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1. Introduction

Derivations of different algebraic structures are an important subject of study in
algebra and diverse areas. They appear in many fields of mathematics and physics.
In particular, they appear in representation theory and cohomology theory among
other areas. They have various applications relating algebra to geometry and allow
the construction of new algebraic structures. In this context, derivations of Lie
algebras [11], Hom-Lie algebras [15] and Lie triple systems [12] have been studied.
Indeed, many generalizations were introduced. For instance, generalized deriva-
tions, quasi-derivations of Lie algebras [11], (α,β, γ)-derivations [13], δ-derivations
[5] have been investigated. See also the following references for further studies
[3,4,6,7,8,9,10,14]. In the present paper we are interested in studying the derivations
of Lie algebras and derivations of induced ternary Lie algebras. In particular, we
investigate the relation between derivations of Lie algebras and the induced ternary
Lie algebras. We also introduce substructures of the space Der(g) of derivations,
study their properties and give some examples.

This paper is organized as follows. In Section 2, we review the basics of ternary
Lie algebras, give some examples and recall the construction given in [2] that allows
to induce ternary Lie algebras by a Lie algebra and a trace function. Section 3 deals
with derivations of ternary Lie algebras and some generalizations. We discuss the
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spaceDer(g) and other subspaces, we give their properties and study the connection
between derivations of Lie algebras and induced ternary Lie algebras. We show
that if g is a ternary Lie algebra with trivial center which can be decomposed
to a sum of ideals then we can reduce the study of its derivations to those of
the components. Moreover we discuss centroids, quasi-derivations, quasi-centroids,
(α,β, γ, θ)-derivations and (α,β, γ, θ)-quasiderivations. In Section 4, we compute
the set of derivations and other generalized derivations of low dimensional ternary
Lie Algebras.

2. Ternary Lie algebras

First we review some definitions needed through the paper and we illustrate
them by giving some examples.

Definition 2.1. Let [·, ·, ·] be a skew-symmetric trilinear map on a K-vector space
g. We say that (g, [·, ·, ·]) is a ternary Lie algebra or a 3-Lie algebra if the map
[·, ·, ·] satisfies for all x1, .., x5 ∈ g the identity

[x1, x2, [x3, x4, x5]] = [[x1, x2, x3], x4, x5] + [x3, [x1, x2, x4], x5] + [x3, x4, [x1, x2, x5]].

(1)

The previous identity is called Nambu identity or sometimes fundamental iden-
tity or Filippov identity.

Example 2.2. Let V be a three-dimensional vector space with the basis {e1, e2, e3}.
Any skew-symmetric trilinear map [·, ·, ·] : V −→ V satisfies the identity (1). To
verify this we let i, j = 1, 2, 3 with i < j and by an easy computation we obtain

[[ei, ej, e1], e2, e3] + [e1, [ei, ej, e2], e3] + [e1, e2, [ei, ej, e3]] = [ei, ej, [e1, e2, e3]].

Example 2.3. Let Mn(C) be the space of n×n matrices over the field of complex
numbers. The bracket [A,B,C] =	 Tr(A)Γ(B,C), where Tr is the trace function
and Γ is the commutator operator defined by Γ(A,B) = AB−BA, this bracket gives
Mn(C) a ternary Lie algebra structure. The symbol 	 means that we are taking a
cyclic summation on A,B,C.

Example 2.4. The polynomial algebra of 3 variables x1, x2, x3, with the bracket
defined by the functional jacobian:

[f1, f2, f3] =

∣∣∣∣∣∣∣∣
∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∣∣∣∣∣∣∣∣ , (2)

is a ternary Lie algebra.
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Example 2.5. The following ternary Lie algebra is the only 4-dimensional simple
ternary Lie algebra. The bracket are defined with respect to the basis {e1, e2, e3, e4}
by

[e1, e2, e3] = −e4,

[e1, e2, e4] = e3,

[e1, e3, e4] = −e2,

[e2, e3, e4] = e1.

Remark 2.6. The previous Definition 2.1 can obviously be generalized to higher
dimension by defining an n-ary Lie bracket with the following generalization of
Nambu’s identity:

[x1, .., xn−1, [y1, .., yn]] =

n∑
i=1

[y1, .., yi−1, [x1, .., xn−1, yi], yi+1, .., yn].

A vector space g with a skew-symmetric n-ary bracket satisfying this identity is
called an n-ary Lie Algebra or n-Lie Algebra.

Definition 2.7. Let (g, [·, ·, ·]) be a ternary Lie algebra and let h be a subspace of
g.

• We say that h is a ternary Lie sub-algebra of (g, [·, ·, ·]) if it is closed under
the bracket, that is if [h, h, h] ⊆ h.

• A subspace I of g is called an ideal if [I, g, g] ⊂ I.
• A ternary Lie algebra is said to be simple if it has no proper ideal.
• The center of (g, [·, ·, ·]) is the set

Z(g) = {u ∈ g; [u, x1, x2] = 0, for all x1, x2 ∈ g}.

Z(g) is an abelian ideal of g.
An easy fact is that the center of a non-abelian simple ternary Lie algebra
is trivial.

• The subspace g1 = [g, g, g] is a ternary Lie sub-algebra of g called the
derived algebra.

