anticipated signal and the input signal. It has been proved that this technique is superior to the 

conventional way for determining more exact diagnostic thresholds. (5) We gave a comprehensive 

examination of the performance of a wide variety of ML and DL classifiers that vary in their functionality 

and technique. These classifiers are proposed for usage during the classification's fault diagnosis phase. In 

addition, we analyzed the behavior of each machine learning and deep learning classifier using a range of 

time-domain feature selection techniques. This was done to aid future study by mapping each classifier to 

its most or least suitable time-domain feature in order to implement component or sensor FDD in hydraulic 

systems. 

Keywords: FDD, LSTM, ML, DL. 

TÜRBİN MOTORLARINDAKİ HATALARI TESPİT ETMEK İÇİN DERİN ÖĞRENME 

TABANLI SINIFLANDIRMA ALGORİTMASI KULLANIMI 

Özet 

Bu yazıda, atipik ve etiket dışı arızaları belirlemede denetimli teşhis araçlarının kısıtlamalarını aşmak için 

hidrolik sistemler için kapsamlı bir hata alanı güdümlü (FDD) yaklaşımı öneriyoruz. Bu yaklaşım, teşhisten 

önce bir sınıflandırma aşaması adımının dahil edilmesini gerektirir. Böylece denetimli teşhis prosedürlerinin 

sınırları aşılabilir. Bu kısımda, bağımsız olarak tespit ve teşhis yaparak eldeki sorunu önlüyoruz. Uzun Kısa 

Süreli Bellek (LSTM) otomatik kodlayıcılar, arıza algılama aşamasında kullanılır. Teşhis olarak bilinen 

sonraki aşamada, keşfedilen kusurların doğasını belirlemek için ML ve DL sınıflandırıcıları kullanılır. 

Araştırmada bu stratejinin varlığına işaret eden kanıtlar olmasına rağmen, çalışmamız aşağıdaki açılardan 

mailto:osman.ucan@altinbas.edu.tr


AURUM MÜHENDİSLİK SİSTE MLERİ VE Mİ MARLIK DERGİSİ  

AURUM JOURNAL OF ENGINEERING SYSTEMS AND ARCHITECTURE 

 

Cilt 9, Sayı 1 | Yaz 2025 

Volume 9, No 1 | Summer 2025 

 

122 

 

önceki tekniği aşmaktadır: (1) Hidrolik test teçhizatlarından toplanan bilgiler hiçbir zaman bu özel şema ile 

bağlantılı olarak kullanılmamıştır. İki kapsamlı deneme, bu stratejinin sensör ve bileşen zorluklarını çözmek 

için nasıl kullanılabileceğini gösterdi. Algılama aşaması olan üçüncü adımda benzersiz bir LSTM otomatik 

kodlayıcı tasarımı kullandık. (4) Otomatik kodlayıcının algılama aşamasında, beklenen sinyal ile giriş 

sinyali arasındaki sapmayı hesaplamak için benzersiz bir kriter geliştirdik. Bu tekniğin, daha kesin teşhis 

eşikleri belirlemek için geleneksel yoldan daha üstün olduğu kanıtlanmıştır. (5) İşlevsellikleri ve teknikleri 

bakımından farklılık gösteren çok çeşitli ML ve DL sınıflandırıcılarının performansının kapsamlı bir 

incelemesini yaptık. Bu sınıflandırıcılar, sınıflandırmanın hata teşhis aşamasında kullanım için önerilir. Ek 

olarak, bir dizi zaman alanı özelliği seçme tekniği kullanarak her bir makine öğrenimi ve derin öğrenme 

sınıflandırıcısının davranışını analiz ettik. Bu, hidrolik sistemlerde bileşen veya sensör FDD'yi uygulamak 

için her sınıflandırıcıyı en uygun veya en az uygun zaman alanı özelliğine eşleyerek gelecekteki çalışmalara 

yardımcı olmak için yapıldı.. 
Anahtar kelimeler: FDD, LSTM, ML, DL. 

