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1. Introduction
The semi-Riemannian geometry attracts researchers because of its capabilities to resolve the many issues of science, technology,
and medical, and their allied areas. A differentiable manifold M of dimension n equipped with a semi-Riemannian metric g,
whose signature is (p,q), (p+q = n), known as an n-dimensional semi-Riemannian manifold. In particular, if we take p = 1,
q = n−1, or p = n−1, q = 1, then the semi-Riemannian manifold M converts into the well-known Lorentzian manifold. To
start the study of Lorentzian manifold M, the causal character of the vectors play a significant role and hence it becomes the
convenient choice for the researchers to study the general theory of relativity and cosmology. Space-time is the stage of the
present modeling of the physical world: a torsionless, time-oriented Lorentzian manifold. In describing the gravity of the
space-time, the Riemannian curvature R, the Ricci tensor S, and the scalar curvature τ play a crucial role.

In [1], K. Matsumoto introduced the notion of Lorentzian para-Sasakian manifolds. In [2], the authors defined the same
notion independently and they obtained many results about this type of manifolds (see also [3], and [4]). Several authors have
studied Lorentzian para-Sasakian manifolds such as [5–7], and many others.

A Lorentzian para-Sasakian manifold Mn is said to be an η-Einstein manifold if the following condition

S(X ,Y ) = ag(X ,Y )+bη(X)η(Y ), (1)

holds on Mn, where a,b are smooth functions.
By definition, the conformal curvature tensor C, the projective curvature tensor P, and the conharmonical curvature tensor

K are given by [8]

C(X ,Y )Z = R(X ,Y )Z − 1
n−2

[S(Y,Z)X −S(X ,Z)Y +g(Y,Z)QX −g(X ,Z)QY ] (2)

+
τ

(n−1)(n−2)
[g(Y,Z)X −g(X ,Z)Y ] ,
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P(X ,Y )Z = R(X ,Y )Z − 1
n−1

[S(Y,Z)X −S(X ,Z)Y ] , (3)

K(X ,Y )Z = R(X ,Y )Z − 1
n−2

[S(Y,Z)X −S(X ,Z)Y +g(Y,Z)QX −g(X ,Z)QY ] , (4)

where R, S, Q, and τ denote the curvature tensor, Ricci tensor, Ricci operator and scalar curvature of M, respectively. For
dimM > 3, if C = 0, then the manifold is called conformally flat manifold.

In the present paper, we study Lorentzian para-Sasakian manifolds with respect to the Schouten-van Kampen connection.
The paper is organized as follows: After the introduction, in section 2, firstly we give Lorentzian para-Sasakian manifolds and
the Schouten-van Kampen connection. Then we adapt the Schouten-van Kampen connection on Lorentzian para-Sasakian
manifolds. In section 3, we study conformally flat, projectively flat, and conharmonically flat Lorentzian para-Sasakian
manifolds with respect to the Schouten-van Kampen connection. Also, we investigate Lorentzian para-Sasakian manifolds
satisfying the conditions R̆ · Q̆ = 0, Q̆ · R̆ = 0 and R̆ · S̆ = 0 with respect to the Schouten-van Kampen connection, respectively.
In the last section, we give an example of a 3-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van
Kampen connection which verifies our some corollaries.

2. Preliminaries
Let Mn be an n-dimensional differentiable manifold equipped with a triple (φ , ξ , η), where φ is a (1,1)-tensor field, ξ is a
vector field, η is a 1-form on Mn such that

η(ξ ) = −1, (5)
φ

2 = I +η ⊗ξ , (6)

which implies

i. φξ = 0, ii. η(φ) = 0, iii. rank(φ) = n−1. (7)

Then Mn admits a Lorentzian metric g, such that

g(φX ,φY ) = g(X ,Y )+η(X)η(Y ), (8)

and Mn is said to admit a Lorentzian almost paracontact structure (φ , ξ , η , g). In this case, we have

g(X ,ξ ) = η(X), ∇X ξ = φX , (9)

Ω(X ,Y ) = g(X ,φY ) = g(φX ,Y ) = Ω(Y,X).

