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Abstract. Let G be a subgroup of the automorphism group of a commutative

ring with identity T . Let R be a subring of T . We show that RG ⊂ TG

is a minimal ring extension whenever R ⊂ T is a minimal extension under

various assumptions. Of the two types of minimal ring extensions, integral

and integrally closed, both of these properties are passed from R ⊂ T to

RG ⊆ TG. An integrally closed minimal ring extension is a flat epimorphic

extension as well as a normal pair. We show that each of these properties also

pass from R ⊂ T to RG ⊆ TG under certain group action.
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1. Introduction

All rings herein are commutative with identity, and all homomorphisms and

subrings are unital. For a ring R, we denote by Reg(R) the set of regular elements;

Spec(R) the set of prime ideals; Max(R) the set of maximal ideals; RadR(I) the

radical in R of an ideal I ⊂ R; tq(R) the total quotient ring; qf(R) the quotient

field, if R is a domain; and Aut(R) the automorphism group of R. As in [11], we

refer to the lying-over, going-up, and incomparable properties of ring extensions as

LO, GU, and INC, respectively.

Given a subgroup G of Aut(R), we say that G acts on R and denote the fixed

ring of this action by RG = {r ∈ R | σ(r) = r for all σ ∈ G}. We say that a

property of R is (G-)invariant if RG also has the property. Our purpose in this

paper is to enhance the popular investigation of which ring-theoretic properties

are invariant. As the title of this paper suggests, we determine properties of the

ring extension R ⊂ T that are (G)-invariant when we consider G is a subgroup of

Aut(T ) (not necessarily a subgroup of Aut(R)), and RG := R ∩ TG. (In fact this

definition agrees with our original definition of RG even though G is not assumed
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to be a subgroup of Aut(R).) We say that a property of the extension R ⊂ T is

invariant if RG ⊆ TG also has the property.

Our riding assumptions in this work are that R is a subring of T ,

and that G acts on T via automorphisms. Additionally in Section 2, we

assume that RG 6= TG, and, in Section 3, we assume that R is G-invariant,

i.e., σ(R) ⊆ R for all σ ∈ G. It then follows that G is a subgroup of Aut(R).

We denote the orbit of t ∈ T under G by Ot, i.e., Ot = {σ(t) | σ ∈ G}, and we

define

nt := |Ot|, t̂ :=
∑
ti∈Ot

ti and t̃ :=
∏
ti∈Ot

ti.

If G is finite, instead we denote by t̂ the sum
∑
σ∈G σ(t) (allowing for duplicates).

We say that G is locally finite (on T ) if Ot is finite for all t ∈ T . Note that if G is

locally finite on T , it is not necessarily locally finite on R unless R is G-invariant.

Given an ideal I ⊂ T we denote the orbit of I under G by OI := {σ(I) | σ ∈ G}.
By the First Isomorphism Theorem, T/I ∼= T/σ(I). Clearly, T/I is a field (domain)

if and only if T/σ(I) is a field (domain). Hence, I is a maximal (prime) ideal if and

only if σ(I) is a maximal (prime) ideal. We say that G is strongly locally finite (on

T ) if G is locally finite and OP is finite for all P ∈ Spec(T ). If G is strongly locally

finite on T , it is not necessarily strongly locally finite on R even if R is G-invariant.

To see this define R and G as in [7, Example 2.3], and set T := qf(R).

As in [9], we say that R ⊂ T is a minimal ring extension if there is no ring S

such that R ⊂ S ⊂ T . Clearly, this is true if and only if T = R[u] for all u ∈ T\R.

Since R ⊆ R̄ ⊆ T , where R̄ is the integral closure of R in T , if R ⊂ T is minimal,

then either R is integrally closed in T , or T is integral over R (equivalently, T is

module finite over R). In the first case we call R ⊂ T an integrally closed minimal

ring extension, and in the second case, we call it an integral minimal ring extension.

By [9, Théorème 2.2], if R ⊂ T is a minimal ring extension, there exists a unique

maximal ideal M of R such that RP ∼= TP for all P ∈ Spec(T )\{M}. This maximal

ideal is commonly referred to as the crucial maximal ideal of the extension.

In [14] (cf. [5]), Picavet and Picavet-L’Hermitte classify integral minimal ring

extensions in terms of the crucial maximal ideal. In [2], Cahen et al. characterize

integrally closed minimal ring extensions in terms of a certain “critical ideal.” We

utilize these results and provide major theorems and definitions for reference in

Sections 2 and 3.