 

1. INTRODUCTION 

Gas turbines, often known as GTs, are a kind of mechanical device that utilizes air as its working fluid and operates 

on the basis of a thermodynamic cycle. When air is compressed, fuel is added, and the mixture is burned in a 

combustor, a hot, pressured gas is produced. The expansion of this gas by a turbine result in the creation of energy. 

This acts not only as the push for the compressor, but also as its resistance to environmental difficulties (that is, for 

thrust or shaft power). A generic definition of a motor would include the following components and pieces of 

machinery: 

1) Compressors, burners, and turbines are a few examples of the gas stream's constituent parts. 

2) Among the several movable components of engines are bearings, rotors, and gear trains. 

3) The fuel regulation, the fuel pump, and the control system are all regarded as accessories. 

The systems that regulate the engine's air-bleed, ignition, and lubrication. In contrast, the GT is often seen as solely 

consisting of gas route components in its most elementary form. GTs have an increasing variety of applications, 

including mechanical drives in the oil and gas business, energy generation in the power sector, and propulsion 

systems in the aerospace and maritime sectors. All of these applications have a direct effect on people's day-to-day 

lives and their eventual consumption patterns. Due to advances in design, aerothermodynamics, and 

materials/cooling technologies, GTs are becoming more economically feasible. These innovations improve GTs in 

a number of ways, including better overall performance levels, greater thermal/component efficiency, and longer 

periods between overhauls (TBOs). GTs were first used for stationary applications in the early 1950s. These turbines 

were based on the concept of steam turbines and used the aerothermodynamic technology seen in military aircraft 

GTs. These GTs were built with pressure ratios between 12 and 1, firing temperatures between 649 and 816 degrees 

Celsius, and thermal efficiencies between 23 and 27%. As a consequence of advancements in design, 

aerothermodynamics, and material and cooling technologies, the efficiency of current systems exceeds 45 percent 

even at the highest possible operating temperatures and pressures. Greater than ever, gas turbines are employed in 

combination cycles, mixed cycles (in which gas turbines are used upstream and steam turbines are used 

downstream), and even combined cycles that do not include the production of heat. As a consequence of these 
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actions, engagement in the system has considerably grown. Moreover, GTs may run on a variety of fuels, such as 

coal and gases with a low heating value, resulting in less pollution than other sources of power production. 

 

Figure 1. Schematic view of a gas turbine 

Several sensors are coupled to diverse industrial machinery and equipment in order to train and automatically assess 

FDD algorithms and systems on a computer. These sensors continually provide signals that may be evaluated to 

detect the present state of the moving components of the machine. The sensor readings, sometimes referred to as 

modalities, are the source of the essential data used by automated FDD systems. If the sensors used to monitor these 

components are not in perfect operating condition, accurate monitoring of these components will not be possible. 

These sensors, which are attached to the piece of equipment, are necessary for computer-aided diagnostics; 

nevertheless, despite their importance, they are often absurdly inexpensive and continue to function even under 

extreme weather conditions. Therefore, sensors employed in mechanical systems cannot be relied upon and often 

become faulty for a number of reasons. As part of an intelligent FDD system, the health of the sensors responsible 

for reporting the condition of mechanical components must be checked. 

 

.  

Figure 2. FDD system in a turbine engine 
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It is required to install component FDD systems in addition to sensor FDD systems in order to keep a close eye on 

all activities in the industrial sector. Hydraulic systems are some of the most crucial pieces of equipment when it 

comes to the production of goods. A hydraulic test rig was used in order to collect the required data for the study's 

hydraulic system. A test rig is a piece of mechanical equipment used to measure, analyze, and evaluate the 

functionality and efficiency of another piece of mechanical equipment or system, or a subset of the item being tested. 

