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Abstract
A ring R is called right CSP if the sum of any two closed right ideals of R is also a closed
right ideal of R. Left CSP rings can be defined similarly. An example is given to show
that a left CSP ring may not be right CSP. It is shown that a matrix ring over a right
CSP ring may not be right CSP. It is proved that M2(R) is right CSP if and only if R is
right self-injective and von Neumann regular. The equivalent characterization is given for
the trivial extension R ∝ R of R to be right CSP.
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1. Introduction
Throughout this paper, all rings are associative with identity and all modules are unitary

modules. Let R be a ring and M an R-module. Recall that a submodule N of M is essential
in M [1], in case for every submodule L ≤ M , N ∩L = 0 implies L = 0. We use N ≤ess M
to show that N is an essential submodule of M . Mn(R) denotes the ring of n × n matrices
over R. Let Λ be an infinite set. CFMΛ(R) means the column finite card(Λ) × card(Λ)
matrix ring over R, where card(Λ) is the cardinality of Λ.

Recall that an R-module MR is called an SSP module if the sum of any two direct
summands of MR is also a direct summand of MR [3]. And a ring R is called right SSP if
RR is an SSP module. Left SSP rings can be defined similarly. It is known that a ring R
is right SSP if and only if R is left SSP (see [10, Theorem 2.4]). Recall that, a submodule
NR of MR is called closed if it has no proper essential extensions in MR, that is, for any
submodule KR of MR such that NR ≤ess KR, then N = K [6]. It is well known that
a closed submodule of MR is equivalent to a relative complement for some submodule of
M [1]. It is known that any nonzero submodule of MR must be essential in some closed
submodules of MR. A right ideal I of a ring R is called a closed right ideal of R if it
is a closed submodule of RR. Closed left ideals of R can be defined analogously. Since
a direct summand of RR is a closed right ideal of R, inspired by the definitions of SSP
rings, we introduce the rings such that the sum of any two closed right ideals of R is also
a closed right ideal of R. These rings are called right CSP rings. Left CSP rings are
defined similarly. We would like to mention that the definition of CSP modules was also
introduced and discussed in [5]. Recall that a module MR is called a CS (C1 ) module if
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every closed submodule of MR is a direct summand of MR [7]. A module MR is called a
C2 module if every submodule K of MR such that K is isomorphic to a direct summand
of MR, then K is also a direct summand of MR. And a module MR is called a C3 module
if for any direct summands N1 and N2 of MR such that N1 ∩ N2 = 0, then N1 + N2 is also
a direct summand of MR. If a module MR is both C1 and C2 (C3), then MR is called a
continuous (quasi-continuous) module. And a ring is called right CS (C2, C3, continuous,
qusi-continuous) if the right R-module RR is a CS (C2, C3, continuous, qusi-continuous)
module [8]. The left sides of the definitions can be given analogously.

Generalizing direct summands of rings, closed ideals of rings are important in studying
the properties of rings such as SSP, CS, continuous and so on. And these properties of
rings are all closely connected to von Neumann’s research on continuous geometries [2,4,7].
In this short note, it is shown in Proposition 2.6 that a ring R is right CSP if and only if
R is right CS and SSP. We also discuss the CSP property of matrix rings and the trivial
extension R ∝ R of R, which can be considered as a subring of M2(R). It is shown in
Theorem 2.12 that M2(R) is right CSP if and only if R is right self-injective and von
Neumann regular. And we call such rings strongly right CSP rings. Strongly left CSP
rings can be defined similarly. Recall that a ring R is called right self-injective if every
homomorphism f from a right ideal I of R to RR can be extended to an endomorphism of
RR [6]. And a ring R is called (von Neumann) regular if for any element a ∈ R, there is
an element b ∈ R such that a = aba [4]. By this result, it can be seen in Example 2.2 that
a left CSP ring may not be right CSP. This example also shows the strongly CSP property
of rings is not left-right symmetric. At last, in Theorem 3.4, an equivalent characterization
is given for the trivial extension R ∝ R of R to be right CSP.

2. CSP rings
Definition 2.1. Let R be a ring. R is called a right CSP ring if the sum of any two closed
right ideals of R is also a closed right ideal of R. Left CSP rings can be defined similarly.
And R is called a CSP ring if it is both left and right CSP.