In Section 2, under the assumptions that R ⊂ T is an integral minimal ring

extension and that G is locally finite acting on T , we show that RG ⊂ TG is

an integral minimal ring extension under mild hypotheses. To do so we use [14,
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Theorem 3.3], given in Theorem 2.6 for reference. We present examples to show that

it is necessary to assume that RG 6= TG. In one example, we use the idealization

construction. Given a ring R and an R-module M , the idealization R(+)M =

{(r,m) | r ∈ R, m ∈ M} is a ring with multiplication given by (r,m)(r′,m′) =

(rr′, rm′ + r′m) and componentwise addition. By [4, Theorem 2.4], R(+)M is a

minimal ring extension of R if and only if M is a simple R-module.

In Section 3, we turn to the integrally closed case. In Theorem 3.6, we show that

the minimal property of an integrally closed ring extension is G-invariant assuming

that G is locally finite (on T , hence on R, since R is assumed to be G-invariant).

In Section 4, we show that certain properties of ring extensions related to mini-

mality are also invariant. We consider integral extensions, integrally closed exten-

sions, flat epimorphic extensions, and normal pairs.

2. Integral minimal ring extensions

We begin with a well-known result that is fundamental in this work and in much

of the work by Dobbs and Shapiro [6], [7], [8]. These papers on invariant theory

are a strong influence on our work.

Lemma 2.1. If G is locally finite (on T ), then T is integral over TG.

Recall that our riding assumptions in this section are that R ⊂ T , G ≤ Aut(T ),

and RG 6= TG. In the following lemma we establish several technical results needed

for the main result of this section. Proposition 2.3 is another tool for the main

result and is also of independent interest.

Lemma 2.2. Assume that G is locally finite (on T ) and that M := (R :R T ) is a

maximal ideal of R. Set m := M ∩RG = M ∩ TG.

(a) If R is integral over RG, then the conductor (RG :RG TG) equals m.

(b) If there exist N ∈ Spec(T ) containing M , then M = N ∩R.

Proof. (a) Let x ∈ m. Then x ∈ RG, and xt ∈ R, for all t ∈ T . If t ∈ TG, then

xt ∈ TG, from which it follows that xt ∈ TG ∩ R = RG. Hence x ∈ (RG :RG TG).

Thus m ⊆ (RG :RG TG). Since R is integral over RG, we have that m ∈ Max(RG).

Thus m = (RG :RG TG).

(b) Clearly M = N ∩ R whenever N is a prime ideal of T containing M , since

M ∈ Max(R). �

Proposition 2.3. Let M ∈ Max(R) and m := M ∩ RG. Assume that G is locally

finite (on T ) such that char(RG/m) - nr for all r ∈ R. If the orbit of M in
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R is a singleton set, i.e., OM = {M}, then the G-action extends to R/M via

σ(r + M) = σ(r) + M , for σ ∈ G. Moreover, if R is integral over RG, then

RG/m ∼= (R/M)G.

Proof. The given action of G on R/M is well-defined; if r + M = s + M , then

σ(r)− σ(s) ∈ σ(M) = M . Hence σ(r) +M = σ(s) +M .

As for the moreover, first note that m ∈ Max(RG) by integrality. Define φ :

RG/m → (R/M)G by r + m 7→ r + M . Clearly φ is a ring homomorphism. If

φ(r+m) = 0 +M , then r ∈M . It follows that r ∈M ∩RG = m, so r+m = 0 +m.

Hence φ is injective.

Now let r + M ∈ (R/M)G. Then r + M = σ(r) + M for all σ ∈ G. Summing

the elements of Or we have that nrr + M = r̂ + M . Since R/M is a field, we

have that r +M = (nr +M)−1(r̂ +M). Similarly, since nr + m ∈ RG/m, we have

that y + m := (nr + m)−1 ∈ RG/m. It follows that y + M = (nr + M)−1, whence

φ(yr̂ + m) = yr̂ +M = (nr +M)−1(r̂ +M) = r +M . Thus φ is surjective. Hence

RG/m ∼= (R/M)G. �

The technique of averaging the orbit of an element used above to produce r+M =

(nr +M)−1(r̂+M) is introduced in [1]. We generalize this method in the following

lemma.

Lemma 2.4. Assume that G is locally finite (on T ). Let t ∈ TG. We show that

if 0 6= t = r1u1 + r2u2 + · · ·+ rkuk for some ri ∈ R and ui ∈ TG, then there exist

m,mi ∈ N and r′i ∈ RG such that 0 6= mt = m1r
′
1u1 + m2r

′
2u2 + · · · + mkr

′
kuk

whenever

(a) T is a domain and char(T ) = 0 or char(T ) - nt for all t ∈ T , or

(b) |G| is finite and a unit in T .

Proof. For all t ∈ T , fix a subset Nt of G such that for each a ∈ Ot there exists a

unique σ ∈ Nt with a = σ(t) (and so |Nt| = |Ot| = nt).

