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Abstract

The object of the present paper is to study a Lorentzian para-Sasakian manifold with respect to the Schouten-van
Kampen connection.
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1. Introduction

The semi-Riemannian geometry attracts researchers because of its capabilities to resolve the many issues of science, technology,
and medical, and their allied areas. A differentiable manifold M of dimension n equipped with a semi-Riemannian metric g,
whose signature is (p,q), (p+ ¢ = n), known as an n-dimensional semi-Riemannian manifold. In particular, if we take p = 1,
q=n—1,or p=n—1, g =1, then the semi-Riemannian manifold M converts into the well-known Lorentzian manifold. To
start the study of Lorentzian manifold M, the causal character of the vectors play a significant role and hence it becomes the
convenient choice for the researchers to study the general theory of relativity and cosmology. Space-time is the stage of the
present modeling of the physical world: a torsionless, time-oriented Lorentzian manifold. In describing the gravity of the
space-time, the Riemannian curvature R, the Ricci tensor S, and the scalar curvature 7 play a crucial role.

In [1], K. Matsumoto introduced the notion of Lorentzian para-Sasakian manifolds. In [2], the authors defined the same
notion independently and they obtained many results about this type of manifolds (see also [3], and [4]). Several authors have
studied Lorentzian para-Sasakian manifolds such as [5—7], and many others.

A Lorentzian para-Sasakian manifold M" is said to be an n-Einstein manifold if the following condition

SX.Y) =ag(X,Y)+bn(X)n(Y), (1

holds on M", where a,b are smooth functions.

By definition, the conformal curvature tensor C, the projective curvature tensor P, and the conharmonical curvature tensor
K are given by [8]

CX,Y)Z = RX,Y)Z- % SY,2)X -S(X,2)Y +g(Y,Z)0X — g(X,Z)QY] 2)

T
+m[g(Y,Z)X—g(X,Z)Y},
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P(X,Y)Z = R(X,Y)Z—%[S(Y7Z)X—S(X7Z)Y], 3)

KX,Y)Z = R(X,Y)Z—%[S(Y,Z)X—S(X,Z)Y—Fg(Y,Z)QX—g(X,Z)QY], “)

where R, S, O, and 7 denote the curvature tensor, Ricci tensor, Ricci operator and scalar curvature of M, respectively. For
dimM > 3, if C = 0, then the manifold is called conformally flat manifold.

In the present paper, we study Lorentzian para-Sasakian manifolds with respect to the Schouten-van Kampen connection.
The paper is organized as follows: After the introduction, in section 2, firstly we give Lorentzian para-Sasakian manifolds and
the Schouten-van Kampen connection. Then we adapt the Schouten-van Kampen connection on Lorentzian para-Sasakian
manifolds. In section 3, we study conformally flat, projectively flat, and conharmonically flat Lorentzian para-Sasakian
manifolds with respect to the Schouten-van Kampen connection. Also, we investigate Lorentzian para-Sasakian manifolds
satisfying the conditions R-Q =0, O-R =0 and R - § = 0 with respect to the Schouten-van Kampen connection, respectively.
In the last section, we give an example of a 3-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van
Kampen connection which verifies our some corollaries.

2. Preliminaries

Let M" be an n-dimensional differentiable manifold equipped with a triple (¢, &, 1), where ¢ is a (1, 1)-tensor field, £ is a
vector field, i1 is a 1-form on M" such that

neE = -1, 5)
¢ = I+n®E, (6)

which implies

i. 96 =0, ii. n(¢) =0, iii. rank(¢)=n—1. @)
Then M" admits a Lorentzian metric g, such that

8(0X,9Y) = g(X,Y) +n(X)n(Y), ®
and M" is said to admit a Lorentzian almost paracontact structure (¢, &, 1, g). In this case, we have

8(X,8)=n(X), Vx&=9¢X, €))

QX,Y) =g(X,9Y) = g(¢X,Y) = Q(Y,X).