Unlike SSP property of rings, next example shows that the CSP property of rings is not
left-right symmetric.

Example 2.2. Let k be a division ring and kV be a left k-vector space of infinite dimen-
sion. Let E = End(kV ), defined as a ring of right opertiors on V . Set R = M2(E). Then
R is left CSP but not right CSP.

Proof. According to [6, Example 3.74B], E is a regular and left self-injective ring, but it
is not right self-injective. By following Theorem 2.12, R is left CSP but not right CSP. □

Recall that the Goldie dimension of a module MR is the infimum of those cardinal
numbers c such that card A ≤ c for every independent set (Mα)α∈A of non-zero submodules
of M [6]. We use G.dim(MR) to denote the Goldie dimension of MR. If G.dim(MR)=n, it
is also equivalent to saying that there are n independent submodules Mi of M such that
⊕n

i=1Mi ≤ess M .

Example 2.3. Any ring with G.dim(RR) =1 is right CSP. In particular, any integral
domain is a CSP ring.

Proof. If G.dim(RR) =1, by the fact that any nonzero right ideal of R must be essential
in a closed right ideal of R, then R has only two trivial closed right ideals 0 and RR. So it
is clear that R is right CSP. And it is easy to see that the Goldie dimension of an integral
domain is 1. □
Proposition 2.4. A direct product of rings R=

∏
i∈I Ri is right CSP if and only if Ri is

right CSP, for all i ∈ I.
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Proof. For i ∈ I, let πi and ιi be the ith projection map and the ith inclusion map
respectively. If R is right CSP, for each i, assume that Ti and T ′

i are two closed right
ideals of Ri. It is easy to see that 0 × · · · × Ti × · · · × 0 and 0 × · · · × T ′

i × · · · × 0 are two
closed right ideals of R. Since R is right CSP, 0 × · · · × (Ti + T ′

i ) × · · · × 0 is a closed right
ideal of R. Therefore, it is not difficult to see that Ti + T ′

i is a closed right ideal of Ri. So
Ri is right CSP, for all i ∈ I.

Conversely, let T and T ′ be two closed right ideals of R. For each i ∈ I, let Ti = {x ∈
Ri | ιi(x) ∈ T} and T ′

i = {x ∈ Ri | ιi(x) ∈ T ′}. Since T and T ′ are closed, it can be seen
that Ti and T ′

i are closed right ideals of Ri, for all i ∈ I. As Ri is right CSP, Ti + T ′
i is a

closed right ideal of Ri. Since T and T ′ are right ideals of R,
T + T ′ = Πi∈I(Ti + T ′

i ).
This shows that R is right CSP.

□
Lemma 2.5. [9, Theorem 1.4.1(i)(vi)] Let R be a ring and M be a right R-module. Then
MR is quasi-continuous if and only if whenever L1 and L2 are two closed submodules of
M with L1 ∩ L2 = 0, then L1 ⊕ L2 is also a closed submodule of MR.

The necessity of the following proposition can also be obtained from [5, Proposition 1.8]
and [10, Theorem 2.4], to be self contained, we write down the complete proof.

Proposition 2.6. Let R be a ring. Then R is right CSP if and only if R is right CS and
SSP.

Proof. If R is right CSP, by Lemma 2.5, R is right quasi-continuous, so it is right CS.
Hence every closed right ideal of R is a direct summand of RR. Since any direct summand
of RR is a closed right ideal of R and R is right CSP, the sum of any two direct summands
of RR is a closed right ideal of R. Again since R is right CS, the sum of any two direct
summands of RR is also a direct summand of RR. Therefore, R is right SSP. By [10,
Theorem 2.4], R is SSP. Conversely, if R is right CS, then every closed right ideal of R
is a direct summand of RR. So any sum of two closed right ideals of R is a sum of two
direct summands of RR. Since R is SSP, any sum of two closed right ideals of R is a direct
summand of RR, which is a closed right ideal of R. Thus, R is right CSP. □
Lemma 2.7. [12, Lemma 5] Let R be a ring and e2 = e ∈ R such that ReR = R. If T is
a nonzero closed right ideal of eRe, then TR is also a nonzero closed right ideal of R.