First we show that if

0 6= t = q1u1 · · ·+ qiui + ri+1ui+1 + · · ·+ rkuk, (1)

where t ∈ TG, qi ∈ RG, and rj ∈ R, then there exists m ∈ N, r′i+1 ∈ RG, and

sj ∈ R such that

0 6= mt = m(q1u+ · · ·+ qiui) + r′i+1ui+1 + si+2ui+2 + · · ·+ skuk. (2)
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Applying each σ ∈ Nri+1
to (1) and summing establishes (2). In particular,

m = nri+1
, r′i+1 = r̂i+1, and sj =

∑
σ∈Nri+1

σ(rj)uj ,

for i + 2 ≤ j ≤ k. Note that nri+1
t 6= 0 under assumption (a). Since i = 1

establishes the base case, the assertion of the lemma now follows from induction.

Under assumption (b), the same argument holds replacing Nri+1
with G and nri+1

with |G|. �

Remark 2.5. The result in case (a) above also holds if (T,M) is a quasilocal

ring and characteristic is defined as p ∈ Z such that M ∩ Z = pZ. Moreover, the

assumption that char(T ) = 0 or char(T ) - nt for all t ∈ T is more common than

it may appear. In fact, condition (b) implies (a), and, in related work on rings of

invariants, condition (b) is a conventional assumption.

We have established the machinery needed to prove the main result of this sec-

tion. We use the characterization provided below for reference.

Theorem 2.6. [14, Theorem 3.3] (cf. [5, Corollary II.2]) Let R→ T be an injective

ring homomorphism, with conductor (R :R T ). Then R→ T is minimal and finite

if and only if (R :R T ) ∈ Max(R) and one of the following three conditions holds:

(a) Inert case: (R :R T ) ∈ Max(T ) and R/(R :R T )→ T/(R :R T ) is a minimal

field extension.

(b) Decomposed case: There exist N1, N2 ∈ Max(T ) such that (R :R T ) =

N1 ∩N2 and the natural maps R/(R :R T ) → T/N1 and R/(R :R T ) → T/N2

are each isomorphisms.

(c) Ramified case: There exists N ∈ Max(T ) such that N2 ⊆ (R :R T ) ⊂ N ,

[T/(R :R T ) : R/(R :R T )] = 2 and the natural map R/(R :R T )→ T/N is an

isomorphism.

We now present our main result on the invariance of minimality of integral ring

extensions.

Theorem 2.7. Let R ⊂ T be an integral minimal extension with crucial maximal

ideal M = (R :R T ). Assume that G is locally finite (on T ) such that char(RG/(M∩
TG)) - nr, for all r ∈ R. Also assume that R is integral over RG and OM = {M}
(e.g., if R is G-invariant). Then RG ⊂ TG is a minimal extension of the same type

as R ⊂ T . Moreover, the crucial maximal ideal of RG ⊂ TG is (RG :RG TG).

Proof. Throughout the argument, set m := (RG :RG TG), whence m = M ∩RG =

M ∩ TG, by Lemma 2.2(a).
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Inert case: By Theorem 2.6(a), M ∈ Max(T ) and R/M → T/M is a minimal

field extension. By Proposition 2.3, we may pass to R/M ⊂ T/M (since OM =

{M}). Replacing R/M ⊂ T/M with R ⊂ T , we show that TG = RG[u] for all

u ∈ TG\RG, i.e., RG ⊂ TG is a minimal field extension. If u ∈ TG\RG, then

u ∈ T\R, so T = R[u]. Let 0 6= t ∈ TG. Then t = rku
k + · · · + r1u + r0, for

some k ∈ N and ri ∈ R. By Lemma 2.4, there exist m,mi ∈ N and r′i ∈ RG such

that 0 6= mt = mkr
′
ku

k + · · · + m1r
′
1u + m0r

′
0. Since RG is a field, we have that

t = m−1(mkr
′
ku

k+· · ·+m1r
′
1u+m0r

′
0) ∈ RG[u]. Hence, RG ⊂ TG is a minimal field

extension. By Theorem 2.6(a), the original fixed ring extension (before passing to

the quotient ring extension) RG ⊂ TG is an inert integral minimal extension with

crucial maximal ideal m = (RG :RG TG).

Decomposed case: By Theorem 2.6(b), there exist N1, N2 ∈ Max(T ) such

that M = N1 ∩ N2 and the natural maps R/M → T/N1 and R/M → T/N2 are

isomorphisms. Set n1 := N1∩TG and n2 := N2∩TG. By Lemma 2.1, T is integral

over TG, whence n1,n2 ∈ Max(TG). Clearly

m = M ∩ TG = (N1 ∩N2) ∩ TG = n1 ∩ n2.

Define φ : RG/m → TG/n1 via the natural map r + m 7→ r + n1. Suppose that

φ(r + m) = 0 + n1 for some r ∈ RG. Then r ∈ n1 ∩ RG, but, by Lemma 2.2(b),

n1 ∩RG = m. Hence r + m = 0 + m. Thus φ is injective.