In equations (5) and (6) if we replace ξ with −ξ , then the triple (φ , ξ , η) is an almost paracontact structure on Mn defined
by Sato ( [9]). The Lorentzian metric given by equation (9) stands analogous to the almost paracontact Riemannian metric for
any almost paracontact manifold (see [9, 10]).

A Lorentzian almost paracontact manifold Mn equipped with the structure (φ , ξ , η , g) is called Lorentzian paracontact
manifold [1] if

Ω(X ,Y ) =
1
2
((∇X η)Y +(∇Y η)X).

A Lorentzian almost paracontact manifold Mn equipped with the structure (φ , ξ , η , g) is called Lorentzian para-Sasakian
manifold [1] if

(∇X φ)Y = g(φX ,φY )ξ +η(Y )φ 2X .

In a Lorentzian para-Sasakian manifold the 1-form η is closed. Also in [1], it is proved that if an n-dimensional Lorentzian
para-Sasakian manifold (Mn,g) admits a timelike unit vector field ξ such that the 1-form η associated to ξ is closed and
satisfies

(∇X ∇Y η)W = g(X ,Y )η(W )+g(X ,W )η(Y )+2η(X)η(Y )η(W ),

2 Vol. 4, No. 2, 1-10, 2022



then Mn admits a Lorentzian para-Sasakian structure. It is noticed that the n-dimensional Lorentzian para-Sasakian manifold M
satisfies the following relations:

R(X ,Y )ξ = η(Y )X −η(X)Y, (10)
R(ξ ,X)Y = g(X ,Y )ξ −η(Y )X , (11)

S(X ,ξ ) = (n−1)η(X), (12)
η(R(X ,Y )Z) = g(Y,Z)η(X)−g(X ,Z)η(Y ), (13)

for all X ,Y,Z ∈ χ(M), where R and S denote the curvature tensor and the Ricci tensor of M, respectively.
On the other hand, we have two naturally defined distributions in the tangent bundle T M of M as follows:

H = kerη , V = span{ξ}. (14)

Then we have T M = H ⊕V , H ∩V = {0}, and H ⊥V . For any X ∈ T M, by Xh and Xv we denote the projections of X onto H
and V , respectively. Thus, we have X = Xh +Xv with

Xh = X +η(X)ξ , Xv =−η(X)ξ . (15)

The Schouten-van Kampen connection ∇̆ associated with the Levi-Civita connection ∇ and adapted to the pair of the distributions
(H,V ) is defined by [11]

∇̆XY = (∇XY h)h +(∇XY v)v, (16)

and the corresponding second fundamental form B is defined by B = ∇− ∇̆. Note that condition (16) implies the parallelism of
the distributions H and V with respect to the Schouten-van Kampen connection ∇̆.

From equation (15), one can compute

(∇XY h)h = ∇XY +η(∇XY )ξ +η(Y )∇X ξ ,

(∇XY v)v = −(∇X η)(Y )ξ −η(∇XY )ξ ,

which enable us to express the Schouten-van Kampen connection with help of the Levi-Civita connection in the following
way [12]. This decomposition allows one to define the Schouten-van Kampen connection ∇̆ over an almost contact metric
structure. The Schouten-van Kampen connection ∇̆ on an almost (para) contact metric manifold with respect to Levi-Civita
connection ∇ is defined by [12]

∇̆XY = ∇XY +η(Y )∇X ξ − (∇X η)(Y )ξ . (17)

Thus with the help of the Schouten-van Kampen connection (17), many properties of some geometric objects connected with
the distributions H, V can be characterized [12–15]. For example g, ξ and η are parallel with respect to ∇̆, that is, ∇̆ξ = 0,
∇̆g = 0, ∇̆η = 0. Also the torsion T̆ of ∇̆ is defined by