The gear used for conducting tests is referred to alternately as a "test bench," "test pay," and "testing station." 

However, each of these names refers to the same thing. From the hydraulics sector to the aerospace business, test 

rigs are used in almost every area of the manufacturing industry. They have access to a vast array of analytical 

parameters and testing procedures, including, to mention a few, manual, cyclical, brake, and burst testing. This 

research focuses on hydraulic systems derived via a hydraulic test rig, which include a full FDD system of 

component and sensor issues. This is a result of the significance of hydraulic systems and the limited availability of 

FDD resources during the last decade. 

Despite the recent rise in popularity of machine learning, researchers have barely scratched the surface of the 

potential of a hybrid model for defect identification and diagnosis leveraging artificial neural networks. Approaches 

based on hybrid ANNs may be able to significantly improve diagnostic skills in industrial contexts. This is because 

more and more information about processes is becoming accessible. This paper offers two hybrid strategies for fault 

detection and classification using supervised neural networks in an effort to further this area of inquiry. These 

methods use both unsupervised and supervised learning. The primary purpose of this thesis is to develop a hybrid 

strategy for problem detection in the chemical industry that combines traditional techniques with machine learning. 

This strategy will use both conventional techniques and machine learning. The precision of diagnostic processes 

will be one of the primary focuses of this investigation. This technique also aims to reduce the amount of time and 

resources necessary for model training and testing. This may be done with the aid of the following secondary 

objectives: 

• Utilize the existing process data for identifying and investigating problems. 

• Remove the noise from your data to improve the accuracy and efficiency of training a neural network. 

• Utilize all visual information available when diagnosing difficulties. 

• It is suggested that techniques be developed that permit the modification of network settings with little 

involvement from subject matter experts. 
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Figure 3. ANN system in fault detection 

2. FAULT DETECTION FOR MAINTAINANCE  

2.1. Definition of Industrial Maintenance 

According to the AFNOR standard (NF X 60 010), maintenance is a “set of actions allowing to maintain or restore 

an item in a specified state or capable of providing a specific service”. Proper maintenance means ensuring these 

operations at the optimum cost. Indeed, whatever the field of activity, manufacturers must not neglect the costs and 

the various impacts that a sudden failure could cause. Their productivity relies heavily on their maintenance 

processes. 

2.2. The Different Types of İndustrial Maintenance 

There are three types of industrial maintenance. The first type is corrective maintenance. It is used to repair the 

failure of any equipment as soon as it arrives. It aims to restore the faulty equipment to working order after the 

breakdown. It is a corrective maintenance or also called curative maintenance. The second type of maintenance is 

preventive maintenance. The latter aims to detect and solve problems before they arise. It is usually carried out in 

the form of regular and planned inspections. The third type is that of predictive maintenance. According to the 

Cambridge Dictionary (Cambridge University Press, 2021), the adjective predictive is defined as "to say that an 

event or action will occur in the future". Maintenance is defined as “the work necessary to keep a machine in good 

condition”. In other words, predictive maintenance can be defined as a tool, which makes it possible to predict the 

future point of failure of a machine or system component before it fails. In fact, corrective maintenance is applied 

after the failure, while preventive maintenance uses precautionary measures to avoid possible problems. Predictive 

maintenance assesses the condition of existing equipment and, based on a projected trend of the deterioration 

process, failures are predicted and appropriate action taken (Matthew P. which predicts the future point of failure of 

a machine or system component before it fails. In fact, corrective maintenance is applied after the failure, while 

preventive maintenance uses precautionary measures to avoid possible problems. Predictive maintenance assesses 

the condition of existing equipment and, based on a projected trend of the deterioration process, failures are predicted 

and appropriate action taken (Matthew P. which predicts the future point of failure of a machine or system 

component before it fails. In fact, corrective maintenance is applied after the failure, while preventive maintenance 
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uses precautionary measures to avoid possible problems. Predictive maintenance assesses the condition of existing 

equipment and, based on a projected trend of the deterioration process, failures are predicted and appropriate action 

taken. 