To show that φ is surjective, we first note that the G-action extends to T/N1,

since it extends to R/M and R/M ∼= T/N1. From Proposition 2.3, we have that

RG/m ∼= (R/M)G ∼= (T/N1)G. Let t + n1 ∈ TG/n1 be nonzero. Then t + N1 ∈
(T/N1)G is nonzero. (Clearly it is fixed, and if t ∈ N1, then t ∈ N1 ∩ TG = n1

– contradiction.) Since RG/m ∼= (T/N1)G (via composition of the natural maps),

there exists r+m ∈ RG/m such that r+m 7→ r+M 7→ r+N1 = t+N1. It follows

that (r − t) ∈ N1 ∩ TG = n1. Hence φ(r + m) = r + n1 = t+ n1, so φ is surjective.

Thus RG/m ∼= TG/n1. The same argument applies to show RG/m ∼= TG/n2. By

Theorem 2.6(b), RG ⊂ TG is a decomposed integral minimal extension with crucial

maximal ideal m = (RG :RG TG).

Ramified case: By Theorem 2.6(c), there exists N ∈ Max(T ) such that N2 ⊆
M ⊂ N , [T/M : R/M ] = 2 and the natural map R/M → T/N is an isomorphism.

Set n := N ∩ TG, and recall m = M ∩ TG. Clearly, n ∈ Max(TG) and m ( n,

since m /∈ Max(TG) (since M /∈ Max(T ), N ∈ Max(T ), and T is integral over

TG). For the other containment, let x ∈ n2. Then x ∈ N2, so x ∈ M . Hence

x ∈M ∩ TG = m. Thus n2 ⊆ m.
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We show that the natural map φ : RG/m → TG/n given by r + m 7→ r + n is

an isomorphism. Suppose that φ(r + m) = 0 + n for some r ∈ RG. Then r ∈ n,

so r2 ∈ n2. Since n2 ⊆ m and m is prime (maximal) in RG, we have that r ∈ m.

(Alternatively, r ∈ n ∩RG = m, by Lemma 2.2(b).) Hence r + m = 0 + m. Thus φ

is injective.

Next we show that φ is surjective. Let t+n ∈ TG/n. Then t+N ∈ (T/N)G. Note

that, as in the decomposed case, since R/M ∼= T/N , the G-action extends to T/N .

From this and from Proposition 2.3, it follows that RG/m ∼= (R/M)G ∼= (T/N)G

via r + m 7→ r + M 7→ r + N . Hence, there exists r + m ∈ RG/m such that

r+m 7→ r+M 7→ r+N = t+N , from which it follows that (r− t) ∈ N ∩TG = n.

Hence φ(r + m) = t+ n. Thus φ is surjective.

It remains to show that [TG/m : RG/m] = 2. Note that TG/m is not a domain,

since n2 ⊆ m ⊂ n implies m = n, if m is prime. Hence TG/m 6= RG/m, i.e.,

[TG/m : RG/m] ≥ 2.

Suppose that [TG/m : RG/m] > 2, and let {e1 +m, e2 +m, e3 +m} be an RG/m-

linearly independent set in TG/m. Then each ei /∈M ; otherwise, ei ∈M ∩TG = m.

Hence each ei + M is nonzero in T/M . Since [T/M : R/M ] = 2, without loss of

generality we may assume that there exist t1 +M, t2 +M ∈ T/M such that

e3 +M = (t1 +M)(e1 +M) + (t2 +M)(e2 +M) = t1e1 + t2e2 +M.

As in Lemma 2.4, using σ ∈ Nt1 and summing Ot1 we have that

nt1e3 +M = t̂1e1 +

 ∑
σ∈Nt1

σ(t2)

 e2 +M.

Defining t3 to be the coefficient of e2 above and repeating the above technique with

respect to t3 we have that

nt3nt1e3 +M = nt3 t̂1e1 + t̂3e2 +M.

It follows that nt3nt1e3 − (nt3 t̂1e1 + t̂3e2) ∈M ∩ TG = m, so

nt3nt1e3 + m = nt3 t̂1e1 + t̂3e2 + m.

Equivalently,

(nt3nt1 + m)(e3 + m) = (nt3 t̂1 + m)(e1 + m) + (t̂3 + m)(e2 + m)

is an RG/m-linear combination of e1 + m, e2 + m, e3 + m in TG/m – contradiction.

Hence, there cannot exist in TG/m any more than two RG/m-linearly independent
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elements. Thus [TG/m : RG/m] ≤ 2. Hence [TG/m : RG/m] = 2. By Theo-

rem 2.6(c), RG ⊂ TG is a ramified integral minimal extension with crucial maximal

ideal m = (RG :RG TG). �

Remark 2.8. If we were to assume that R is G-invariant in this section (instead

of waiting until Section 3), then the conditions that R is integral over RG and

OM = {M} would be satisfied. Integrality follows from Lemma 2.1. To see that

OM = {M}, note that σ(M)T = σ(MT ) ⊆ σ(R) = R, for any σ ∈ G. Hence

σ(M) ⊆M . Since σ(M) ∈ Max(R), we have that σ(M) = M .