In equations (5) and (6) if we replace & with —&, then the triple (¢, &, 17) is an almost paracontact structure on M" defined
by Sato ( [9]). The Lorentzian metric given by equation (9) stands analogous to the almost paracontact Riemannian metric for
any almost paracontact manifold (see [9, 10]).

A Lorentzian almost paracontact manifold M" equipped with the structure (¢, &, 11, g) is called Lorentzian paracontact
manifold [1] if

QX.Y) = L(Vxm)Y + (Vym)X).

A Lorentzian almost paracontact manifold M" equipped with the structure (¢, &, 1, g) is called Lorentzian para-Sasakian
manifold [1] if

(Vx9)Y =g(9X,9Y)E+n(Y)¢°X.
In a Lorentzian para-Sasakian manifold the 1-form 1) is closed. Also in [1], it is proved that if an n-dimensional Lorentzian

para-Sasakian manifold (M",g) admits a timelike unit vector field & such that the 1-form 1 associated to & is closed and
satisfies

(VxVymW = g(X,Y)n(W) +g(X, W)n(Y) +2n(X)n(Y)n(W),
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then M" admits a Lorentzian para-Sasakian structure. It is noticed that the n-dimensional Lorentzian para-Sasakian manifold M
satisfies the following relations:

RX,Y)e = n¥)X-n(X)Y, (10)
R(E,X)Y = g(X,Y)§—n(Y)X, (1)
S(x,§) = (n-1nX), (12)
NRX,Y)Z) = ¢, Z)n(X)—gX,Z)n(Y), (13)

forall X,Y,Z € x(M), where R and S denote the curvature tensor and the Ricci tensor of M, respectively.
On the other hand, we have two naturally defined distributions in the tangent bundle 7M of M as follows:

H=xkern, V =span{&}. (14)

Then we have TM = H 3V, HNV = {0}, and H L V. For any X € TM, by X" and X" we denote the projections of X onto H
and V, respectively. Thus, we have X = X h 4 XV with

X"=X+n(X)§, X'=-nX)E. (15)

The Schouten-van Kampen connection V associated with the Levi-Civita connection V and adapted to the pair of the distributions
(H,V) is defined by [11]

VY = (Vx¥")"+ (Vxr"), (16)

and the corresponding second fundamental form B is defined by B=V — V. Note that condition (16) implies the parallelism of
the distributions H and V with respect to the Schouten-van Kampen connection V.
From equation (15), one can compute

(VxY")" = VxY+n(VxY)E+n(Y)VxE,
(VxY")" = —(Vxn)(Y)§ —n(VxY)E,

which enable us to express the Schouten-van Kampen connection with help of the Levi-Civita connection in the following
way [12]. This decomposition allows one to define the Schouten-van Kampen connection V over an almost contact metric
structure. The Schouten-van Kampen connection V on an almost (para) contact metric manifold with respect to Levi-Civita
connection V is defined by [12]

VxY = VxY¥ +n(Y)Vx& — (Vxn)(Y)&. (17)

Thus with the help of the Schouten-van Kampen connection (17), many properties of some geometric objects connected with
the distributions H, V can be characterized [12-15]. For example g, £ and 1 are parallel with respect to V, that is, V& =0,
Vg =0, Vn 0. Also the torsion 7" of V is defined by

T(X,Y)=n(Y)Vx§ —n(X)VyE —2dn(X,Y)E. (18)

Now we consider a Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection. Firstly, using
equations (9) and (3) in (17), we get

VxY = VxY +1(Y)0X —g(¢X,Y)E. (19)

Theorem 1. Let (M, ¢,E,1,g) be a Lorentzian para-Sasakian manifold. The Schouten-van Kampen connection V associated
to the Levi-Civita connection V of M and adapted to the pair (14) is just the only one affine connection, which is metric and its
torsion has the form (18).