Theorem 2.8. Let R be a ring and e2 = e ∈ R such that ReR = R. If R is right CSP,
then eRe is also right CSP.

Proof. Assume that T and S are two nonzero closed right ideals of eRe. By the fact that
any nonzero right ideal of a ring must be essential in a closed right ideal of the ring, there
exists a closed right ideal L of eRe such that

T + S ≤ess L.

Next we only need to show that T + S = L. Since T and S are closed right ideals of
eRe, by Lemma 2.7, TR and SR are two closed right ideals of R. As R is right CSP,
TR + SR = (T + S)R is a closed right ideal of R. Then (T + S)R ⊆ LR, which is a
right ideal of R. Next we show that (T + S)R ≤ess (LR)R. Since ReR = R, there exist
aj , bj ∈ R, j = 1, 2, . . . , n, such that

1 =
n∑

j=1
ajebj .

Then for any 0 ̸= x ∈ LR, there must exist some j ∈ {1, 2, . . . , n} such that
0 ̸= xaje ∈ LRe = LeRe = L.
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Since T + S ≤ess LeRe, there exists ere ∈ eRe such that
0 ̸= xajeere = xajere ∈ T + S ⊆ (T + S)R.

So (T + S)R ≤ess LRR. Since (T + S)R is a closed right ideal of R, (T + S)R = LR.
Thus,

T + S = (T + S)eRe = (T + S)Re = LRe = LeRe = L.

□
Question 2.9. Let R be a right CSP ring and e = e2 ∈ R. Is eRe a right CSP ring?

Lemma 2.10. [8, Theorem 1.35] The following are equivalent for a ring R.
(1) R is right self-injective;
(2) M2(R) is right continuous (quasi-continuous);
(3) Mn(R) is right continuous (quasi-continuous) for all n ≥ 1;
(4) Mn(R) is right self-injective for all n ≥ 1.

Lemma 2.11. [10, Theorem 2.15] The following are equivalent for a ring R.
(1) R is regular.
(2) M2(R) is SSP.
(3) Mn(R) is SSP for some n > 1.
(4) Mn(R) is SSP for every n > 1.

Theorem 2.12. Let R be a ring. The following are equivalent.
(1) M2(R) is right CSP;
(2) Mn(R) is right CSP for some n > 1;
(3) Mn(R) is right CSP for each n ≥ 1;
(4) R is right self-injective and regular.

Proof. (1)⇔(4). If M2(R) is right CSP, by Proposition 2.6, M2(R) is right CS and SSP,
hence it is right quasi-continuous. Then by Lemma 2.10 and Lemma 2.11, R is right self-
injective and regular. Conversely, assume that R is right self-injective and regular. By
Lemma 2.10 and Lemma 2.11, M2(R) is right CS and SSP. By Proposition 2.6, M2(R) is
right CSP.

(2)⇔(4) and (3)⇔(4) can be proved in a similar way. □
Remark 2.13. The right CSP property is not a Morita invariant for rings. For example,
by Example 2.3, the ring Z of integers is CSP, but M2(Z) is not right CSP. Because if
M2(Z) is right CSP, according to Theorem 2.12, Z is regular, this is impossible.

Definition 2.14. A ring R is called strongly right CSP if it satisfies any one of the
conditions in Theorem 2.12. It is clear that a strongly right CSP ring must be right
CSP. By Remark 2.13, a right CSP ring may not be strongly right CSP. Since right self-
injectivity and regularity are both Morita invariants, according to Theorem 2.12, strongly
right CSP property is also a Morita invariant. According to Theorem 2.12, Example 2.2
also shows that the strongly CSP property of rings is not left-right symmetric.

Lemma 2.15. [10, Theorem 2.18] The following are equivalent for a ring R.
(1) R is semisimple.
(2) CFMN(R) is SSP.
(3) CFMΛ(R) is SSP for some infinite set Λ.
(4) CFMΛ(R) is SSP for every infinite set Λ.

Let R be a ring and Λ an infinite set. We write R
(Λ)
R as the set of all card(Λ) × 1

column matrices with finite nonzero entries in R. For any element A in CFMΛ(R), we
write A := ⟨αλ⟩, λ ∈ Λ, where αλ ∈ R

(Λ)
R is the λth column of A, and we denote the zero

card(Λ) × 1 column matrix by θ.
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Lemma 2.16. [11, Lemma 2.11] Let R be a ring and Λ an infinite set. If I is a right ideal
of CFMΛ(R), then

(1) I is a closed right ideal of CFMΛ(R) if and only if
I={⟨αλ⟩ | αλ ∈ T}, where T is a closed submodule of R

(Λ)
R .