Remark 2.9. It is necessary to assume that RG 6= TG in this section, as illustrated

in the following example.

Example 2.10. The fixed rings are equal, even under finite group action, in the

following cases:

Inert case: Set R := R, T := C, and G := {1, σ}, where σ is the conjugacy

map. Then RG = R = TG.

Decomposed case: Let F be a field such that char(F ) 6= 2, and set R :=

{(x, x) | x ∈ F} and T := F × F . By [9, Lemme 1.2(b)], R ⊂ T is a minimal

extension. Define G := {1, σ}, where σ((x, x) = (x,−x). Then RG = TG.

Ramified case: Let F and R be as above, and set T := F (+)F . Then by [9,

Lemme 1.2(c)], R ⊂ T is a minimal extension. Define G as above. Then RG = TG.

3. Integrally closed minimal extension

Our riding assumptions in this section are that R is a subring of T ,

G acts on T via automorphisms, and R is G-invariant. Note that since

R is G-invariant, if G is locally finite on T , then it is also locally finite on R.

Therefore, throughout this section we refer to “locally finite” as being locally finite

on both rings. We show that minimality of an integrally closed extension R ⊂ T

is invariant under locally finite G-action. This generalizes Dobbs’ and Shapiro’s

result that the property is invariant if R is a domain and if |G| is finite and a unit

in R [7, Theorem 3.6].

Whereas crucial maximal ideals are historically essential to the study of mini-

mal extensions, Cahen et al. introduce critical ideals and use them extensively in

characterizing integrally closed minimal extensions of an arbitrary ring [2]. They

define a critical ideal for R ⊂ T as an ideal I ⊂ R such that I = RadR((R :R t))

for all t ∈ T\R. That is, RadR((R :R t)) is the same ideal for all t ∈ T\R. They

show in [2, Lemma 2.11] that if an extension has a critical ideal, then the ideal is
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prime. Moreover, they show that if R ⊂ T is a minimal extension, then the critical

ideal exists [2, Proposition 2.14(2)] and is maximal [2, Theorem 3.5]. If R ⊂ T has

a critical ideal, we show that RG ⊂ TG has a critical ideal under any G-action such

that RG 6= TG.

Lemma 3.1. Let P be the critical ideal of R ⊂ T . If RG 6= TG, then p := P ∩RG

is the critical ideal of RG ⊂ TG.

Proof. Let t ∈ TG\RG. Then t ∈ T\R. Hence P = RadR((R :R t)), from which it

follows that

p = RadR((R :R t)) ∩RG = RadRG((R :R t) ∩RG) = RadRG((RG :RG t)).

Thus p is the critical ideal of RG ⊂ TG. �

We next show that if a critical ideal is maximal, then its orbit (under G) is a

singleton set.

Lemma 3.2. Suppose that M is the critical ideal for R ⊂ T . If M is a maximal

ideal of R, then σ(M) = M for all σ ∈ G, i.e. OM = {M}.

Proof. Let σ ∈ G and t ∈ T\R. Note that σ−1(t) ∈ T\R; otherwise, if σ−1(t) ∈ R,

then t = σ(σ−1(t)) ∈ σ(R) = R – contradiction. Since M is the critical ideal for

R ⊂ T , M = RadR((R :R σ
−1(t))). Let r be an arbitrary element of R, let x ∈M ,

and set y := σ−1(x). Then there exists n ∈ N such that xnr ∈ R, from which it

follows that (σ−1(x))nσ−1(t) ∈ σ−1(R) = R. Hence y = σ−1(x) ∈ RadR((R :R

σ−1(t))) = M . Thus x = σ(y) ∈ σ(M), which shows that M ⊆ σ(M). Since M is

maximal, M = σ(M), as desired. �

Remark 3.3. It is not necessary to assume that M is maximal in the preceding

lemma. A similar set-theoretic argument establishes the converse σ(M) ⊆M .

Related to critical ideals are valuation pairs for an extension R ⊂ T . As in [13],

for P ∈ Spec(R), (R,P ) is a valuation pair of T if there is a valuation v on T with

R = {t ∈ T | v(t) ≥ 0} and P = {t ∈ T | v(t) > 0}. Equivalently, (R,P ) is a

valuation pair of T if R = S whenever S is an intermediate ring containing a prime

ideal lying over P [13]. Rank 1 valuation pairs are one of several equivalences of

integrally closed minimal extensions in [2]. The rank of a valuation pair (R,P ) of T

is the rank of the valuation group. The following lemma describes the relationship

between critical ideals and valuation pairs.
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Lemma 3.4. [2, Lemma 2.12] Let (R,P ) be a valuation pair of T . Then R ⊂ T has

a critical ideal if an only if (R,P ) has rank 1. Moreover, under these conditions,

P is the critical ideal of R ⊂ T .