T̆ (X ,Y ) = η(Y )∇X ξ −η(X)∇Y ξ −2dη(X ,Y )ξ . (18)

Now we consider a Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection. Firstly, using
equations (9) and (3) in (17), we get

∇̆XY = ∇XY +η(Y )φX −g(φX ,Y )ξ . (19)

Theorem 1. Let (M,φ ,ξ ,η ,g) be a Lorentzian para-Sasakian manifold. The Schouten-van Kampen connection ∇̆ associated
to the Levi-Civita connection ∇ of M and adapted to the pair (14) is just the only one affine connection, which is metric and its
torsion has the form (18).

Proof. It is well-known that a metric connection can be stated with the help of its torsion tensor field as follow:

g(∇̆XY,Z) = g(∇XY,Z)+
1
2

g(T̆ (X ,Y ),Z)− 1
2

g(T̆ (X ,Z),Y )− 1
2

g(T̆ (Y,Z),X).

By using equation (18), we get

g(∇̆XY,Z) = g(∇XY,Z)+
1
2

η(Y )g(φX ,Z)− 1
2

η(X)g(φY,Z)− 1
2

η(Z)g(φX ,Y )

+
1
2

η(X)g(φZ,Y )− 1
2

η(Z)g(φY,X)+
1
2

η(Y )g(φZ,X),
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which implies

g(∇̆XY,Z) = g(∇XY,Z)+η(Y )g(φX ,Z)−η(Z)g(φX ,Y ),

that is, equation (19) is satisfied. ■

Let R and R̆ be the curvature tensors of the Levi-Civita connection ∇ and the Schouten-van Kampen connection ∇̆ given by

R(X ,Y ) = [∇X ,∇Y ]−∇[X ,Y ], R̆(X ,Y ) = [∇̆X , ∇̆Y ]− ∇̆[X ,Y ],

respectively. If we substitute equation (19) in the definition of the Riemannian curvature tensor, we have

R̆(X ,Y )Z = ∇̆X ∇̆Y Z − ∇̆Y ∇̆X Z − ∇̆[X ,Y ]Z. (20)

Using equation (17) in equation (20), we have

R̆(X ,Y )Z = R(X ,Y )Z +g(X ,φZ)φY −g(Y,φZ)φX +g(Y,Z)η(X)ξ

−g(X ,Z)η(Y )ξ +η(Y )η(Z)X −η(X)η(Z)Y. (21)

Now taking the inner product in equation (21) with a vector field W , we have

g(R̆(X ,Y )Z,W ) = g(R(X ,Y )Z,W )+g(X ,φZ)g(φY,W )−g(Y,φZ)g(φX ,W )

+g(Y,Z)η(X)η(W )−g(X ,Z)η(Y )η(W ) (22)
+g(X ,W )η(Y )η(Z)−g(Y,W )η(X)η(Z).

If we take X =W = ei, {i = 1, ...,n}, in equation (22), where {ei} is an orthonormal basis of the tangent space at each point of
the manifold, we get

S̆(Y,Z) = S(Y,Z)+(n−1)η(Y )η(Z), (23)

where S̆ and S denote the Ricci tensor of the connections ∇̆ and ∇, respectively. As a consequence of equation (23), we obtain

Q̆Y = QY +(n−1)η(Y )ξ . (24)

Also if we take Y = Z = ei, {i = 1, ...,n}, in equation (23), we have

r̆ = r+n−1. (25)

3. Main results
In this section, we give the main results of the paper.

Let Mn be a Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection. Then using equations
(2)-(4) and equations (22)-(25), we can write the followings:

C̆(X ,Y )Z = C(X ,Y )Z +g(X ,φZ)φY −g(Y,φZ)φX +
1

n−2
[g(Y,Z)X −g(X ,Z)Y −g(Y,Z)η(X)ξ

+g(X ,Z)η(Y )ξ −η(Y )η(Z)X +η(X)η(Z)Y ], (26)