(2) I is a direct summand of CFMΛ(R) if and only if
I={⟨αλ⟩ | αλ ∈ T}, where T is a direct summand of R

(Λ)
R .

Theorem 2.17. Let Λ be an infinite set. Then CFMΛ(R) is right CSP if and only if R is
semisimple.

Proof. By Proposition 2.6, a right CSP ring is SSP. According to Lemma 2.15, R is
semisimple. Conversely, let I1 and I2 be two closed right ideals of CFMΛ(R), by Lemma
2.16, there are two closed submodules T1 and T2 of R

(Λ)
R such that I1={⟨αλ⟩ | αλ ∈ T1}

and I2={⟨βλ⟩ | βλ ∈ T2}. Then

I1 + I2={⟨γλ⟩ | γλ ∈ T1 + T2}.

Since R is semisimple, T1 + T2 is a direct summand of R
(Λ)
R . By Lemma 2.16, I1 + I2 is

a direct summand of CFMΛ(R)CFMΛ(R), which is clearly a closed right ideal of CFMΛ(R).
So CFMΛ(R) is right CSP. □

3. Trivial extension of right CSP rings
Let R be a ring. The trivial extension of R is the set

R ∝ R =
{(

a b
0 a

)
: a, b ∈ R

}
.

With the usual addition and multiplication of 2 × 2 matrices, R ∝ R becomes a ring. To

be convenient, for any pair a, b ∈ R, we use (a, b) to denote
(

a b
0 a

)
. And for any two

subsets A, B of R, we set
A ∝ B = {(a, b) | a ∈ A, b ∈ B}.

Lemma 3.1. Let R be a ring and S = R ∝ R. If I and J are two right ideals of R such
that I ⊆ J . Then I ∝ J is a closed right ideal of S if and only if I = J is a closed right
ideal of R.

Proof. The sufficiency is obtained by [11, Lemma 4.2].
For the necessity, if J = 0, then I ∝ J = 0 ∝ 0, which is a trivial closed right ideal of

S. If J ̸= 0, firstly, we show that (I ∝ J)S ≤ess (J ∝ J)S . Let 0 ̸= (i, j) ∈ (J, J). If i ̸= 0,
then (i, j)(0, 1) = (0, i) ∈ I ∝ J . If i = 0, then j ̸= 0. So (i, j)(1, 0) = (i, j) ∈ I ∝ J .
Therefore, (I ∝ J)S ≤ess (J ∝ J)S . Since I ∝ J is a closed right ideal, I ∝ J = J ∝ J .
So I = J . Next we show that J is a closed right ideal of R. If not, there exists a right
ideal K of R such that J ̸= K and JR ≤ess KR. Now let A = J ∝ J and B = K ∝ K.
Then A is a closed right ideal of R ∝ R. Next we show that AS ≤ess BS . That is, if
0 ̸= (j1, j2) ∈ B, we want to find 0 ̸= (r1, r2) ∈ S such that 0 ̸= (j1, j2)(r1, r2) ∈ A.

Case (i): If j1 ̸= 0, as JR ≤ess KR, there exists 0 ̸= r ∈ R such that 0 ̸= j1r ∈ K. Now
take (r1, r2) = (0, r), then

0 ̸= (0, j1r) = (j1, j2)(r1, r2) ∈ A.

Case (ii): If j1 = 0, then j2 ̸= 0. So there exists 0 ̸= r ∈ R such that 0 ̸= j2r ∈ K. Now
take (r1, r2) = (r, 0), then

0 ̸= (0, j2r) = (j1, j2)(r1, r2) ∈ A.

Thus, AS ≤ess BS . Since A is a closed right ideal of S, AS = BS . So J = K, this is a
contradicition to the assumption that J ̸= K. So J is a closed right ideal of R. □
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The following lemma can be obtained from [3, Proposition 4.5] and [10, Theorem 2.4].