2.3. Approach to a Predictive Maintenance Approach Based on Data 

To be able to implement a predictive maintenance strategy, we must first have connected sensors that continuously 

measure the operating parameters of the equipment concerned. This data is massively collected and then transmitted 

using the IoT to an intelligence engine This engine analyzes the big data and cross-references them with the 

intervention reports carried out on the same equipment. The predictive model will thus gradually highlight 

correlations between certain information transmitted and breakdowns. He will therefore be able to learn that such 

measured values precede such type of failure. Thus, as soon as these values are measured again, he will be able to 

plan a maintenance action and avoid the occurrence of the failure. 

For this, several tools are available for each phase of construction, and each tool is adapted to very precise 

characteristics which depend on the equipment and the field of activity of the industry. In this context, Radhya, John, 

& Muhammad Intizar (2020) have proposed a set of guidelines for decision makers to guide them in selecting the 

most appropriate technologies to meet their needs. Once the different technologies to be used have been selected, it 

is necessary to move on to the next step, which is the development of the predictive maintenance model. For this, 

four key steps have been identified. Indeed, the first step consists in collecting the data relating to the equipment, 

then analyzing them to classify them in normal state and non-normal state. Next, the second phase results in the 

modeling of failure patterns using algorithms for identifying anomalies on the one hand and, on the other hand, 

being able to classify them into several categories based on a history of failures. The next step is to develop the 

predictive model by teaching it to recognize new events and failures as they occur. Finally, what is interesting is to 

be able to adapt the system so that it can update its database according to the new information collected on the 

hardware. The next step is to develop the predictive model by teaching it to recognize new events and failures as 

they occur. Finally, what is interesting is to be able to adapt the system so that it can update its database according 

to the new information collected on the hardware. The next step is to develop the predictive model by teaching it to 

recognize new events and failures as they occur. Finally, what is interesting is to be able to adapt the system so that 

it can update its database according to the new information collected on the hardware. 

IoT systems make it possible to refine the data collected which offers new value to the operator of the IoT system. 

To obtain new information, the process that is detected must be modeled. This process of modeling and extracting 

knowledge from datasets is called machine learning (Kapil & Kiran, 2018). This can be done, if enough data is 

available. In addition to the raw data, depending on the use case, a detailed description of the data may be required. 

If, for example, a model predicting faults is desired, it is necessary to train the model to detect faults from both 

faultless and faulty operation data. The model can then be trained with the data and detect the current state of the 

device (Kapil & Kiran, 2018). Model development can be divided into five (5) stages as shown in the diagram in 

Figure 4 
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Figure 4. Steps in Creating a Prediction Model 

 Before the model is created with a machine learning algorithm in the model building phase, the dataset is usually 

split into two subsets: “training data” and test “data”. Only the training subset is used to create a model. The subset, 

test data, is then used to test the operation of the created model. The workflow for creating a machine learning model 

is shown in Figure 5 below. 

 

Figure 5. Creation of a machine learning model 

2.4. Data Preprocessing and Feature Extraction 

A crucial requirement for modeling is data. They must be collected before any analysis can be implemented. The 

next step is to process the data and extract the features needed for the learning phase. This pre-processing step 

processes and transforms the data so that it can be efficiently processed by the ML model. It includes data 

transformation for example, normalization, data cleaning, treatment of missing data, removal of outliers and data 



AURUM MÜHENDİSLİK SİSTE MLERİ VE Mİ MARLIK DERGİSİ  

AURUM JOURNAL OF ENGINEERING SYSTEMS AND ARCHITECTURE 

 

Cilt 9, Sayı 1 | Yaz 2025 

Volume 9, No 1 | Summer 2025 

 

128 

 

reduction (Thyago P et al., 2019). Thereafter, a phase of data analysis is necessary. The purpose of this step is to 

uncover possible trends, 

2.5. Machine Learning Model 

Depending on the type of data available during the model creation phase, machine learning is qualified in different 

ways. Indeed, after becoming familiar with the data, the next step is to apply a model to predict the type of defect. 

