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ABSTRACT. Let S = End(M) be the ring of endomorphisms of a right R-module M. In this paper we define the
minus parital order for the endomorphism ring of modules. Also, we extend study of minus partial order to the
endomorphism ring of a (Rickart) module. Thus, several well-known results concerning minus partial order are
generalized.
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1. INTRODUCTION

Throughout this article rings are associative with nonzero unity, modules are right modules unless otherwise spec-
ified, and morphisms will be written on the left of their arguments. We write S = End(M) for the ring of all endo-
morphisms of a module M. For a submodule N of M, we use N < M(N < M) to mean that N is a submodule of M
(respectively, proper submodule), and we write N <® M to indicate that N is a direct summand of M. We always use
M to stand for the ring of all n X n matrices over a ring R. The left annihilator of @ € S = End(M) is denoted by I ().
Similarly, the right annihilator of @ € § = End(M) is denoted by rs(a). The set of idempotents of a ring is denoted by
E(-). General background material can be found in [1].

The shorted operators have been introduce in [2] and [3]. The shorted operators are related to electrical network
theory, especially computing to a shorted electrical circuit. Also, they used to parallel connections and electrical
duality to further algebraic theorems. (see eg. [2,3,11]). In [12] and [13], the authors studied the partial order (called
the natural partial order) on regular semigroup S. The minus partial order was extensively studied in [5] and [11].
Semrl defined in [17] the minus partial order on B(H). Let H be a Hilbert space and B(H) the algebra of all bounded
linear operators on H. For A, B € B(H) we write A < B if and only if there exist idempotent operators P, Q € B(H) such
that ImP = ImA, Ker(A) = Ker(Q), PA = PB and AQ = BQ. Following Semrl’s approach, the authors introduced
in [4] the minus partial order on a ring: Let R be a ring with the unity 1 and a, b € R, then we write a < b if there exist
idempotent elements p, g € R such that Iz(a) = R(1 — p), rr(a) = (1 — ¢)R, pa = pb and aq = bq.

In this paper, we will introduce the minus partial order for modules using their endomorphism rings: Let M be a
module, S = End(M) with identity 1), and a,8 € S = End(M). Then, we write @« < B if and only if there exist
idempotents p,g € S such that the following hold:

D Is(@=S1-p)
(2) Ker(a) = (1 - g)(M)
(3) pa=pB
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4) aq =pq
In Theorem 2.4, we will present another equivalent definition of the minus partial order over endomorphism ring of a
module M as: Let @, be idempotents in S = End(M). Then, o < B iff @8 = Ba = @. Among other results, some
known results are generalized. For example, we show that the partial order <™ is equivalent to the minus partial order
< on a von Neumann regular ring: For a module M and «,8 € S = End(M), if a + B is regular, then & <® « + B iff
a <~ @+, and if S is a von Neumann regular ring with unit 1g, then @ < S iff @« <~ 8 (Theorem 2.5).

A ring R is called right Rickart if the right annihilator of any single element of R is generated by an idempotent
as a right ideal. A left Rickart ring is defined similarly. In [4], the authors proved that this is indeed a partial order
when R is a Rickart ring. Let M be an R-module with S = End(M). We say that M is a Rickart module if the right
annihilator in M of any single element of S is generated by an idempotent of S; or equivalently, rs (@) = Ker(a) <® M
for every a € S; or equivalently, for every ¢ € S, ry(¢) = Ker(¢) = eM for some e*> = ¢ € S. The notion of Rickart
module has been recently studied in [9] and also partial order has been studied on Rickart rings in [10, 18, 19]. In [15]
and [16] the authors studied regular homomorphism and give some characterizations of regular homomorphism. In the
third section, the notion of the module-theoretic version of the minus partial order is extended to endomorphism rings
of (Rickart modules) which are Rickart rings. It is shown that if S = End(M) is a Rickart ring and @, € S. Then
a < Biff B — a < B (Corollary 3.5). Recall that S = End(M) is a von Neumann regular ring with unit 1, then @ < 8
iff @ <= B (Theorem 2.5). We also obtain that if S = End(M) is a Rickart ring and @, 8 € S then the operator < is a
partial order in §, then @ < B iff 8 — @ < B (Corollary 3.5).

2. THE MiNus PARTIAL ORDER FOR End(—) oF A MODULE

Let M be a right R-module and S := End(M). We define the minus partial order < for § = End(M).

Definition 2.1. Let M be a module, S = End(M) with identity 1, and «,8 € S = End(M). Then, we write a < S if
and only if there exist idempotents p, g € S such that the followings hold:

(1) Is(@) =S -p)

(2) Ker(a) =1 - q)(M)

(3) pa=pp

4) aq =pq.

Remark 2.2. By Definition 2.1, one can see that @ = pa and @ = agq.

Lemma 2.3. Let M be a module, p and q be two idempotents in S = End(M) and @ € S. Then,

(D Is(p) =51 -p)

(2) (I -q)(M) = Ker(q)

(3) Ker(ls(p)) = p(M)

4 Is(a) =S(1 = p) & Ker(ls(a)) = Ker(ls(p)).

Proof.