Our next result is fundamental to the invariance of minimality of integrally closed

extensions established in Theorem 3.6.

Proposition 3.5. Assume that G is locally finite such that RG 6= TG. Let M ∈
Max(R) and set m := M ∩RG. If OM = {M}, then (RG,m) is a valuation pair of

TG whenever (R,M) is a valuation pair of T .

Proof. Let A be a ring such that RG ⊆ A ⊆ TG. Then R ⊆ AR ⊆ T . First

note that AR is integral over A, since R is integral over RG, hence over A. Let

q ∈ Spec(A) such that q ∩RG = m, and let Q ∈ Spec(AR) lie over q. From

m = q ∩RG = (Q ∩A) ∩RG = Q ∩RG = (Q ∩R) ∩RG

it follows that Q∩R is maximal in R, by integrality. We claim Q∩R = M . Suppose

not. Then there exists x ∈ (Q ∩ R)\M , since Q ∩ R and M are incomparable (as

maximal ideals). It follows that x̃ ∈ Q ∩RG = m = M ∩RG. Hence σ(x) ∈M for

some σ ∈ G. Since OM = {M}, we have that x ∈ σ−1(M) = M – contradiction.

Hence Q ∩ R = M . Since (R,M) is a valuation pair of T , we have that AR = R,

whence A = RG. Thus (RG,m) is a valuation pair of TG. �

Of the several integrally closed minimal extension equivalences in [2, Theo-

rem 3.5], we use the condition that there exists a maximal ideal M such that

(R,M) is a rank 1 valuation pair of T where R ⊂ T . With this equivalence, our

main result of this section follows easily from the preceding results.

Theorem 3.6. Assume that G is locally finite. If R ⊂ T is an integrally closed

minimal extension, then RG ⊂ TG is an integrally closed minimal extension.

Proof. First we show that RG 6= TG. Let t ∈ T\R. Then t̃ ∈ TG. Suppose that

t̃ ∈ RG. Then t̃ ∈ R. By [9, Proposition 3.1], σ(t) ∈ R for some σ ∈ G, whence

t = σ−1(σ(t)) ∈ σ−1(R) = R – contradiction. Hence, t̃ ∈ TG\RG. Thus, RG ( TG.

Let M be the critical ideal for R ⊂ T . By Lemma 3.1, m := M ∩ RG is the

critical ideal for RG ⊂ TG. Since R ⊂ T is a minimal extension, the critical ideal

M is maximal. By Lemma 3.2 OM = {M}. By Lemma 3.5 (RG,m) is a valuation

pair of TG. Since m is the critical ideal of RG ⊂ TG, this valuation pair has rank

1 by Lemma 3.4. Hence, RG ⊂ TG is an integrally closed minimal extension by [2,

Proposition 3.5]. �
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4. Minimal extensions, flat epimorphisms, and normal pairs

In this section, we generalize the results of Sections 2 and 3. Of course, arbitrary

integral or integrally closed extensions are a generalization of minimal integral or

integrally closed extensions, respectfully. Integrally closed minimal ring extensions

are both flat epimorphic extensions [9, Théorème 2.2] and normal pairs. In the

following results we establish the invariance of these related properties under various

assumptions.

Proposition 4.1. Assume that R is G-invariant and G is locally finite (on T and

so on R). If R ⊂ T is an integral extension, then RG ⊆ TG is an integral extension.

Proof. This follows from Lemma 2.1 and by transitivity [11, Theorem 40]. �

Proposition 4.2. If R is integrally closed in T , then RG is integrally closed in

TG.

Proof. Let u ∈ TG be integral over RG. Then u ∈ T is integral over R. Hence

u ∈ TG ∩R = RG. �

In Theorem 2.7 we require a certain restriction of characteristic. Assuming that

|G| is finite and a unit in the base ring, we can remove this restriction. Of course,

if G is finite, then it is locally finite. Hence, the following result and corollary

re-establish Theorem 3.6.

Proposition 4.3. Let R ⊂ T be a minimal extension. Assume that G is finite

such that |G| is a unit in R and RG 6= TG. Then RG ⊂ TG is a minimal extension.

Proof. Let u ∈ TG\RG. Clearly, u ∈ T\R. Hence, T = R[u]. Let t ∈ TG. Then

t = rnu
n + · · · + r1u + r0 for some ri ∈ R. Applying the averaging technique

introduced in Section 2 we have that

t = |G|−1
∑
σ∈G

σ(rn)un + · · ·+ σ(r1)u+ σ(r0).