• A morphism of ternary Lie algebras, is a linear map ϕ : (g, [·, ·, ·]g) −→
(η, [·, ·, ·]η) such that for any x, y, z ∈ g we have

ϕ([x, y, z]g) = [ϕ(x), ϕ(y), ϕ(z)]η.

Remark 2.8. As in the case of Lie algebras, the kernel of a ternary Lie alge-
bras morphism is an ideal of g. In fact, if u is in ker(ϕ) then for any v,w ∈ g,
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ϕ([u, v,w]g) = [ϕ(u), ϕ(v), ϕ(w)]η = 0.
However, its image =(ϕ) is not always an ideal but a ternary Lie sub-algebra
of η: For v1, v2, v3 ∈ =(ϕ) we have [v1, v2, v3]η = [ϕ(u1), ϕ(u2), ϕ(u3)]η =

ϕ([u1, u2, u3]g) for some u1, u2, u3 ∈ g.

The two following propositions are given in [15] in a context of Hom-Lie algebras,
here we state them in the case of ternary Lie algebras.

Proposition 2.9. Given two ternary Lie algebras (g, [·, ·, ·]) and (η, [·, ·, ·]η), the
space g⊕ η with the bracket defined by

[(u1, v1), (u2, v2), (u3, v3)]g⊕η = ([u1, u2, u3]g, [v1, v2, v3]η)

is a ternary Lie algebra.

Proof. Obvious. �

Proposition 2.10. A linear map ϕ : (g, [·, ·, ·]g) −→ (η, [·, ·, ·]η) is morphism of
ternary Lie algebras if and only if its graph Gϕ is a ternary Lie sub-algebra of
(g⊕ η, [·, ·, ·]g⊕η).

Proof. Suppose that ϕ : (g, [·, ·, ·]g) −→ (η, [·, ·, ·]η) is morphism of ternary Lie
algebras and let u, v,w ∈ g, we have

[(u,ϕ(u)), (v,ϕ(v)), (w,ϕ(w))]g⊕η = ([u, v,w]g, [ϕ(u), ϕ(v), ϕ(w)]η)

= ([u, v,w]g, ϕ([u, v,w]g)) ∈ Gϕ.

Then Gϕ is closed under the bracket [·, ·, ·]g⊕η.
Conversely, if Gϕ is a ternary Lie sub-algebra of (g⊕ η, [·, ·, ·]g⊕η), then

Gϕ 3 [(u,ϕ(u)), (v,ϕ(v)), (w,ϕ(w))]g⊕η = ([u, v,w]g, [ϕ(u), ϕ(v), ϕ(w)]η).

Thus [ϕ(u), ϕ(v), ϕ(w)]η = ϕ([u, v,w]g). �

2.1. Ternary Lie algebras induced by Lie algebras. In [2], the authors gave
a procedure to construct a ternary Lie algebra structure from a Lie bracket over
the same vector space using a trace map. Precisely, we have the following.

Proposition 2.11. [2] Let (g, [·, ·]) be a Lie algebra and τ : g −→ K be a trace map
on g, then (g, [·, ·, ·]τ) is a ternary Lie algebra, where

[x, y, z]τ = τ(x)[y, z] + τ(z)[x, y] + τ(y)[z, x].

The ternary Lie algebra (g, [·, ·, ·]τ) is called the ternary Lie algebra induced by the
Lie algebra (g, [·, ·]) and the trace map τ.
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Remark 2.12. We recall that a trace function τ : g −→ K is a linear map such
that τ([x, y]) = 0 for all x, y ∈ g.

We give an example to illustrate this construction.

Example 2.13. Let H2 be the five dimensional Heisenberg Lie algebra with gen-
erators P1, P2, Q1, Q2 and Z subject to the following bracket relations (unspecified
bracket relations are given by skew-symmetry or are zeros):

[P1, Q1] = [P2, Q2] = Z, and [P1, Q2] = [P2, Q1] = −Z.

Since Z is the only bracket, then any linear map τ : H2 −→ K such that τ(Z) = 0,
is a trace function on H2. Then (H2, [·, ·, ·]τ) is a ternary Lie algebra with the
following ternary brackets:

[P1, P2, Q1]τ = τ(P1 − P2)Z,

[P1, P2, Q2]τ = τ(P1 + P2)Z,

[Q1, Q2, P1]τ = τ(Q1 +Q2)Z,

[Q1, Q2, P2]τ = τ(Q1 −Q2)Z.

A converse construction is also possible; if (g, [·, ·, ·]) is a ternary Lie algebra,
we can induce a Lie algebra structure on g. Fix an element ω ∈ g and define
the bracket [x, y]ω = [x, y,ω], then (g, [·, ·]ω) is a Lie algebra. In fact [·, ·]ω is
clearly bilinear and skew-symmetric and by a direct computation one can see that
it satisfies the Jacobi identity.

3. Derivations of ternary Lie algebras and ternary Lie algebras induced
by Lie algebras

Now let us define derivations of a ternary Lie algebra and some other general-
izations.