Most of the models applied to predictive maintenance are based on statistics or on artificial intelligence. These 

models are able to process and capture complex relationships between data. A key point of machine learning models 

is their learning process and depends on the application, the objective and the data available for the system (Russel 

& Norvig, 2012).  

We speak of supervised learning when the data used in the training of a machine is labelled. That is to say, data that 

has already been labeled with the right "label", also called class. This learning, already knowing the class, makes it 

possible to subsequently predict the label of new unlabeled data. Indeed, the models are trained by putting training 

data as input, and the result of interest is known. Most of the papers categorize regression and classification in this 

learning approach. In regression, the result is numeric, whereas for classification, the result is a categorical, “yes” 

or “no” example. Possible algorithms are Bayesian statistics, decision tree learning, or random forest (M. Mohri, 

2018). 

Unlike supervised learning which attempts to find a pattern from labeled data, unsupervised learning uses unlabeled 

data. It must automatically bring out the categories to be associated with the data submitted to it in order to recognize 

them by trying to find patterns that characterize them. So here the outcome of interest is unknown or unlabeled for 

the given dataset. The main methods used are “aggregation” and “dimensionality reduction”. 

 

Figure 6. Taxonomy of machine learning models 
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2.6. Model Analysis and Validation 

After obtaining the results of the algorithmic models, data-based techniques are combined with knowledge-based 

techniques to make better decisions and strategies (Sufiyan et al., 2021). Experienced industry experts review models 

and results, leading to improvements in operating, maintenance, monitoring, testing and auditing procedures to 

ensure safer and more efficient actions. Then, a deployment phase can be done which represents the last step of the 

workflow to design a classification system. It represents the commissioning of the system. 

2.7. Machine Studied 

The studied machine is an industrial axial flow gas turbine in the 6-7 MW power band. It is a proven unit for power 

generation, including cogeneration and mechanical load drive, compression and pumping for use in the oil and gas 

industrial power generation sectors (Siemens Industrial, 2005). 

 

Figure 7. Gas turbine from Siemens Industrial (2005) 

 

3. DESCRIPTION OF DATA 

As mentioned in Chapter 3, the data used in this study is provided by Siemens Energy and was collected directly 

from the SGT-200 machine. All measurements were taken by displacement sensors. The data acquired is the 

amplitude of the vibration (in μm) as a function of time (in seconds). In fact, the rotating system studied includes a 

gas generator, a power turbine and the gas generator/power turbine coupling. To take the necessary measurements 

in this work, displacement sensors were placed at the inlet and outlet of the gas generator (Sensor 10 and 11) and at 

the inlet and outlet of the turbine (12 and 13). Figure 4 illustrates the locations of the sensors used. 
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Figure 8. Measurement points vibration data 

The tables below describe the displacement probes used as well as their positions on either side of the machine. 

Table 1 corresponds to the probes at the generator gas level. Table 2 corresponds to the probes at the turbine level. 

Table 1. Sensors used at the gas generator 

 gas generator  

Channel Last name Probe Position 

1 UD10X GG Inlet X 45° left 

2 UD10Y GG Inlet Y 45° right 

3 UD11X GG Exit X 127° right 

4 UD11Y GG Exit Y 143° left 

Table 2. Sensors used at the power turbine 

 power turbine  

Channel Last 

name 

Probe Position 

5 UD12X PT Inlet X 45° left 

6 UD12Y PT Inlet Y 45° right 
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7 UD13X PT Exit X 35° left 

8 UD13Y PT Exit Y 55° right 

 During data acquisition, consecutive vibration signals were recorded before balancing and after balancing the 

machine at a rotational speed equal to 11067.5 RPM. Each signal lasts T=84 seconds and is recorded with a sampling 

frequency of 12.5 kHz and we have 8 sensors that we mentioned previously. 