Proof. 1t is well-known that a metric connection can be stated with the help of its torsion tensor field as follow:
- 1 . | | B
g(vaaz) = g(VXYaZ)‘FEg(T(XvY)aZ)*Eg(T(Xaz)aY)*Eg(T(sz)aX)'
By using equation (18), we get
. 1 1 1
g(VxY,Z2) = g(VxY,Z)+§n(Y)g(¢X,Z)—En(X)g(be,Z)—gn(Z)g(¢X,Y)

F3NX)ZOZ,Y) ~ Sn(2)g(9¥,.X) + 31()8(907.X),
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which implies
¢(Vx¥,2) = g(Vx¥.Z) +1(Y)g(9X,2) — 1 (Z)g(9X.Y ),
that is, equation (19) is satisfied. |
Let R and R be the curvature tensors of the Levi-Civita connection V and the Schouten-van Kampen connection \Y given by
R(X,Y)=[Vx,Vy] = Vixy, R(X,Y)=[Vx,Vy]=Vixy,
respectively. If we substitute equation (19) in the definition of the Riemannian curvature tensor, we have
R(X,Y)Z=VxVyZ—VyVxZ—VxyZ. (20)

Using equation (17) in equation (20), we have

RX.Y)Z = R(X,Y)Z+g(X,9Z)9Y —g(Y.9Z)¢X +g(¥,Z)n(X)&
=X, Z)n(Y)§+n(Y)n(Z2)X —n(X)n(2)Y. @2n
Now taking the inner product in equation (21) with a vector field W, we have
sRX.Y)Z,W) = g(R(X,Y)Z,W)+g(X,0Z)g(pY, W) —g(Y,$Z)g(¢X, W)
+(V,Z)nX)n(W) —e(X,Z)n(¥)n(W) (22)

+e(X,Wn(Y)n(2) —g(¥,W)n(X)n(z).

If we take X =W =¢;, {i = 1,...,n}, in equation (22), where {e;} is an orthonormal basis of the tangent space at each point of
the manifold, we get

S(¥,2) =S(Y,Z) + (n = 1)n(¥)n(2), 23)
where $ and S denote the Ricci tensor of the connections V and V, respectively. As a consequence of equation (23), we obtain

QY = Qv +(n—1)n(¥)¢. 24)
Also if we take Y =Z =¢;, {i = 1,...,n}, in equation (23), we have

F=r+n—1. (25)

3. Main results

In this section, we give the main results of the paper.
Let M" be a Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection. Then using equations
(2)-(4) and equations (22)-(25), we can write the followings:

C(XvY)Z - C(XaY)Z+g(X7¢Z)¢Y7g(Y7¢Z)¢X+n_z[g(sz)X*g(Xaz)Y7g(YvZ)n(X)§

+8(X,Z)n(Y)E —n(¥V)N(2)X +n(X)n(2)Y], (26)
PX.Y)Z = P(XY)Z+g(X,0Z)9Y —g(Y,0Z)¢X +g(Y.Z)n(X)§ — (X, Z)n(Y)¢E, 27
K(X,Y)Z KX, Y)Z+g(X,0Z2)9Y —g(Y,0Z)9X

B2 (08~ gX.2)NY)E + (V)X - nX)n(Z)Y] (28)

Now let M be a conformally flat manifold with respect to the Schouten-van Kampen connection. Thus, from equation (26) we
have

CHVZ = g(V,02)9X —g(X,02)0Y — —[¢(¥. Z)X — (X, Z)7]
1

+-— 8V, Z)n(X)E —g(X.Zn¥)E +n(Y)N(Z)X —n(X)n(2)Y]. (29)
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Putting X = & in equation (29), we obtain

CEY)Z+ 25181, 2)E ~n(2)Y] =0, (30)

that is,
T+2(n—1)

m} 8(Y,2)§ —n(2)Y] =0. (1)

R(EY)Z— — [S(1,2)& ~S(E,2)Y +8(¥,2)08 ~ n(Z)0Y] + {

Using equations (11) and (12) in equation (31), we get

((n(nl)Jrr

s B DE = (@)Y = L5 S0 2)E ~ (1= DY + (0= el D - n(2)0Y] =0, G2)

n—2

Multiplying equation (32) with &, we obtain

nn—1)+7 1 _
((nl)(nZ)) [g(Y.Z)+n(Z)n(Y)] - P [SY,2)+2(n—1)n(Z)n(Y)+ (n—1)g(¥,Z)] = 0.
S(.2) = (1+ —2)g(t.2) — (1—2 = —=)n(¥)n(2). (33)