3.1. Derivations, central derivations and centroids.

Definition 3.1. Let (g, [·, ·, ·]) be a ternary Lie algebra, and D a linear map on g.
D is said to be a derivation of g if

D([x1, x2, x3]) = [D(x1), x2, x3] + [x1, D(x2), x3] + [x1, x2, D(x3)]

for all x1, x2, x3 ∈ g. We denote by Der(g) the space of derivations of g.
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Example 3.2. A straightforward computation gives the following fact: If D is a
derivation of the ternary Lie algebra in Example 2.5 with its matrixM = (aij)1≤i,j≤4

with respect to the basis {e1, e2, e3, e4} then

M =


0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

 .
Remark 3.3. Der(g) is a Lie algebra with the bracket

[D1, D2] = D1 ◦D2 −D2 ◦D1.

Der(g) can also be equipped with a ternary Lie algebra structure induced from
this Lie bracket:

Proposition 3.4. Let g be a finite dimensional Lie algebra. Consider the map
τ : Der(g) −→ K defined by τ(D) = tr(D) consisting of the trace of the matrix of
D, τ is a trace function on Der(g) and it follows that (Der(g), [·, ·, ·]τ) is a ternary
Lie algebra.

Proposition 3.5. Let (g, [·, ·, ·]) be a ternary Lie algebra with trivial center and
which can be decomposed as the direct sum of two ideals: g = I ⊕ J , then we have

Der(g) = Der(I)⊕Der(J ).

To prove this proposition, we are going to use the following lemma:

Lemma 3.6. Let (g, [·, ·, ·]) be a ternary Lie algebra such that g = I ⊕J , where I
and J are two ideals of g. Suppose that Z(g) = {0}, then for any D ∈ Der(g), we
have D(I) ⊆ I and D(J ) ⊆ J .

Proof. Let u ∈ I, such that D(u) = v1 + v2, where v1 ∈ I and v2 ∈ J . Let
x, y ∈ g. We have

[v2, x, y] = [D(u) − v1, x, y]

= [D(u), x, y] − [v1, x, y]

= D([u, x, y]) − [u,D(x), y] − [u, x,D(y)] − [v1, x, y].

Since I is an ideal of g, therefore [u,D(x), y], [u, x,D(y)] and [v1, x, y] are in I.
Now write x = x1 + x2 and y = y1 + y2 such that x1, y1 ∈ I and x2, y2 ∈ J , then

[u, x, y] = [u, x1, y1] + [u, x1, y2] + [u, x2, y1] + [u, x2, y2].

Each of [u, x1, y2], [u, x2, y1], [u, x2, y2] is in I ∩ J , so they are all zeros, thus
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D([u, x, y]) = D([u, x1, y1])

= [D(u), x1, y1] + [u,D(x1), y1] + [u, x1, D(y1)].

Then D([u, x, y]) ∈ I. It follows that [v2, x, y] ∈ I ∩ J , then [v2, x, y] = 0. Hence
v2 = 0 since Z(g) = 0. �

We can now prove Proposition 3.5.

Proof. By the previous lemma, we can see that a restriction of any derivation of
g to I (respectively J ) is a derivation of I (respectively J ). �

A natural question is about derivations of ternary Lie algebras induced by a Lie
bracket and how they can be related to derivations of the original Lie algebra.

Proposition 3.7. Let (g, [·, ·]) be a Lie algebra and (g, [·, ·, ·]τ) be an induced
ternary Lie algebra. Let D be a derivation of (g, [·, ·]). If D(g) ⊂ Ker(τ), then
D is a derivation of (g, [·, ·, ·]τ).

Proof. Let D be a derivation of (g, [·, ·]). For all x, y, z ∈ g,

[D(x), y, z]τ + [x,D(y), z]τ + [x, y,D(z)]τ = τ(D(x))[y, z] + τ(z)[D(x), y]

+ τ(y)[z,D(x)] + τ(x)[D(y), z]

+ τ(z)[x,D(y)] + τ(D(y))[z, x]

+ τ(x)[y,D(z)] + τ(D(z))[x, y]

+ τ(y)[D(z), x].

Now, if D(g) ⊂ Ker(τ), then

[D(x), y, z]τ + [x,D(y), z]τ + [x, y,D(z)]τ

= τ(x)([D(y), z] + [y,D(z)]) + τ(y)([z,D(x)] + [D(z), x]) +

τ(z)([D(x), y] + [x,D(y)])

= τ(x)D([y, z]) + τ(y)D([z, x]) + τ(z)D([x, y])

= D(τ(x)[y, z] + τ(y)[z, x] + τ(z)[x, y]) = D([x, y, z]τ).

Thus D is a derivation of (g, [·, ·, ·]τ). �

A more powerful criteria is given in the next theorem.

Lemma 3.8. Let D : g → g be a Lie algebra derivation, then τ ◦ D is a trace
function on g.
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Proof. For all x, y ∈ g, we have:

τ (D ([x, y])) = τ ([D(x), y] + [x,D(y)]) = τ ([D(x), y]) + τ ([x,D(y)]) = 0.

�

Theorem 3.9. [1] Let D : g → g be a derivation of the Lie algebra (g, [·, ·]), then
D is a derivation of the induced ternary Lie algebra (g, [·, ·, ·]τ) if and only if:

[x, y, z]τ◦D = 0,∀x, y, z ∈ g.