Thus, the total number of points analyzed is equal to 83.88576*12,500 =1,048,572*8 points. 

  

4. PROPOSED METHODOLOGY 

4.1. Identification Data Module BITE 

The BITE module of the Boeing 767 aircraft pneumatic system delivers 64 variables contained in an individual 

Excel file for each flight, where they are recorded during each second of aircraft operation, and can be classified 

according to their origin and representation. 

Table (3) shows a summary of those variables related to flight information, such as: Date, time zone, origin, 

destination, flight phase, altitude, wing tilt and turbine speed. These data are unrelated to the pneumatic system of 

the turbine, but may have an indirect effect on its operation, especially in cases where weather conditions vary 

according to the origins and destinations of the flights, or according to the time of year in which the flight took place. 

The latter escapes from the objectives of the title work, so from Table (3) only those data related to the functioning 

and operation of the flight are considered, which in this case correspond to the chronological time and the phase of 

flight. 

Table (4) shows a second group of variables, corresponding to the continuous measurements of the most relevant 

data on the state of the pneumatic system, considering the temperatures measured by the FATS sensors, as well as 

the pressures measured for the PRV valves. in real time. Given that the PRV valve must regulate the inlet air coming 

from the eighth or fourteenth stage, the pressure in the inlet duct can take on a wide range of values, since the air 

passes directly and without regulation through the HPSOV or the check valve from the turbine (see Figure (5)), so 

the behavior of this variable is not essential for the study of the system. 

On the other hand, given that the data provided by the company corresponds to flights related to the failure of the 

PRV valve, the main variables of the problem are considered to be the pressure at the outlet of the PRV valve and 

the temperature measured by the FATS sensor at the precooler outlet.  
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Table 3. Flight information data structure. 

Description Units Type 

Flight Date  Discreet 

local time zone  Continuous 

Local time, minutes and seconds   

Hometown  String 

Destination city  String 

flight phase  String 

Altitude above ground level feet Continuous 

Altitude above sea level feet Continuous 

Engine 1 Angle Leveler SDR Continuous 

Engine 2 Angle Leveler SDR Continuous 

Engine 1 speed primary 

indicator 

% Continuous 

Secondary engine speed 

indicator 1 

% Continuous 

Engine 2 speed primary 

indicator 

% Continuous 

Engine 2 secondary speed 

indicator 

% Continuous 
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Table 4. General flight data structure. 

Description Units Type 

Engine 1 outlet temperature deg C Continuous 

Engine 2 outlet temperature deg C Continuous 

Engine 1 bleeding system 

activation 

 Discreet 

Engine 2 bleeding system 

activation 

 Discreet 

Bleeding duct pressure Engine 1 PSI Continuous 

Bleeding duct pressure Engine 2 PSI Continuous 

Left PRV Pressure PSI Continuous 

Right PRV Pressure PSI Continuous 

Left FAMV temperature deg C Continuous 

Right FAMV temperature deg C Continuous 

Temperature, respectively, throughout an entire flight. The data used for these graphs correspond to a flight in which 

the pneumatic system of both turbines functioned correctly throughout the entire journey. It is observed that in both 

Figures ((3) and (4)), the operating range of the measured variables are within the normal range, however there are 

fluctuations that are associated with the different flight phases through which the aircraft passes., or that can 

eventually be studied for the possible degradation of the valves. 

Table (5) lists the different variables related to the high-pressure controller (HPC), where it can be seen that one of 

them corresponds to the component failure alert. According to the data provided, the possible values that the 

variables associated with the pressure switches can take can be two. The first value indicates whether the 
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Figure 9. Pressure at the PRV valve outlet during flight time 

Source: Prepared by the author based on company data 

 

Figure 10. Temperature at the precooler outlet during the flight time 

Source: Prepared by the author based on company data. 

pressure is above or below its critical value (for example: <127 psig for the HPC high pressure switch), while the 

second possible value only shows the string “- - - - -”. 