P̆(X ,Y )Z = P(X ,Y )Z +g(X ,φZ)φY −g(Y,φZ)φX +g(Y,Z)η(X)ξ −g(X ,Z)η(Y )ξ , (27)

K̆(X ,Y )Z = K(X ,Y )Z +g(X ,φZ)φY −g(Y,φZ)φX

− 1
n−2

[g(Y,Z)η(X)ξ −g(X ,Z)η(Y )ξ +η(Y )η(Z)X −η(X)η(Z)Y ]. (28)

Now let M be a conformally flat manifold with respect to the Schouten-van Kampen connection. Thus, from equation (26) we
have

C(X ,Y )Z = g(Y,φZ)φX −g(X ,φZ)φY − 1
n−2

[g(Y,Z)X −g(X ,Z)Y ]

+
1

n−2
[g(Y,Z)η(X)ξ −g(X ,Z)η(Y )ξ +η(Y )η(Z)X −η(X)η(Z)Y ]. (29)
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Putting X = ξ in equation (29), we obtain

C(ξ ,Y )Z +
2

n−2
[g(Y,Z)ξ −η(Z)Y ] = 0, (30)

that is,

R(ξ ,Y )Z − 1
n−2

[S(Y,Z)ξ −S(ξ ,Z)Y +g(Y,Z)Qξ −η(Z)QY ]+{ τ +2(n−1)
(n−1)(n−2)

} [g(Y,Z)ξ −η(Z)Y ] = 0. (31)

Using equations (11) and (12) in equation (31), we get(
n(n−1)+ τ

(n−1)(n−2)

)
[g(Y,Z)ξ −η(Z)Y ]− 1

n−2
[S(Y,Z)ξ − (n−1)η(Z)Y +(n−1)g(Y,Z)ξ −η(Z)QY ] = 0. (32)

Multiplying equation (32) with ξ , we obtain(
n(n−1)+ τ

(n−1)(n−2)

)
[g(Y,Z)+η(Z)η(Y )]− 1

n−2
[S(Y,Z)+2(n−1)η(Z)η(Y )+(n−1)g(Y,Z)] = 0.

i.e.,

S(Y,Z) = (1+
τ

n−1
)g(Y,Z)− (n−2− τ

n−1
)η(Y )η(Z). (33)

Hence the manifold M is an η-Einstein manifold with respect to the Levi-Civita connection. Now using equation (33) in
equation (23), we get

S̆(Y,Z) = (1+
τ

n−1
)[g(Y,Z)+η(Y )η(Z)]. (34)

Thus the manifold M is also an η-Einstein manifold with respect to the Schouten-van Kampen connection.
Now we can state the following:

Theorem 2. Let M be a conformally flat n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van
Kampen connection. Then the manifold M is an η-Einstein manifold with respect to the Levi-Civita connection and the
Schouten-van Kampen connection.

Now we consider the manifold M is a projectively flat manifold with respect to the Schouten-van Kampen connection.
Thus, we have

R̆(X ,Y )Z =
1

n−1
[S̆(Y,Z)X − S̆(X ,Z)Y ]. (35)

Using equations (21) and (23) in equation (35), we get

R(X ,Y )Z +g(X ,φZ)φY −g(Y,φZ)φX

+g(Y,Z)η(X)ξ −g(X ,Z)η(Y )ξ +η(Y )η(Z)X −η(X)η(Z)Y

=
1

n−1
[S(Y,Z)X −S(X ,Z)Y ]+η(X)η(Z)Y −η(Y )η(Z)X . (36)

Putting X = ξ in equation (36), we obtain

R(ξ ,Y )Z −g(Y,Z)ξ +η(Z)Y =
1

n−1
[S(Y,Z)ξ −S(ξ ,Z)Y ]−η(Y )η(Z)ξ −η(Z)Y,

i.e.,

0 = S(Y,Z)ξ −nη(Z)Y −η(Z)η(Y )ξ . (37)

Multiplying equation (37) with ξ , we have

S(Y,Z) =−(n−1)η(Z)η(Y ). (38)
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Using equation (38) in equation (23), we get

S̆(Y,Z) = 0.