Proof. Let D be a derivation of g and x, y, z ∈ g:

D ([x, y, z]τ) = τ(x)D ([y, z]) + τ(y)D ([z, x]) + τ(z)D ([x, y])

= τ(x) [D(y), z] + τ(y) [D(z), x] + τ(z) [D(x), y]

+ τ(x) [y,D(z)] + τ(y) [z,D(x)] + τ(z) [x,D(y)]

+ τ(D(x)) [y, z] + τ(D(y)) [z, x] + τ(D(z)) [x, y]

− (τ(D(x)) [y, z] + τ(D(y)) [z, x] + τ(D(z)) [x, y])

= [D(x), y, z]τ + [x,D(y), z]τ + [x, y,D(z)]τ − [x, y, z]τ◦D .

�

Proposition 3.10. Let D be a derivation of (g, [·, ·, ·]). For w ∈ g, D is a derivation
of the Lie algebra (g, [·, ·]w) if and only if D(w) ∈ Z(g, [·, ·, ·]).

Proof. Let x, y ∈ g,

D([x, y]w) = D([x, y,w]) = [D(x), y,w] + [x,D(y), w] + [x, y,D(w)]

= [D(x), y]w + [x,D(y)]w + [x, y,D(w)].

Hence if D(w) is in the center of the ternary Lie algebra (g, [·, ·, ·]), then D would
be a derivation of the induced Lie algebra (g, [·, ·]w). �

For any x = (x1, x2) ∈ g× g, the map defined by

adx :g −→ g

u 7→ [x1, x2, u]

is a derivation which we call an inner derivation.
In fact, For u, v,w ∈ g,

adx([u, v,w]) = [x1, x2, [u, v,w]]

= [[x1, x2, u], v,w] + [u, [x1, x2, v], w] + [u, v, [x1, x2, w]]

= [adx(u), v,w] + [u, adx(v), w] + [u, v, adx(w)].
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Remark 3.11.
ad :g× g −→ gl(g)

(x1, x2) 7→ ad(x1,x2)

is the adjoint representation of g.

It turns out that all the derivations on a semisimple Lie algebra are inner deriva-
tions. This is also true for Lie triple systems (Lister 1952) and many other algebraic
structures. In particular, all the derivations of the ternary Lie algebra defined in
Example 2.5 are inner.

Proposition 3.12. The space Der(g) is an invariant of the ternary Lie algebra g.

Remark 3.13. Here the space of derivations is considered as ternary Lie algebra
induced from the Lie algebra structure as shown in 3.4.

Proof. Let σ : (g, [·, ·, ·]g) −→ (η, [·, ·, ·]η) be a ternary Lie algebras isomorphism
and let D be a derivation of g, so for any x, y, z ∈ η we have:

σDσ−1([x, y, z]η) = σD([σ−1(x), σ−1(y), σ−1(z)]g)

= σ([Dσ−1(x), σ−1(y), σ−1(z)]g) + σ([σ
−1(x), Dσ−1(y), σ−1(z)]g)

+ σ([σ−1(x), σ−1(y), Dσ−1(z)]g)

= [σDσ−1(x), y, z]η + [x, σDσ−1(y), z]η + [x, y, σDσ−1(z)]η.

Thus σDσ−1 is a derivation of η, hence the mapping

φ : Der(g) −→ Der(η)

D 7−→ σDσ−1

is an isomorphism of ternary Lie algebras.
In fact, it is easy to see that φ is linear. Moreover, let D1, D2, D3 be derivations
of g:

φ([D1, D2, D3]tr) = φ(tr(D1)[D2, D3]) + φ(tr(D3)[D1, D2]) + φ(tr(D2)[D3, D1])

= tr(D1)φ([D2, D3]) + tr(D3)φ([D1, D2]) + tr(D2)φ([D3, D1])

= tr(φ(D1))[φ(D2), φ(D3)] + tr(φ(D3))[φ(D1), φ(D2)]

+tr(φ(D2))[φ(D3), φ(D1)]

since φ is a morphism of the Lie algebras Der(g) and Der(η), and tr(D) =

tr(σDσ−1). Then φ([D1, D2, D3]tr) = [φ(D1), φ(D2), φ(D3)]tr. �
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Definition 3.14. The centroid of a ternary Lie algebra g is the set of all linear
maps D that satisfies:

D([x, y, z]) = [D(x), y, z] = [x,D(y), z] = [x, y,D(z)],

for all x, y, z ∈ g. We denote by C(g) the centroid of g.

Remark 3.15. We can define the centroid only by the equality D([x, y, z]) =

[D(x), y, z], and the two other follows by the skew symmetry of the bracket.

Proposition 3.16. The centroid of a ternary Lie algebra g is a ternary Lie subal-
gebra of (Der(g), [·, ·, ·]tr).

Proof. Let D1, D2, D3 ∈ C(g) and ψ = [D1, D2, D3]tr. For simplicity we let
λi = tr(Di) for i = 1, 2, 3. So ψ = λ1(D2D3 − D3D2) + λ3(D1D2 − D2D1) +

λ2(D3D1 −D1D3). Then for x, y, z ∈ g, we have

[ψ(x), y, z] = [λ1(D2D3 −D3D2)(x) + λ3(D1D2 −D2D1)(x)

+ λ2(D3D1 −D1D3)(x), y, z]

= λ1([D2D3(x), y, z] − [D3D2(x), y, z]) + λ3([D1D2(x), y, z]

− [D2D1(x), y, z]) + λ2([D3D1(x), y, z] − [D1D3(x), y, z])

= λ1(D2([D3(x), y, z]) −D3([D2(x), y, z])) + λ3(D1([D2(x), y, z])

−D2([D1(x), y, z])) + λ2(D3([D1(x), y, z]) −D1([D3(x), y, z]))

= λ1(D2D3 −D3D2)([x, y, z]) + λ3(D1D2 −D2D1)([x, y, z])+

λ2(D3D1 −D1D3)([x, y, z]).