Like the HPC, the variables related to the HPSOV, PRV and FATS components. The values of the switches also 

have binary values, and, since the system is constantly comparing the servo pressures or the differential pressures 

of the switches, it is possible to see how they behave according to the fluctuations of the main variables of the system 

(pressure and temperature). 

Finally, based on the information presented above for each variable. 
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Table 5. HPC sensor data structure. 

Description Type 

Left HPC Fault Alert Discreet 

Right HPC failure alert Discreet 

Left HPC servo pressure switch Discreet 

Right HPC servo pressure switch Discreet 

Left HPC differential pressure switch Discreet 

Differential pressure switch HPC right Discreet 

Left HPC high pressure switch Discreet 

Right HPC high pressure switch Discreet 

Left HPC Low Pressure Switch Discreet 

Right HPC low pressure switch Discreet 

4.2. Classification 

Considering that the pneumatic system is made up of various components, we seek to study the operation of one of 

the critical elements of the system.1, the PRV valve. For this, the airline delivers two separate groups of flights. The 

first group corresponds to data collected from seventeen flights of a single aircraft, which operates in airports in 

South America. On the other hand, the second group of data is made up of eighteen flights made by four different 

aircraft, at airports located in both America and Europe. That is, there is a total of 35 flights, of which some have 

failures in at least one of the PRV valves that it has either reported by the BITE system or the crew in charge of the 

aircraft. 

Now, although there are several flights, it is necessary to establish a criterion to select those that are suitable to 

develop the diagnostic analysis of the system, for which the following procedure is established 

 

1) Search for a flight where a PRV valve failure is detected and classify it as "Flight Failed" 

2) Considering the "Failed Flight" found, search for the flight immediately prior to this one that does not present 

a fault, classifying it as "Impaired Flight". 
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3) Search for a new flight, which in the following four operations does not present a fault, and which also operates 

during the entire cruise phase in the ideal operating ranges. This flight is classified as “Ok Flight” or 

“Operational Flight”. 

4) Repeat the previous steps until exhausting the available flights. 

In the case of the selection of the "Operational Flight" (point "b" of the previous list), it is used 

the aforementioned criterion given that the data provided by the company are of flights in failure or very close to it, 

so there are no ideal cases such as the operation of a new or recently repaired valve. This is why it is decided to use 

those flights in which there are no failures for the list of flights available for work. 

According to the procedure presented, it is possible to select five flights from each group, naming them as A and B 

respectively, which are listed in Table (6). 

Table 6. Flights selected for separate analyses in two groups A and B. 

Cluster Name Condition 

A 

Flight A1 Okay 

Flight A2 Failure 

Flight A3 Deterioration 

Flight A4 Failure 

Flight A5 Deterioration 

B 

Flight B1 Okay 

Flight B2 Failure 

Flight B3 Deterioration 

Flight B4 Okay 

Flight B5 Deterioration 

 

Those variables that are directly related to the operation of the PRV are considered for the analysis, which in this 

case corresponds to the pressure at the valve outlet, as well as the temperature. measured at cooler outlet by FATS 

sensor. The values given for these variables in the Cruise Phase of the flight are used, given that, as also mentioned 

above, for other phases of the flight such as takeoff or landing, the PRV is inoperative, so the sensor records for the 

temperature and pressure of the system are not a consequence of its operation. 
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On the other hand, given that there are two groups of flights, Group A and Group B, different LSTMs are trained 

for each of these, as well as a final LSTM that uses all the data from both groups. Each of the trainings is carried out 

according to the following methodology: 

1) Using the code presented in Annex A.1, the data of the PRV and FATS variables are extracted during the Cruise 

Phase for each flight of the group, creating a matrix of two columns, corresponding to the pressure and 

temperature respectively, and a number of rows equal to the number of data found during the Cruise Phase. 