Hence the manifold M is an n-Einstein manifold with respect to the Levi-Civita connection. Now using equation (33) in
equation (23), we get

$(¥,2) = (14 ——)[2(¥,2) + n(Y)n(2)]. (34)

n—1

Thus the manifold M is also an n-Einstein manifold with respect to the Schouten-van Kampen connection.
Now we can state the following:

Theorem 2. Let M be a conformally flat n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van
Kampen connection. Then the manifold M is an n-Einstein manifold with respect to the Levi-Civita connection and the
Schouten-van Kampen connection.

Now we consider the manifold M is a projectively flat manifold with respect to the Schouten-van Kampen connection.
Thus, we have

R(X,Y)Z = Ll [S(Y,2)X —S(X,2)Y]. (35)

Using equations (21) and (23) in equation (35), we get

R(X7Y)2+g(X7¢Z)¢Y —g(Y, ¢Z)¢X

+e(V,Z)n(X)¢ —g(X,Z)n(Y)E +n(Y)n(Z2)X —n(X)n(Z)Y

= n%l[S(Y’Z)X —S(X,2)Y]|+n(X)n(2)Y —n(¥)n(2)X. G6)

Putting X = & in equation (36), we obtain

R(E.Y)Z—g(Y.2)E+n(Z)Y = ﬁ [S(¥,2)E —S(E,2)Y] -n(¥Y)n(2) —n(2)Y,
ie.,

0=5(Y,Z)¢ —n(2)Y —n(Z)n(Y)¢E. (37)
Multiplying equation (37) with & , we have

8(¥,2) = —=(n=1)n(Z)n(Y). (38)
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Using equation (38) in equation (23), we get
S(v,z) =0.

Thus the manifold M is a Ricci-flat manifold with respect to the Schouten-van Kampen connection. Hence from equation (35),
the manifold M is a flat manifold with respect to the Schouten-van Kampen connection.

Conversely, let M be a flat manifold with respect to the Schouten-van Kampen connection. Then we say that the manifold M
is a Ricci-flat manifold with respect to the Schouten-van Kampen connection. Hence from equation (27), we get f’(X Y)Z=0,
that is, the manifold M is a projectively flat manifold with respect to the Schouten-van Kampen connection.

Thus we have the following:

Theorem 3. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection. Then the following statements are equivalent:

1. M is projectively flat with respect to the Schouten-van Kampen connection.
2. M is Ricci flat with respect to the Shouten-van Kampen connection.
3. M is flat with respect to the Schouten-van Kampen connection.

Now we consider the manifold M is a conharmonically flat manifold with respect to the Schouten-van Kampen connection.
Thus, we can write

R(X,Y)Z = n%Z [8(Y,2)x —S(X,2)Y +g(Y,Z)0X — g(X,Z2)QY]. (39)

Using equations (21), (23) and (24) in equation (39), we get

S(Y,Z2)X - S(X,2)Y +g(Y,Z)0X
—8(X,Z)QY +g(Y,Z)n(X)& =0. (40)
=X, Zn¥)E+n¥)N(2)X —nX)n(2)Y

R(X,Y)Z+g(X,0Z)9Y —g(Y,0Z)¢X —

n—2

Putting X = & in equation (40), we obtain

n—2| —8g(&,2)QY —g(Y,2)§ +n(2)Y
Using equations (11) and (12) in equation (41), we get

L[ SO.2)E— (n— D)@Y +(n— Dg(V.2)E
s.2)e —n2)Y = = [ Cn@)0r —eV.2)E (2 } =0 “2)

Multiplying equation (42) with &, we have

1 [ =S(¥,Z) = (n—1)n(¥)n(Z) - (n—1)g(Y,2) ] 0,

s +n@nW)+ =1 L i r)m(2) + 8(v.2) + 1 (01 (2)

ie.,

5(Y,2) = =(n=1)n(¥)n(2). 43)
Thus using equations (43) in equation (23), we get

S(v,z) =0.

which implies M is a Ricci-flat manifold with respect to the Schouten-van Kampen connection. Thus from equation (39) the
manifold M is a flat manifold with respect to the Schouten-van Kampen connection.