Thus the manifold M is a Ricci-flat manifold with respect to the Schouten-van Kampen connection. Hence from equation (35),
the manifold M is a flat manifold with respect to the Schouten-van Kampen connection.

Conversely, let M be a flat manifold with respect to the Schouten-van Kampen connection. Then we say that the manifold M
is a Ricci-flat manifold with respect to the Schouten-van Kampen connection. Hence from equation (27), we get P̆(X ,Y )Z = 0,
that is, the manifold M is a projectively flat manifold with respect to the Schouten-van Kampen connection.

Thus we have the following:

Theorem 3. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection. Then the following statements are equivalent:

1. M is projectively flat with respect to the Schouten-van Kampen connection.

2. M is Ricci flat with respect to the Shouten-van Kampen connection.

3. M is flat with respect to the Schouten-van Kampen connection.

Now we consider the manifold M is a conharmonically flat manifold with respect to the Schouten-van Kampen connection.
Thus, we can write

R̆(X ,Y )Z =
1

n−2
[
S̆(Y,Z)X − S̆(X ,Z)Y +g(Y,Z)Q̆X −g(X ,Z)Q̆Y

]
. (39)

Using equations (21), (23) and (24) in equation (39), we get

R(X ,Y )Z +g(X ,φZ)φY −g(Y,φZ)φX − 1
n−2

 S(Y,Z)X −S(X ,Z)Y +g(Y,Z)QX
−g(X ,Z)QY +g(Y,Z)η(X)ξ

−g(X ,Z)η(Y )ξ +η(Y )η(Z)X −η(X)η(Z)Y

= 0. (40)

Putting X = ξ in equation (40), we obtain

R(ξ ,Y )Z − 1
n−2

[
S(Y,Z)ξ −S(ξ ,Z)Y +g(Y,Z)Qξ

−g(ξ ,Z)QY −g(Y,Z)ξ +η(Z)Y

]
= 0. (41)

Using equations (11) and (12) in equation (41), we get

g(Y,Z)ξ −η(Z)Y − 1
n−2

[
S(Y,Z)ξ − (n−1)η(Z)Y +(n−1)g(Y,Z)ξ

−η(Z)QY −g(Y,Z)ξ +η(Z)Y

]
= 0. (42)

Multiplying equation (42) with ξ , we have

g(Y,Z)+η(Z)η(Y )+
1

n−2

[
−S(Y,Z)− (n−1)η(Y )η(Z)− (n−1)g(Y,Z)
−(n−1)η(Y )η(Z)+g(Y,Z)+η(Y )η(Z)

]
= 0,

i.e.,

S(Y,Z) =−(n−1)η(Y )η(Z). (43)

Thus using equations (43) in equation (23), we get

S̆(Y,Z) = 0.

which implies M is a Ricci-flat manifold with respect to the Schouten-van Kampen connection. Thus from equation (39) the
manifold M is a flat manifold with respect to the Schouten-van Kampen connection.

Conversely, let M be a flat manifold with respect to the Schouten-van Kampen connection. Then we say that the manifold M
is a Ricci-flat manifold with respect to the Schouten-van Kampen connection. Hence from equation (28), we get K̆(X ,Y )Z = 0,
that is, the manifold M is a conharmonically flat manifold with respect to the Schouten-van Kampen connection.

Now we have the following:

Theorem 4. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection. Then the following statements are equivalent:
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1. M is conharmonically flat with respect to the Schouten-van Kampen connection.