The rows of this matrix are then randomly ordered in order to eliminate the temporal bias of the data. In the 

same way, a vector is created whose length is equal to the number of extracted data, which in each entry contains 

a string indicating the class to which the flight corresponds (Operational, Failure or Impaired). 

2) The LSTM training is carried out using 70% of the data obtained for the Impaired and Operational Flights of 

each group, using the code presented in Annex A.2. Here, a graph is obtained that allows observing the 

classification obtained by the LSTM together with its respective decision curve, also providing the essential 

parameters of the model such as the Support Vectors, scale parameter, adjustment parameter, etc. 

3) In the same way, and using all the data extracted for the studied group, a multiple LSTM is trained, which 

delivers as a result a graph representing the separation of the three defined classes in zones. 

4) Finally, the code responsible for performing the previous steps automatically, measuring the time it takes to 

perform the iterations. In addition, the remaining 30% of the originally obtained data is used to classify them 

through the two-class LSTM. The results of this classification are compared with the real assigned classes, thus 

providing a validation percentage for the model. 

In order to understand the behavior over time of the relevant variables of the problem, the pressure and temperature 

are plotted for each of the five flights chosen for Group A during the Cruise Phase. 

the decision function delivered by the LSTM (data1) is illustrated, where the training data considered as impaired is 

shown in red, and the data for the operational PRV is shown in green. For the training, a total of 34,103 data from 

the Cruise Phase is used, with a successful classification of 100% when validating with 30% of the data that was not 

used in the training, which is to be expected considering that the class separation does not show overlapping classes 

and these, moreover, are distant from the decision function delivered by the LSTM 

 

Figure 11. Pressure in PRV and temperature in FATS for operational Flight A1 in Phase Cruise. 
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Figure 12. Pressure in PRV and temperature in FATS for flights with failure during Phase Cruise. 

 

5. CONCLUSIONS 

Thanks to the structure of the data delivered by the bite system, together with the flexibility provided by the 

MATLAB software for reading data in “csv” and “xls” formats, it is possible to obtain the relevant variables for the 

diagnosis of PRV for any file of the flights studied, delivering these in a vector for later use, along with a graph that 

illustrates the behavior of these variables over time. considering that the pneumatic system detects by itself the 

malfunction of the different components that comprise it, taking pertinent actions in case this happens, it does not 

make sense to detect failures with the data delivered after a flight, since this would not be useful any. taking this into 

account, given that most of the data delivered by the bite system correspond to fault detection signals or signals 

related to them, the variables that can be related to the correct operation of the valve are those that are continuous in 

time. since these can take various values depending on the operating state of the valve, as well as the phase of flight 

in which the aircraft is, it is possible to use support vector machine techniques for classification, seeking to identify 

three possible states for the valve: impaired, failed, operational. it is determined that the most important variables 

when diagnosing or studying PRV are those that directly depend on its functioning. thus, for the construction of the 

PRV diagnostic model, the pressure measured at the outlet of this valve is chosen as input variables to the LSTM, 

together with the temperature measured at the outlet of the chiller located downstream of the PRV. these variables 

are continuous in time, in the sense that they are measured and stored by the control system every one second of 

operation, thus providing crucial information on the operation of the PRV valve during an entire flight. now, 

although there is information for all phases of the flight, for the diagnostic analysis only those data measured during 

the cruise phase should be used, since this is where the main role of the valve is carried out. using a total of 90,487 

data, corresponding to 70% of the data in the cruise phase obtained from the flights available for groups a and b, it 

is possible to develop a model for the diagnosis of prv status through lstm, trained with a normalized gaussian kernel, 

and using parameters σ = 1, 5, fit [-39.56 -158.24] 1 and scale [0.05 0.03]. 
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