= ψ([x, y, z]).

�

Proposition 3.17. Let D ∈ C(g, [·, ·]). If for every u, v ∈ g we have

τ(u)D(v) = τ(D(u))v,

then D ∈ C(g, [·, ·, ·]τ).

Proof.
D([x, y, z]τ) = τ(x)D([y, z]) + τ(z)D([x, y]) + τ(y)D([z, x])

= τ(D(x))[y, z] + τ(z)[D(x), y] + τ(y)[D(z), x]

= τ(D(x))[y, z] + τ(z)[D(x), y] + τ(y)[z,D(x)]

= [D(x), y, z]τ.

�
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On the other hand, any centroid element of a ternary Lie algebra (g, [·, ·, ·]) is a
centroid element of an induced Lie algebra (g, [·, ·]w).

The following proposition reduces the centroid of any simple ternary Lie algebra
to the space of its homothety.

Proposition 3.18. Let (g, [·, ·, ·]) be a simple ternary Lie algebra over an alge-
braically closed field K. We have

C(g) = K Id,

where Id is the identity map on g.

Proof. First, one can see that the adjoint representation of g is simple because
otherwise, if a subsetA of g is stable under the action of ad(x1,x2) for any x1, x2 ∈ g,
then A is an ideal.
In addition, for any centroid element D we have

D([x, y, z]) = [x, y,D(z)].

Therefore
D ◦ ad(x,y) = ad(x,y) ◦D.

Thus using the Schur Lemma, we conclude that D = λId for some scalar λ. �

Definition 3.19. A linear mapD is a central derivation of (g, [·, ·, ·]) ifD(g) ⊂ Z(g)
and D(g1) = {0}.

We denote by ZDer(g) the set of all central derivations of (g, [·, ·, ·]).

Example 3.20. A simple ternary Lie algebra does not have a non zero central
derivation since g1 = g.

Proposition 3.21. For a ternary Lie algebra (g, [·, ·, ·]), we have

ZDer(g) = Der(g) ∩ C(g).

Proof. A central derivation is obviously a derivation of the ternary Lie algebra.
Moreover, it is a centroid element since

D([x, y, z]) = [D(x), y, z] = [x,D(y), z] = [x, y,D(z)] = 0

for all x, y, z ∈ g. Conversely, if D ∈ Der(g) ∩ C(g), then

D([x, y, z]) = 3D([x, y, z]).

Therefore D([x, y, z]) = 0. Also [D(x), y, z] = 3[D(x), y, z], thus [D(x), y, z] = 0 and
D(x) ∈ Z(g). �
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Here again we study central derivations of a ternary Lie algebra induced by a Lie
algebra and vice versa.

Proposition 3.22. Let (g, [·, ·, ·]) be a ternary Lie algebra. For any w ∈ g, let
(g, [·, ·]w) be the induced Lie algebra. Every Central derivation of (g, [·, ·, ·]) is also
a central derivation of the induced (g, [·, ·]w).

Proof. The proof of is straightforward under the remark that Z(g, [·, ·, ·]) ⊂ Z(g, [·, ·]w),
and [g, g]w ⊂ [g, g, g]. �

Proposition 3.23. Let (g, [·, ·, ·]τ) be a ternary Lie algebra induced by a Lie algebra
(g, [·, ·]) and the trace map τ. Let D ∈ ZDer(g, [·, ·]), D is a central derivation of
(g, [·, ·, ·]τ) if and only if D(g) ⊂ Ker(τ).

Proof. Let D ∈ ZDer(g, [·, ·]) and x, y, z ∈ g,

D([x, y, z]τ) = τ(x)D([y, z]) + τ(z)D([x, y]) + τ(y)D([z, x]) = 0.

In addition,

[D(x), y, z]τ = τ(D(x))[y, z] + τ(z)[D(x), y] + τ(y)[z,D(x)] = τ(D(x))[y, z].

�

3.2. Quasi-derivations and quasi-centroids.

Definition 3.24. A linear map D on g is a quasi-derivation if there exists D ′ such
that

[D(x), y, z] + [x,D(y), z] + [x, y,D(z)] = D ′([x, y, z]),

for all x, y, z ∈ g. We denote by QDer(g) the set of all quasi-derivations of g.

Example 3.25. Let (V, [·, ·, ·]) be the ternary Lie algebra defined in Example 2.5.
For any linear map D of V with M = (aij) its matrix in the base (e1, e2, e3, e4),
there exists D ′ such that D ∈ QDer(V) and the matrix M ′ = (bij) of D ′ is given
by:

bij = −aji for 1 ≤ i 6= j ≤ 4;

and

bii =

4∑
j=1
j6=i

ajj.