2. M is Ricci flat with respect to the Shouten-van Kampen connection.

3. M is flat with respect to the Schouten-van Kampen connection.

Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection
satisfying the condition R̆ · Q̆ = 0. Then we can write

(R̆(X ,Y )Q̆)Z = R̆(X ,Y )Q̆Z − Q̆R̆(X ,Y )Z = 0. (44)

Using equation (24) in equation (44), we have

R̆(X ,Y )QZ −QR̆(X ,Y )Z = 0. (45)

Now using equation (21) in equation (45), we obtain

R(X ,Y )QZ −QR(X ,Y )Z +g(φX ,QZ)φY

−g(φY,QZ)φX +g(Y,QZ)η(X)ξ −g(X ,QZ)η(Y )ξ

+η(Y )η(QZ)X −η(X)η(QZ)Y −g(X ,φZ)QφY (46)
+g(Y,φZ)QφX −g(Y,Z)η(X)Qξ +g(X ,Z)η(Y )Qξ

−η(Y )η(Z)QX +η(X)η(Z)QY = 0.

Suppose that the manifold M is satisfying the condition R ·Q = 0. Then equation (46) turns to

g(φX ,QZ)φY −g(φY,QZ)φX +g(Y,QZ)η(X)ξ

−g(X ,QZ)η(Y )ξ +η(Y )η(QZ)X −η(X)η(QZ)Y

−g(X ,φZ)QφY +g(Y,φZ)QφX −g(Y,Z)η(X)Qξ (47)
+g(X ,Z)η(Y )Qξ −η(Y )η(Z)QX +η(X)η(Z)QY = 0.

Multiplying equation (47) with W , we obtain

g(φX ,QZ)g(φY,W )−g(φY,QZ)g(φX ,W )+g(Y,QZ)η(X)η(W )

−g(X ,QZ)η(Y )η(W )+η(Y )η(QZ)g(X ,W )−η(X)η(QZ)g(Y,W )

−g(X ,φZ)g(QφY,W )+g(Y,φZ)g(QφX ,W )−g(Y,Z)η(X)g(Qξ ,W ) (48)
+g(X ,Z)η(Y )g(Qξ ,W )−η(Y )η(Z)g(QX ,W )+η(X)η(Z)g(QY,W ) = 0.

Taking X = ξ in equation (48), we have

S(Y,Z)η(W )−S(Z,ξ )g(Y,W )−g(Y,Z)S(ξ ,W )+η(Z)S(Y,W ) = 0. (49)

Again taking W = ξ in equation (49), we get

S(Y,Z) = (n−1)g(Y,Z). (50)

Hence the manifold M is an Einstein manifold with respect to the Levi-Civita connection. Using equation (50) in equation (23),
we get

S̆(Y,Z) = (n−1)g(Y,Z)+(n−1)η(Y )η(Z). (51)

Thus the manifold M is an η-Einstein manifold with respect to the Schouten-van Kampen connection.
Conversely, let the manifold M is an Einstein manifold with respect to the Levi-Civita connection and an η-Einstein

manifold with respect to the Schouten-van Kampen connection. Then from equations (50) and (51), we have

Q̆Y = (n−1)Y +(n−1)η(Y )ξ , (52)

and

QY = (n−1)Y, (53)

respectively. Now using equations (52) and (53) in equations (45) and (46), we have R ·Q = 0 and R̆ · Q̆ = 0, respectively.
Now we give the following:
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Theorem 5. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection satisfying the condition R̆ · Q̆ = 0. Then the following statements are equivalent:

1. If M is satisfying the condition R ·Q = 0, then M is an Einstein manifold with respect to the Levi-Civita connection.

2. M is an η-Einstein manifold with respect to the Schouten-van Kampen connection.

Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection
satisfying the condition Q̆ · R̆ = 0. Then we can write

Q̆R̆(X ,Y )Z − R̆(Q̆X ,Y )Z − R̆(X , Q̆Y )Z − R̆(X ,Y )Q̆Z = 0. (54)