Conversely, let M be a flat manifold with respect to the Schouten-van Kampen connection. Then we say that the manifold M
is a Ricci-flat manifold with respect to the Schouten-van Kampen connection. Hence from equation (28), we get K(X,Y)Z = 0,
that is, the manifold M is a conharmonically flat manifold with respect to the Schouten-van Kampen connection.

Now we have the following:

Theorem 4. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection. Then the following statements are equivalent:
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1. M is conharmonically flat with respect to the Schouten-van Kampen connection.
2. M is Ricci flat with respect to the Shouten-van Kampen connection.
3. M is flat with respect to the Schouten-van Kampen connection.

Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection
satisfying the condition R- Q = 0. Then we can write

(R(X,Y)0)Z = R(X,Y)0Z — OR(X,Y)Z = 0. (44)
Using equation (24) in equation (44), we have
R(X,Y)QZ— QR(X,Y)Z =0. (45)
Now using equation (21) in equation (45), we obtain
R(X,Y)QZ - QR(X,Y)Z+g(¢X,0Z)9Y
—8(9Y,0Z)9X +5(Y,0Z)n(X)E — g(X,0Z)n(Y)§
+NY)N(QZ)X —n(X)n(QZ)Y —g(X,90Z)Q9Y (46)
+8(Y,9Z)Q9X —g(¥,Z)n(X)Q& +g(X,Z)n(Y) Q&
-n(¥)n(Z)2X +n(X)n(Z)QY =0.
Suppose that the manifold M is satisfying the condition R - Q = 0. Then equation (46) turns to
2(9X,02)9Y — g(0Y,0Z)0X +g(¥,0Z)n (X)&
—8(X,0Z)n(Y)E +n(Y)n(Q2)X —n(X)n(QZ)Y
—8(X,02)00Y +g(Y,9Z)0¢X —g(¥Y,Z)n(X) Q8 (47)
+8(X,Z)n(Y)Q5 —n(Y)n(Z2)QX +n(X)n(Z)QY =0.

Multiplying equation (47) with W, we obtain

2(9X,0Z)g(9Y,W) —g(0Y,0Z)g(¢X, W) +g(Y,0Z)n(X)n(W)

—8(X,0Z)n(Y)n(W)+n(Y)n(QZ)g(X, W) —n(X)n(QZ)g(Y,W)

—8(X,9Z)g(Q9Y,W) +5(Y,90Z)g(Q9X,W) —g(Y,Z)n(X)g(QE, W) (48)
+&(X,Z)n(Y)g(QE, W) —n(Y)n(Z)g(QX, W) +n(X)n(Z)g(QY,W) = 0.

Taking X = & in equation (48), we have

SV, Z)n(W) —S(Z,8)g(Y,W) —g(¥,Z2)S(§, W) +n(Z)S(Y,W) = 0. 49)
Again taking W = & in equation (49), we get

S(Y,Z) = (n—1)g(Y,2). (50)

Hence the manifold M is an Einstein manifold with respect to the Levi-Civita connection. Using equation (50) in equation (23),
we get

$(v,2) = (n—1)g(¥.Z) + (n— )n(Y)n(2). (51

Thus the manifold M is an n-Einstein manifold with respect to the Schouten-van Kampen connection.
Conversely, let the manifold M is an Einstein manifold with respect to the Levi-Civita connection and an 7n-Einstein
manifold with respect to the Schouten-van Kampen connection. Then from equations (50) and (51), we have

0¥ = (n= 1Y + (n=1)n(¥)§, (52)
and

QY =(n—1y)Y, (53)
respectively. Now using equations (52) and (53) in equations (45) and (46), we have R-Q = 0 and R - Q = 0, respectively.