Thus TG = RG[u], i.e. RG ⊂ TG is a minimal extension. �

Combining Propositions 4.1, 4.2, and 4.3, we have the following corollary.

Corollary 4.4. Under the hypotheses of Proposition 4.3, if R ⊂ T is an integral

or integrally closed minimal extension, then RG ⊂ TG is an integral or integrally

closed minimal extension, respectively.
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Recall a collection of ideals F of a ring R is a Gabriel filter if it satisfies:

(i) If I ∈ F and I ⊆ J , then J ∈ F .

(ii) If I, J ∈ F , then I ∩ J ∈ F .

(iii) If for an ideal I there exists J ∈ F such that (I : j) ∈ F for every j ∈ J , then

I ∈ F .

For more information on Gabriel filters, see [15]. In particular, see [10] for their

use in commutative ring theory. The following theorem illustrates the relationship

between these filters and flat epimorphic extensions.

Theorem 4.5. [15, Theorem 2.1, Ch. XI] Let φ : R→ T be a ring homomorphism.

Then φ is a flat epimorphism if and only if the collection F = {I ⊂ R |φ(I)T = T}
where I is an ideal in R is a Gabriel filter, and there exists an isomorphism ψ :

T → RF such that ψ ◦ φ : R → RF is the canonical homomorphism. Such a filter

is called perfect.

By [15, Exercise 8, p. 242], T is a perfect localization of R if and only if for

all t ∈ T , (R :R t)T = T . With this definition and Lemma 4.6 we show that

being a perfect localization (equivalently, flat epimorphic extension) is an invariant

property in Proposition 4.7.

Lemma 4.6. Assume that R ⊂ T , G is strongly locally finite (on T ), and R is

G-invariant. Define F := {I ⊂ R | IT = T} and F ′ := {J ⊂ RG | JTG = TG}. If

I ∈ F , then I ∩RG ∈ F ′.

Proof. Note that I ∈ F if and only if every P ∈ Spec(R) containing I is not

lain over in T . Also note that F ′ = {J ⊂ RG | JR ∈ F}. Let I ∈ F and let

P ∈ Spec(R) contain (I∩RG)R. We claim I ⊆ σ(P ) for some σ ∈ G, whence PT =

σ−1(σ(P )T ) = σ−1(σ(PT )) = T (since IT = T ). Let x ∈ I. Then x̃ ∈ I ∩ RG,

so x̃ ∈ P . It follows that σ(x) ∈ P for some σ ∈ G; equivalently, x ∈ σ−1(P ).

Hence I ⊆
⋂
Q∈OP

Q. Since G is strongly locally finite, OP is finite. It follows

that I ⊆ Q for some Q ∈ OP by the Prime Avoidance Lemma [11, Theorem 81].

Hence the claim is satisfied by σ ∈ G, where Q = σ(P ), so PT = T . Thus, every

prime containing (I ∩RG)R is not lain over in T . That is, (I ∩RG)R ∈ F , whence

I ∩RG ∈ F ′, as desired. �

We are now ready to show that perfect localizations (flat epimorphic extensions)

are invariant under strongly locally finite group action using Lemma 4.6.

Theorem 4.7. Assume that R ⊂ T , G be strongly locally finite (on T ), and R is

G-invariant. Let F and F ′ be as in Lemma 4.6. Then (a) F ′ is a Gabriel filter
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whenever F is a Gabriel filter, and (b) if R ⊂ T is a flat epimorphic extension,

then so is RG ⊆ TG. In particular, TG = (RG)F ′ whenever T = RF .

Proof. (a) Suppose that F is a Gabriel filter. We check that F ′ satisfies the

defining conditions (i) through (iii) of a Gabriel filter given above. Let I ∈ F ′, and

let J be an ideal of RG containing I. Then IR ∈ F and IR ⊆ JR, so JR ∈ F . It

follows that JT = T , so JTG = TG, since T is integral over TG. Hence J ∈ F ′,
which establishes condition (i). Now let I, J ∈ F ′. Then IT = T and JT = T .

Suppose that I ∩ J /∈ F ′, i.e. (I ∩ J)TG 6= TG. Again by integrality, (I ∩ J)T 6= T .

Let P ∈ Spec(T ) contain (I ∩ J)T . Then I ∩ J ⊆ P ∩ TG =: p. It follows that

I ⊆ p or J ⊆ p, but then IT ⊆ P or JT ⊆ P – contradiction. Hence I ∩ J ∈ F ′,
which establishes condition (ii).

It remains to show that F ′ satisfies condition (iii). Let J be an ideal of RG,

and suppose that there exists I ∈ F ′ such that (J :RG a) ∈ F ′ for all a ∈ I.