Using equation (24) in equation (54), we have

QR̆(X ,Y )Z − R̆(QX ,Y )Z − R̆(X ,QY )Z − R̆(X ,Y )QZ = 0, (55)

which

QR(X ,Y )Z −R(QX ,Y )Z −R(X ,QY )Z −R(X ,Y )QZ

+g(X ,φZ)QφY −g(Y,φZ)QφX +g(Y,Z)η(X)Qξ −g(X ,Z)η(Y )Qξ

+η(Y )η(Z)QX −η(X)η(Z)QY +g(Y,φZ)φQX −g(X ,φZ)φQY

+g(X ,Z)S(Y,ξ )ξ −g(Y,Z)S(X ,ξ )ξ +2S(X ,Z)η(Y )ξ −2S(Y,Z)η(X)ξ (56)
+S(X ,ξ )η(Z)Y −S(Y,ξ )η(Z)X +S(Y,φZ)φX −S(X ,φZ)φY

+η(X)η(Z)QY −η(Y )η(Z)QX +g(φY,QZ)φX −g(φX ,QZ)φY

+S(Z,ξ )η(X)Y −S(Z,ξ )η(Y )X = 0.

Suppose that the manifold M is satisfying the condition Q ·R = 0. Taking X = ξ in equation (56), then we have

2S(Y,Z)ξ −g(Y,Z)Qξ −g(Y,Z)S(ξ ,ξ )ξ +S(ξ ,Z)η(Y )ξ +S(ξ ,ξ )η(Z)Y −η(Y )η(Z)Qξ −S(Z,ξ )Y = 0. (57)

Multiplying equation (57) with ξ , we obtain

S(Y,Z) =−(n−1)η(Z)η(Y ). (58)

Using equation (58) in equation (23), we get

S̆(Y,Z) = 0.

Thus the manifold M is a Ricci-flat manifold with respect to the Schouten-van Kampen connection.
Conversely if the manifold M is a Ricci-flat manifold with the condition Q ·R = 0, then the condition Q̆ · R̆ = 0 with respect

to the Schouten-van Kampen connection is always satisfied on M.
Now we give the following:

Theorem 6. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection satisfying the condition Q̆ · R̆ = 0 with the condition Q ·R = 0 if and only if M is a Ricci-flat manifold with respect
to the Schouten-van Kampen connection.

Definition 7. A semi-Riemannian manifold (Mn,g),n > 3, is said to be Ricci semisymmetric if

R(X ,Y ) ·S = 0,

holds on M for all U,W ∈ χ(M).

Let M be an n-dimensional Ricci semisymmetric Lorentzian para-Sasakian manifold with respect to the Schouten-van
Kampen connection. Then we can write

(R̆(X ,Y ) · S̆)(Z,W ) = 0,

which implies

S̆(R̆(X ,Y )Z,W )+ S̆(Z, R̆(X ,Y )W ) = 0. (59)
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Using equation (23) in equation (59), we obtain

S(R̆(X ,Y )Z,W )+S(Z, R̆(X ,Y )W ) = 0. (60)

Now using equation (21) in equation (60), we obtain

S(R(X ,Y )Z,W )+S(R(X ,Y )W,Z)+g(X ,φZ)S(φY,W )

−g(Y,φZ)S(φX ,W )+g(Y,Z)η(X)S(ξ ,W )−g(X ,Z)η(Y )S(ξ ,W )

+η(Y )η(Z)S(X ,W )−η(X)η(Z)S(Y,W )+g(X ,φW )S(φY,Z)

−g(Y,φW )S(φX ,Z)+g(Y,W )η(X)S(ξ ,Z)−g(X ,W )η(Y )S(ξ ,Z) (61)
+η(Y )η(W )S(X ,Z)−η(X)η(W )S(Y,Z) = 0.