Now we give the following:
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Theorem 5. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection satisfying the condition R - Q = 0. Then the following statements are equivalent:

1. If M is satisfying the condition R - Q = 0, then M is an Einstein manifold with respect to the Levi-Civita connection.
2. M is an n-Einstein manifold with respect to the Schouten-van Kampen connection.

Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection
satisfying the condition Q - R = 0. Then we can write

v v

OR(X,Y)Z—R(0X,Y)Z—R(X,0Y)Z—R(X,Y)QZ = 0. (54)
Using equation (24) in equation (54), we have
OR(X,Y)Z—R(QX,Y)Z—R(X,QY)Z—R(X,Y)QZ =0, (55)
which
OR(X,Y)Z—R(QX,Y)Z—R(X,QY)Z—R(X,Y)QZ
+8(X,9Z)09Y —g(Y.9Z)0¢X +g(Y,Z)n(X)Q8 —g(X,Z)n(Y) Q&
+n(Y)n(2)0X —n(X)n(2)QY +g(Y,9Z)p0X — g(X,0Z)$pQY
+8(X,Z)S(Y,8)E — (Y, Z)S(X,8)E +25(X,Z)n(Y)E —25(Y,Z)n(X)& (56)
+S(X,E)N(Z)Y = S(Y,5)N(Z)X +S(Y,9Z)9X — S(X,9Z)9Y

+NX)N(Z)QY —n(Y)n(Z)QX +g(9Y,0Z)9X —g(¢X,0Z)9Y
+8(Z,6)nX)Y —S(Z,&)n(¥Y)X =0.

Suppose that the manifold M is satisfying the condition Q- R = 0. Taking X = & in equation (56), then we have
28(Y,2)6 —8(Y,2)08 — (Y, 2)8(5,5)5 +5(5, 2 (Y)E + (S, 6)n(Z)Y —n(¥)n(2)Q —S(Z,§)Y =0. (57)
Multiplying equation (57) with &, we obtain
8(¥,2) = —=(n=1)n(Z)n(Y). (58)
Using equation (58) in equation (23), we get
S(v,Z) = 0.

Thus the manifold M is a Ricci-flat manifold with respect to the Schouten-van Kampen connection.

Conversely if the manifold M is a Ricci-flat manifold with the condition Q - R = 0, then the condition Q- R = 0 with respect
to the Schouten-van Kampen connection is always satisfied on M.

Now we give the following:

Theorem 6. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection satisfying the condition Q- R = 0 with the condition Q- R = 0 if and only if M is a Ricci-flat manifold with respect
to the Schouten-van Kampen connection.

Definition 7. A semi-Riemannian manifold (M",g),n > 3, is said to be Ricci semisymmetric if
R(X,Y)-S=0,
holds on M for allU,W € x(M).

Let M be an n-dimensional Ricci semisymmetric Lorentzian para-Sasakian manifold with respect to the Schouten-van
Kampen connection. Then we can write

(R(X,Y) Sv)(zaw) =0,
which implies

[V,

S(R(X,Y)Z,W)+S(Z,R(X,Y)W)=0. (59)
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Using equation (23) in equation (59), we obtain
S(R(X,Y)Z,W)+S(Z,R(X,Y)W) =0. (60)
Now using equation (21) in equation (60), we obtain

S(R(X,Y)Z,W)+S(R(X,Y)W,Z)+g(X,9Z)S(9Y,W)
—g(Y, ¢Z) (¢X W) +g(Y,Z)n(X)S(E,W) —g(X,Z)n(Y)S(S, W)
(V)N 2)S(X, W) —=n(X)n(Z2)S(Y, W) +¢(X,0W)S(9Y,Z

—g(Y,oW)S(9X,Z) +g(Y,W)n(X)S(S,Z) — g(X, W)n(¥)S(
N ¥)nW)S(X,2Z) —n(X)n(W)S(Y,2) = 0.