We claim (JR :R a) ∈ F for all a ∈ IR, whence JR ∈ F , i.e., J ∈ F ′. Let

a := a1r1 + · · ·+ anrn ∈ IR, where ai ∈ I and ri ∈ R. For each ai, clearly (J :RG

ai)R ⊆ (JR :R ai). Since (J :RG ai) ∈ F ′, we have that (J :RG ai)R ∈ F . Hence

(JR :R ai) ∈ F . From (JR :R ai) ⊆ (JR :R airi) it follows that (JR :R airi) ∈ F .

Since
⋂n
i=1(JR :R airi) ∈ F and

⋂n
i=1(JR :R airi) ⊆ (JR :R a), we have that

(JR :R a) ∈ F , proving the claim. Hence JR ∈ F , i.e. J ∈ F ′. Thus F ′ is a

Gabriel filter.

(b) Now we show that RG ⊆ TG is a flat epimorphic extension by showing that

TG is a perfect localization of RG. Let x ∈ TG. Then (R :R x)T = T , since T is a

perfect localization of R. It follows that (R :R x) ∈ F , and (R :R x)∩RG ∈ F ′, by

Lemma 4.6. We claim (R :R x)∩RG ⊆ (RG :RG x), whence (RG :RG x) ∈ F ′, since

F ′ is a Gabriel filter. Let y ∈ (R :R x)∩RG. Then xy ∈ R, but x ∈ TG and y ∈ TG,

so xy ∈ RG. Hence (R :R x) ∩ RG ⊆ (RG :RG x), so (RG :RG x) ∈ F ′ as claimed.

(In fact, as the reverse containment clearly holds, (R :R x) ∩ RG = (RG :RG x).)

Thus (RG :RG x)TG = TG, i.e. TG is a perfect localization of RG. In particular,

TG ∼= (RG)F . �

Remark 4.8. (a) The existing literature does not seem to lend itself to utilizing

local characterizations of flat epimorphisms in order to establish Theorem 4.7. This

can be done under stronger assumptions. Moreover, with such assumptions we can

prove the result using only [15, Exercise 8, p. 242].

(b) It would be interesting to know if being an epimorphic extension or a flat

extension is an invariant property under any group action.
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Lastly we consider normal pairs which are another generalization of integrally

closed minimal extensions. We say that (R, T ) is a normal pair if S is integrally

closed in T whenever R ⊆ S ⊆ T . It would seem as though we could deduce that

this is an invariant property of ring extensions from Proposition 4.2 but to do so

would require that A = AR ∩ TG whenever RG ⊆ A ⊆ TG. Instead we use a

characterization of normal pairs in terms of extensions satisfying INC.

By [12, Theorem 5.2], (R, T ) is a normal pair if and only if R is integrally closed

in T and R ⊆ S satisfies INC whenever R ⊆ S ⊆ T . We call a pair of rings (R, T )

satisfying the latter property an INC-pair and note that it is equivalent to the

definition of an INC-pair given in [3].

We have already seen that being an integrally closed extension is an invariant

property in Proposition 4.2. To assert that being a normal pair is invariant, it

remains to show that being an INC-pair is invariant.

Proposition 4.9. Assume that G is locally finite (on T ) and R is integral over

RG. If (R, T ) is an INC-pair, then (RG, TG) is an INC-pair.

Proof. Let RG ⊆ A ⊆ TG, and let q ⊆ q′ be prime ideals of A with the same

contraction in RG. Set p := q∩RG = q′∩RG. Since R is integral over RG (whence

over A), AR is integral over A. Hence, A ⊆ AR satisfies LO and GU. Let Q ⊆ Q′

be prime ideals in AR such that q = Q ∩ A and q′ = Q ∩ A. Setting P := Q ∩ R
and P ′ := Q′ ∩R, we have that P ⊆ P ′ and

P ∩RG = Q ∩RG = (Q ∩A) ∩RG = q ∩RG = p,

and P ′∩RG = p, by the same reasoning. As an integral extension, RG ⊆ R satisfies

INC, whence P = P ′. Since R ⊆ AR satisfies INC, Q = Q′. Hence q = q′. Thus

(RG, TG) is an INC-pair. �

The corollary below now follows easily from Propositions 4.2 and 4.9.

Corollary 4.10. If G is locally finite (on T ) and R is integral over RG, then

(RG, TG) is a normal pair whenever (R, T ) is a normal pair.

Remark 4.11. Since normal pairs are Prüfer extensions, and R ⊆ T is called

Prüfer if R ⊆ S is a flat epimorphic extension whenever R ⊆ S ⊆ T [12, Theorem

5.2], it may seem as though we could deduce Corollary 4.10 from Theorem 4.7. To

do so, however, would require not only that G is strongly locally finite on T but that

S is G-invariant and G is strongly locally finite on S whenever R ⊆ S ⊆ T .
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