As in Theorem 3.9, the next proposition establish the link between the quasi-
derivations of a Lie algebra and the induced ternary Lie algebra.
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Proposition 3.26. Let D be a quasi-derivation of a Lie algebra (g, [·, ·]) and let
τ be a trace function on g. D is a quasi-derivation of (g, [·, ·, ·]τ) if and only if
[x, y, z]τ◦D = 0 for any x, y, z.

Remark 3.27. Unlike Lemma 3.8, in this case the map τ ◦D is not necessarily a
trace on g.

Every derivation is obviously a quasi-derivation, so we have Der(g) ⊂ QDer(g).
We will see now that a sum of any derivation and a centroid element is also a
quasi-derivation:

Proposition 3.28. If (g, [·, ·, ·]) is a ternary Lie algebra with trivial center, then
we have

Der(g)⊕ C(g) ⊂ QDer(g).

Proof. Let D ∈ C(g), for any x, y, z ∈ g, we have

[D(x), y, z] + [x,D(y), z] + [x, y,D(z)] = 3D([x, y, z]).

So D is a quasi-derivation, thus Der(g) + C(g) ⊂ QDer(g). Now if D ∈ Der(g) ∩
C(g), then

[D(x), y, z] + [D(x), y, z] + [D(x), y, z] = [D(x), y, z].

Thus [D(x), y, z] = 0, therefore D(x) ∈ Z(g), for every x, which means that D = 0.
Hence Der(g) ∩ C(g) = {0}. �

Proposition 3.29. Let (g, [·, ·, ·]) be a ternary Lie algebra with trivial center and
suppose that g = I ⊕ J , then

(1) QDer(g) = QDer(I)⊕QDer(J )
(2) C(g) = C(I)⊕ C(J ).

Proof. Since Lemma 3.6 can be applied to any quasi-derivation and any centroid
element, so the decomposition in Proposition 3.5 holds naturally. �

Definition 3.30. The quasi-centroid of g is the set of all linear maps D such that:

[D(x), y, z] = [x,D(y), z] = [x, y,D(z)],

for all x, y, z ∈ g. We denote by QC(g) the centroid of g.

Proposition 3.31. Let D ∈ QC(g, [·, ·]). Suppose that D(g) ⊂ Ker(τ) and for
every u, v ∈ g we have τ(u).v = τ(v).u, then D ∈ QC(g, [·, ·, ·]τ).

The proof is quite similar to the proof of Proposition 3.17.
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Lemma 3.32. The derived algebra g1 is preserved under Der(g) and C(g) but not
QC(g).

Proof. If D is a derivation of g, then by definition, for any x, y, z ∈ g we have

D([x, y, z]) = [D(x), y, z] + [x,D(y), z] + [x, y,D(z)] ∈ g1.

Similarly, if D ∈ C(g), so D([x, y, z]) = [D(x), y, z] ∈ g1.
We show that the derived algebra is not generally preserved by the quasi-centroid,

by the following counter example. Let (L, [·, ·, ·]) be the ternary Lie algebra with
the basis {e1, e2, e3} such that [e1, e2, e3] = e1. Let ϕ be a linear map defined
by ϕ(e1) = e2 and ϕ(ee) = ϕ(e3) = 0. Then ϕ ∈ QC(L) since [ϕ(e1), e2, e3] +

[e1, ϕ(e2), e3] + [e1, e2, ϕ(e3)] = 0. However ϕ does not preserve L1 =< e1 >. �

3.3. (α,β, γ, θ)-Derivations and (α,β, γ, θ)-quasiderivations. We will now de-
fine another generalization for a derivation of (g, [·, ·, ·]).

Definition 3.33. Let g be a ternary Lie algebra, D ∈ End(g) and let α,β, γ, θ ∈ K.
We say that D is an (α,β, γ, θ)-derivation of g if:

αD([x1, x2, x3]) = β[D(x1), x2, x3] + γ[x1, D(x2), x3] + θ[x1, x2, D(x3)],

for any x1, x2, x3 ∈ g.

We denote by D(α,β, γ, θ) the set of (α,β, γ, θ)-derivations.

Remark 3.34. It is clear that D(0, 0, 0, 0) = End(g), therefore we can assume
that the parameters α,β, γ, θ are not all zeros. One can also see that D(1, 1, 1, 1) =

Der(g).

Theorem 3.35. Suppose that α 6= 0. The space D(α,β, γ, θ) is one of the following
spaces:

• D(1, λ, 0, 0)

• D(1, λ, δ, δ)

• D(1, λ, 0, 0) ∩QC(g)

for some λ, δ ∈ K.