Suppose that the manifold M is satisfying the condition R - S = 0. Taking X = & in equation (61) and from equation (11), we
have

)
.2 (61

(n=1)g(Y,Z)n(W) =n(2)S(Y,W) + (n—1)g(¥,W)n(Z) —n(W)S(Y,Z) = 0. (62)
Now taking W = & in equation (62), we get
S(Y,2)=(n—1)g(¥,Z). (63)

Hence the manifold M is an Einstein manifold with respect to the Levi-Civita connection. Using equation (63) in equation (23),
we get

S(v,2) = (n—1)g(¥.Z) + (n— )n(¥)n(2). (64)

Thus the manifold M is an n-Einstein manifold with respect to the Schouten-van Kampen connection.
Conversely, we can consider the proof of Theorem 5.
Then we give the following:

Theorem 8. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen
connection satisfying the condition R -S = 0. Then the following statements are equivalent:

1. If M is satisfying the condition R -S = 0, then M is an Einstein manifold with respect to the Levi-Civita connection.

2. M is an n-Einstein manifold with respect to the Schouten-van Kampen connection.

4. Example

We consider a 3-dimensional manifold M = {(x,y,z) € R*}, where (x,y,z) are the standard coordinates of R3. Let {e},e,e3}
be linearly independent global frame on M given by

2 9 J

61—8 e =€ — e3 = —
ox’ dy’ 9z’

where a is non-zero constant. Let g be the Lorentzian metric, 1 be the 1-form and ¢ be the (1, 1)-tensor field defined by
gler,e3) = gler,e2) = glea,e3) =0, gler,e1) =gler,e2) =1, g(es,e3) = —1,
nX) =gX,e3),
Pe; = —eq, Per = —ea, Pe3 =0,
for any X € x (M), respectively. We have
nes)=—1, ¢*X =X+n(X)es

and

8(0X,9Y) = g(X,Y) +n(X)n(Y),
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forany X,Y € x(M). Thus, forez =&, (¢,€,1n,g) defines a Lorentzian paracontact structure on M. Let V be the Levi-Civita
connection with respect to the Lorentzian metric g. Then we have

le1,e2] =0, [e1,e3] = —e1, [er,e3] = —er.
Taking e3 = £ and using Koszul formula for the Lorentzian metric g, we have
Velel = —e3, VeleZ = 07 Vele3 = —e1, Vezel = 07 VezeQ = —e3, Veze3 = —e, V€3el = 07 Ve392 = 07 Vege3 =0.

Hence, it can be easily seen that (¢, &, 7, ¢) is an Lorentzian para-Sasakian structure on M. So, M3(¢,£,m,g) is a Lorentzian
para-Sasakian manifold.

Now we consider the Schouten-van Kampen connection on M. By direct calculations, we see that the nonzero components
of the Schouten-van Kampen connection V on M are

68161 = —e3 —‘y—&, 66262 = —e3 +€. (65)

From equation (65), we can easily see that %.ej =0, (1 <i,j<3), for £ = e3. Thus the manifold M is a flat manifold
with respect to the Schouten-van Kampen connection. Since a flat manifold is a Ricci-flat manifold with respect to the
Schouten-van Kampen connection, the manifold M is both a projectively flat and a conharmonically flat 3-dimensional
Lorentzian para-Sasakian manifold with respect to the Schouten-van Kampen connection. Thus, Theorem 2 and Theorem 3 are
verified.

5. Conclusions

The semi-Riemannian geometry attracts researchers because of its capabilities to resolve the many issues of science, technology,
and medical, and their allied areas. A differentiable manifold M of dimension n equipped with a semi-Riemannian metric
g, whose signature is (p,q), (p+ g = n), known as an n-dimensional semi-Riemannian manifold. In particular, if we take
p=1,gq=n—1,0or p=n—1,g=1, then the semi-Riemannian manifold M converts into the well-known Lorentzian manifold.
Recently, Schouten-van Kampen connection used by many mathematicians. In this paper we study a Lorentzian para-Sasakian
manifold with respect to the Schouten-van Kampen connection.
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