Suppose that the manifold M is satisfying the condition R ·S = 0. Taking X = ξ in equation (61) and from equation (11), we
have

(n−1)g(Y,Z)η(W )−η(Z)S(Y,W )+(n−1)g(Y,W )η(Z)−η(W )S(Y,Z) = 0. (62)

Now taking W = ξ in equation (62), we get

S(Y,Z) = (n−1)g(Y,Z). (63)

Hence the manifold M is an Einstein manifold with respect to the Levi-Civita connection. Using equation (63) in equation (23),
we get

S̆(Y,Z) = (n−1)g(Y,Z)+(n−1)η(Y )η(Z). (64)

Thus the manifold M is an η-Einstein manifold with respect to the Schouten-van Kampen connection.
Conversely, we can consider the proof of Theorem 5.
Then we give the following:

Theorem 8. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection satisfying the condition R̆ · S̆ = 0. Then the following statements are equivalent:

1. If M is satisfying the condition R ·S = 0, then M is an Einstein manifold with respect to the Levi-Civita connection.

2. M is an η-Einstein manifold with respect to the Schouten-van Kampen connection.

4. Example

We consider a 3-dimensional manifold M = {(x,y,z) ∈ R3}, where (x,y,z) are the standard coordinates of R3. Let {e1,e2,e3}
be linearly independent global frame on M given by

e1 = ez ∂

∂x
, e2 = ez ∂

∂y
, e3 =

∂

∂ z
,

where a is non-zero constant. Let g be the Lorentzian metric, η be the 1-form and φ be the (1,1)-tensor field defined by

g(e1,e3) = g(e1,e2) = g(e2,e3) = 0, g(e1,e1) = g(e2,e2) = 1, g(e3,e3) =−1,

η(X) = g(X ,e3),

φe1 =−e1, φe2 =−e2, φe3 = 0,

for any X ∈ χ(M), respectively. We have

η(e3) =−1, φ
2X = X +η(X)e3

and

g(φX ,φY ) = g(X ,Y )+η(X)η(Y ),
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for any X ,Y ∈ χ(M). Thus, for e3 = ξ , (φ ,ξ ,η ,g) defines a Lorentzian paracontact structure on M. Let ∇ be the Levi-Civita
connection with respect to the Lorentzian metric g. Then we have

[e1,e2] = 0, [e1,e3] =−e1, [e2,e3] =−e2.

Taking e3 = ξ and using Koszul formula for the Lorentzian metric g, we have

∇e1e1 =−e3, ∇e1e2 = 0, ∇e1e3 =−e1, ∇e2e1 = 0, ∇e2e2 =−e3, ∇e2e3 =−e2, ∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Hence, it can be easily seen that (φ ,ξ ,η ,g) is an Lorentzian para-Sasakian structure on M. So, M3(φ ,ξ ,η ,g) is a Lorentzian
para-Sasakian manifold.

Now we consider the Schouten-van Kampen connection on M. By direct calculations, we see that the nonzero components
of the Schouten-van Kampen connection ∇̆ on M are

∇̆e1e1 =−e3 +ξ , ∇̆e2e2 =−e3 +ξ . (65)

From equation (65), we can easily see that ∇̆eie j = 0, (1 ≤ i, j ≤ 3), for ξ = e3. Thus the manifold M is a flat manifold
with respect to the Schouten-van Kampen connection. Since a flat manifold is a Ricci-flat manifold with respect to the
Schouten-van Kampen connection, the manifold M is both a projectively flat and a conharmonically flat 3-dimensional
Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection. Thus, Theorem 2 and Theorem 3 are
verified.

5. Conclusions
The semi-Riemannian geometry attracts researchers because of its capabilities to resolve the many issues of science, technology,
and medical, and their allied areas. A differentiable manifold M of dimension n equipped with a semi-Riemannian metric
g, whose signature is (p,q), (p+ q = n), known as an n-dimensional semi-Riemannian manifold. In particular, if we take
p = 1, q = n−1, or p = n−1, q = 1, then the semi-Riemannian manifold M converts into the well-known Lorentzian manifold.
Recently, Schouten-van Kampen connection used by many mathematicians. In this paper we study a Lorentzian para-Sasakian
manifold with respect to the Schouten-van Kampen connection.
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