Proof. Let D ∈ D(α,β, γ, θ). Using the skew-symmetry of the bracket we have
the following equalities, for any x, y, z ∈ g

αD([x, y, z]) = β[D(x), y, z] + γ[x,D(y), z] + θ[x, y,D(z)] (3)

αD([x, y, z]) = β[D(z), x, y] + γ[z,D(x), y] + θ[z, x,D(y)] (4)

−αD([x, y, z]) = β[D(x), z, y] + γ[x,D(z), y] + θ[x, z,D(y)] (5)
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−αD([x, y, z]) = β[D(y), x, z] + γ[y,D(x), z] + θ[y, x,D(z)]. (6)

Now by adding eq (3) to each equation, we get

0 = (γ− θ)[x,D(y), z] + (θ− γ)[x, y,D(z)] (3) + (5)

0 = (β− γ)[D(x), y, z] + (γ− β)[x,D(y), z]. (3) + (6)

If γ = θ = 0, then D ∈ D(1, β
α
, 0, 0). If γ = θ 6= 0, D ∈ D(1, β

α
, γ
α
, γ
α
). Similarly,

if β = γ, then D(α,β, γ, θ) = D(1, θ
α
, 0, 0) or D(α,β, γ, θ) = D(1, γ

α
, γ
α
, θ
α
). If

θ 6= γ and β 6= γ, it follows from the equations above that D ∈ QC(g) hence D
satisfies D([x, y, z]) = β+γ+θ

α
[D(x), y, z]. �

Let us now discuss the case of a ternary Lie algebra induced by a Lie algebra.
Here we denote the space of the (α,β, γ, θ)-derivations of the induced ternary Lie
algebra (g, [·, ·, ·]τ) by Dτ(α,β, γ, θ).

Proposition 3.36. Suppose that for every u, v ∈ g we have τ(u).v = τ(v).u,
then any (α,β, γ)-derivation D of (g, [·, ·]) that satisfies D(g) ⊂ Ker(τ) is an
(α ′, β ′, γ ′, θ ′)-derivation of (g, [·, ·, ·]τ) for some α ′, β ′, γ ′, θ ′. Precisely, D is in
one of the following spaces:

(i) End(g),
(ii) {f ∈ End(g); f(g1) = {0}},
(iii) QC(g, [·, ·, ·]τ),
(iv) QC(g, [·, ·, ·]τ) ∩ {f ∈ End(g); f(g1) = {0}},
(v) Dτ(δ, 1, 1, 1), for some δ ∈ K,
(vi) QC(g, [·, ·, ·]τ) ∩Dτ(δ, 1, 1, 1), for some δ ∈ K.

To prove this, we recall the following proposition stated in [13].

Proposition 3.37. Let g be a Lie algebra and α,β, γ ∈ C. D(α,β, γ) is one of
the following spaces:

(i) D(0, 0, 0) = End(g),
(ii) D(1, 0, 0) = {f ∈ End(g); f(g1) = {0}},
(iii) D(0, 1,−1) = QC(g, [·, ·, ·]τ),
(iv) D(1, 1,−1) = QC(g, [·, ·]) ∩ {f ∈ End(g); f(g1) = {0}},
(v) D(δ, 1, 1),
(vi) D(δ, 1, 0) = QC(g, [·, ·]) ∩D(2δ, 1, 1).

Proof of Proposition 3.36. (i), (ii) are obvious.
(iii), (iv) by Proposition 3.31.
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(v) Let D ∈ D(δ, 1, 1), then

δD([x, y, z]τ) = τ(x)δD([y, z]) + τ(z)δD([x, y]) + τ(y)δD([z, x])

= τ(x)([D(y), z] + [y,D(z)]) + τ(z)([D(x), y] + [x,D(y)])

+ τ(y)([D(z), x] + [z,D(x)])

= τ(z)[D(x), y] + τ(y)[z,D(x)] + τ(x)[D(y), z] + τ(z)[x,D(y)]

+ τ(y)[D(z), x] + τ(x)[y,D(z)]

= [D(x), y, z]τ + [x,D(y), z]τ + [x, y,D(z)]τ.

(vi) We apply (v) to the space D(2δ, 1, 1). �

4. Derivations and central derivations of ternary Lie algebras of
dimension less or equal than 4

In this section, we will use classification theorem of ternary Lie algebras of di-
mension less or equal 4 given in [5] to determine the spaces Der(g) and C(g). Then
we conclude with the space of central derivations ZDer(g) using Proposition 3.21.

Theorem 4.1. [5] Let g be a ternary Lie algebra of dimension less or equal than 4
and let (ei)1≤i≤dim(g) be a basis of g. Then g is isomorphic to one of the following:

(1) If dim g < 3, then g is abelian.
(2) If dim g = 3, then

a. g is abelian.
b. [e1, e2, e3] = e1.

(3) If dim g = 4, then
a. g is abelian.
b. [e2, e3, e4] = e1.
c. [e1, e2, e3] = e1.

d. [e1, e2, e4] = αe3 + βe4; [e1, e2, e3] = γe3 + δe4, where
(
α β

γ δ

)
is

an invertible matrix.
e. [e2, e3, e4] = e1; [e1, e3, e4] = αe2; [e1, e2, e4] = βe3 with α,β 6= 0.
f. [e2, e3, e4] = e1; [e1, e3, e4] = αe2; [e1, e2, e4] = βe3; [e1, e2, e3] = γe4

with α,β, γ 6= 0.

The omitted brackets are either zeros or can be obtained by skew-symmetry.
LetD be a linear map on g and letM = (ai,j) its matrix in the basis (ei)1≤i≤dim(g).

We will compute the spaces of derivations. Each of the following items corresponds
to its respective case in the previous theorem.
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(1) If dim(g) < 3, then we have

Der(g) = C(g) = ZDer(g) = End(g).