Lemma 3.2. Let R be a ring. Then R ∝ R is SSP if and only if R is SSP and for any
idempotent e of R, eR(1 − e) = 0.

Recall that a ring R is abelian if all its idempotents are contained in the center of R.

Lemma 3.3. Let R be a ring. The following are equivalent.
(1) R ∝ R is SSP;
(2) R is abelian.
(3) Every idempotent of R ∝ R has the form (e, 0), where e is an idempotent of R.

Proof. (1) ⇔ (2). If R ∝ R is SSP, according to Lemma 3.2, for any idempotent e of R,
eR(1 − e) = 0. Taking the idempotent f = 1 − e, we also have fR(1 − f) = (1 − e)Re = 0.
These mean that for each r ∈ R, er = ere = re. So R is abelian. Conversely, if R is
abelian, [10, Theorem 2.4] implies R has SSP. And for any idempotent e ∈ R, it is clear
that eR(1 − e) = e(1 − e)R = 0. Again by Lemma 3.2, R ∝ R is SSP.

(2) ⇔ (3). Assume (2). Let (a, b) be an idempotent of R ∝ R. Then

(a, b)(a, b) = (a2, ab + ba) = (a, b).

So a2 = a is an idempotent and ab + ba = b. Since R is abelian, we have (1 − 2a)b = 0.
Since (1 − 2a)2 = 1, b = 0. Thus (a, b) = (a, 0), where a is an idempotent. Conversely,
assume (3). If R is not abelian, there is an idempotent e ∈ R such that eR(1 − e) ̸= 0. So
there exists r ∈ R such that er ̸= ere. Let b = er(1 − e). Then b ̸= 0 and

(e, b)(e, b) = (e, eb + be) = (e, b)

is an idempotent of R ∝ R. This is a contradiction. □

At last, we obtain an equivalent characterization for R ∝ R to be right CSP.

Theorem 3.4. Let R be a ring. Then R ∝ R is right CSP if and only if the following
conditions are satisfied:

(1) R is right CSP.
(2) R is abelian.
(3) Every closed right ideal of R ∝ R has the form I ∝ I, where I is a closed right

ideal of R.

Proof. For the necessity, assume that I1 and I2 are two closed right ideals of R. We
need to show that I = I1 + I2 is also a closed right ideal of R. Take A1 = I1 ∝ I1 and
A2 = I2 ∝ I2. By Lemma 3.1, A1 and A2 are two closed right ideals of S. Now let
A = A1 + A2. It is clear that A = I ∝ I. Since S is right CSP, A is a closed right ideal
of S = R ∝ R. Again by Lemma 3.1, I is a closed right ideal of R. Therefore, R is right
CSP. So we have (1). Since a right CSP ring is SSP, by Lemma 3.3, R is abelian. Then
we obtain (2). As R ∝ R is right CSP, every closed right ideal A of R ∝ R is generated by
an idempotent e. By Lemma 3.3, we have A = (e, 0)S = I ∝ I, where e2 = e ∈ R. Then
I = eR is clearly a closed right ideal of R.

Conversely, by Lemma 3.3, S = R ∝ R is SSP. Next we only need to show that S is
right CS. By (3), every closed right ideal A of S has the form I ∝ I, where I is a closed
right ideal of R. According to (1), R is right CSP, so R is right CS. Thus, I = eR, where
e is an idempotent of R. So

A = I ∝ I = eR ∝ eR = (e, 0)S.

This shows that A is a direct summand of SS . Hence S is right CSP. □

Remark 3.5. According to the above theorem, we have the following notes:
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(i) If R is right CSP, R ∝ R may not be right CSP, even R is strongly right CSP.
For example, let R = M2(k), where k is a division ring. By Theorem 2.12, R is
a strongly right CSP ring. But R ∝ R is not right CSP. Because if R ∝ R is
right CSP, by Proposition 2.6, R ∝ R is SSP. Then according to Lemma 3.3, R is

abelian. This is impossible. Because
(

1 1
0 0

)
is an idempotent of R which is not

in the center of R.
(ii) Not for any ring R, R ∝ R satisfies the condition (3) in Theorem 3.4. If not, by

Lemma 3.1, it is not difficult to prove that the trivial extension of a right CSP
ring is right CSP. But by (i), this is impossible.
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