(2) dim(g)=3, {e1, e2, e3} a basis of g
a. g is abelian: same as the case (1).
b. [e1, e2, e3] = e1. So
∗ Der(g) = {D ∈ End(g) such that,

M =


a11 a12 a13

0 a22 a23

0 a32 −a22

}

∗ C(g) = {D ∈ End(g) such that,

M =


a11 a12 a13

0 a11 a23

0 a32 a11

}

∗ Thus, ZDer(g) = {D ∈ End(g) such that

M =


0 a12 a13

0 0 a23

0 a32 0

}

(3) dim(g)=4, {e1, e2, e3, e4} a basis of g
a. g is abelian: same as the case (1).
b. [e2, e3, e4] = e1

∗ Der(g) = {D ∈ End(g) such that,

M =


a22 + a33 + a44 a12 a13 a14

0 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44

}

∗ C(g) = {D ∈ End(g) such that,

M =


a11 a12 a13 a14

0 a11 a23 a24

0 a32 a11 a34

0 a42 a43 a11

}
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∗ Then, ZDer(g) = {D ∈ End(g) such that

M =


0 a12 a13 a14

0 0 a23 a24

0 a32 0 a34

0 a42 a43 0

}

c. [e1, e2, e3, ] = e1

∗ Der(g) = {D ∈ End(g) such that,

M =


a11 a12 a13 0

0 a22 a23 0

0 a32 −a22 0

0 a42 a43 a44

}

∗ C(g) = {D ∈ End(g) such that,

M =


a11 a12 a13 a14

0 a11 a23 a24

0 a32 a11 a34

0 a42 a43 a44

}

∗ Then, ZDer(g) = {D ∈ End(g) such that

M =


0 a12 a13 0

0 0 a23 0

0 a32 0 0

0 a42 a43 a44

}.

d. [e1, e2, e4] = αe3+βe4; [e1, e2, e3] = γe3+ δe4, with
(
α β

γ δ

)
is an

invertible matrix.
The matrix of a derivation D is of the form

M =

(
A 0

B C

)
where A,B,C are 2× 2 matrices such that Tr(A) = 0 except if β 6= δ.
∗ ZDer(g) = {D ∈ End(g) such that

M =


0 a12 0 0

a21 0 0 0

a31 a32 0 0

a41 a42 0 0

}
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e. [e2, e3, e4] = e1; [e1, e3, e4] = αe2; [e1, e2, e4] = βe3

∗ Der(g) = {D ∈ End(g) such that,

M =


a11 a12 a13 a14

αa12 a11 a23 a24

−βa13
β
α
a23 a11 a34

0 0 0 −a11

}

∗ C(g) = {D ∈ End(g) such that,

M =


a11 0 0 a14

0 a11 0 a24

0 0 a11 a34

0 0 0 a11

}

∗ Then, ZDer(g) = {D ∈ End(g) such that

M =


0 0 0 a14

0 0 0 a24

0 0 0 a34

0 0 0 0

}

f. [e2, e3, e4] = e1; [e1, e3, e4] = αe2; [e1, e2, e4] = βe3; [e1, e2, e3] = γe4

∗ Der(g) = {D ∈ End(g) such that,

M =


0 a12 a13 a14

αa12 0 a23 a24

−βa13
β
α
a23 0 a34

γa14 −γ
α
a24

γ
β
a34 0

}

∗ C(g) = {λId},
∗ Thus ZDer(g) = {0}.

4.1. Classification of (α,β, γ, θ)-derivations and (α,β, γ, θ)-quasiderivations.
Now we classify, using Theorem 3.35, (α,β, γ, θ)-derivations in dimension three and
dimension four. For this we need to determine the spaces D(1, λ, 0, 0) and QC(g).

Remark 4.2. If λ = 1, then D(1, λ, 0, 0) ∩ QC(g) = C(g). Therefore, in the
following computations, we suppose that λ 6= 1.

Lemma 4.3. Every central derivation of a ternary Lie algebra g is an (α,β, γ, θ)-
derivation.
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Proof. Let D be a central derivation of g, then the image of g under D is a subset
of its center. Therefore, for any x, y, z in g we have:

[D(x), y, z] = [x,D(y), z] = [x, y,D(z)] = 0.

On the other hand, since D(g1) = {0}, so D([x, y, z]) = 0. Thus D is an (α,β, γ, θ)-
derivation. �

Let D be an (α,β, γ, θ)-derivation of g

(1) If dim(g) = 3,
• g is abelian, D(α,β, γ, θ) = End(g).
• [e1, e2, e3] = e1 : D(α,β, γ, θ) = ZDer(g).

(2) If dim(g) = 4,
• [e2, e3, e4] = e1,

– If λ = 0, then D(α,β, γ, θ) = ZDer(g).
– If λ 6= 0, then the matrix M of D has the form

M =


1
λ
a22 a12 a13 a14

0 a22 a23 a24

0 a32 a22 a34

0 a42 a43 a22


• [e1, e2, e3] = e1: D(α,β, γ, θ) = ZDer(g).
• [e2, e3, e4] = e1; [e1, e3, e4] = ae2; [e1, e2, e4] = be3 : D(α,β, γ, θ) =

ZDer(g).
• [e2, e3, e4] = e1; [e1, e3, e4] = ae2; [e1, e2, e4] = be3; [e1, e2, e3] = ce4 :
D(α,β, γ, θ) = ZDer(g).
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