(O Ifuels(p),thenu =u(l —p)e S —p). Since(1 —p)p=0,wegetS(1 —p) Cls(p).
(2) It is obvious by [1, Lemma 5.6].

(3) The claim is

Ker(ls(p)) = Ker(S(1 —p)) ={me M :y(l - p)m)=0 foreveryy e S}
={meM:(1-p)(m)=0}
={me M : p(m) = m} = p(M).

(4) (=:) By (1), we have [5 (@) = S(1 - p) = [s(p) so Ker(ls(@)) = Ker(ls(p)).

(&:) Assume Ker(ls(@)) = Ker(ls(p)). Then Ker(ls(a)) = p(M) by (3). Let y € Ig(a). Since p(m) € p(M) =
Ker(ls(@)) we have y(p(m)) = 0 which implies y = y(1 —p) € S(1—p). On the other hand, suppose now y € S(1—p) =
Is(p). As a(M) C Ker(ls(a)) = Ker(ls(p)) = p(M), we have, for every a(m) € a(M), there exists m* € M such that
a(m) = p(m*). So ya(m) = yp(m*) = 0 by yp = 0 which completes the proof. O

Theorem 2.4. Let M be a module, a, 8 be idempotents in S = End(M). Then, a < B iff o8 = Ba = a.
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Proof. Let a, be idempotent morphisms in S and ¢ = So = a. Then by Lemma 2.3, Is(a) = S(I — @) and
(1 =p)(M) = Ker(B). So @ < B by assumption. On the other hand, suppose @ < 5. So there exist idempotents p,q € S

as in Definition 2.1. Therefore o8 = (pa)B = (pB)B = pB = a and Ba = Blaqg) = B(Bq) = Bq = a. O

Following von Neumann [20], an element a in a ring R is regular if a = aba for some b € R and R is called a
regular ring if every element is regular. Let M and N be right R-modules and @ : M — N be a homomorphism. The
homomorphism « is called regular if, there exists a homomorphism y : N — M such that @ = aya by [8]. According
to [7] and [6], for any two elements a, b in a von Neumann regular ring R, the relations <® and <~ on R are defined as
follows:

a <® b if and only if bR = aR & (b — a)R, and called it the direct sum partial order.

a <~ b if there exists an x € R such that ax = bx and xa = xb, where axa = a, and we say that a is less than or equal
to b under the minus partial order.

Let M and N be right R-modules. For any «,8 € Hom(M, N), we define the partial order <® and the minus partial
order <~ as follows:

a<®BoepS=aSeB-a)s
and
a <~ Bif there exists a y € Hom(N, M) such that ya = yS and ay = By, where @ = aya.

Theorem 2.5. Let M a module and o, € S = End(M). Then,
(1) If a + B is regular, then a <® a + B iffa <~ a + .
(2) If S is a von Neumann regular ring then a < B iff « <~ B.

Proof.

(1) The claim follows from [14, Theorem 10].

(2) (:=) Let p,q be idempotents of S as in Definition 2.1. Since S is von Neumann regular there exists y € S
such that aya = a. Let T = gyp. Then, we have ata = alqyp)a = aya = «a, at = aqyp = Bqyp = B,
T = qypa = qypB = 176. Hence a <™ 5.

(<:) Suppose @ <~ B. So there exists y € S such that aya = @, ay = By, ya = yS. Let p = @y and g = ya. Clearly,
p is an idempotent in S and 1 — p € Ig(@). If n € [5(@), then np = n(ay) = 0son =n(l — p) € S(1 — p). Moreover,
pa = aya = ayf = pB. Similarly, ¢ is an idempotent in S and (1 — g)(m) € Ker(a). If m € Ker(a) then a(m) = 0
which implies y(a(m)) = g(m) = 0. So for m € Ker(a), m = m—q(m) = (1 — gq)(m) € (1 — g)(M). Now, it is easy to see
that g = Bq as above. O

Let 15 be the identity of S then for the orthogonal idempotents of S there exists a decomposition of the identity 1g,
ie,lg =e+---+e,. Letlg =e; +---+e,and 1g = fj + -+ + f, be two decomposition of the identity of a ring S.
Then, for any @ € S, we have

n

a=lgals = (e +...+e)a(fi +...+ f,) = Ze,afj,

ij=1

and by the above

S = é e,~Sfj.

ij=1
Let a;; = e;af; then one can write @ as e X f matrix:
11 AT
Xyl ... Ay

Theorem 2.6. Let M be a module and let a,8 € S = End(M). Then, @ < B if and only if there exist idempotents
D, q € S such that the following hold:
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(1) a= (%1 8) and B = (%1 ’[?) In fact you can easily see that ay = a and By = B(1 — q);
1

(2)IfveSpandva; =0thenv =0;
(3) If v(im) € g(M) and av(m) = 0 foranym € M andv € S thenv = 0.

Proof. Suppose that @, 8 € S and p,q € S are idempotents as in Definition 2.1. We know that @ = pa = aq = pag, so
for decompositions 1g = p+ (1 — p) and 15 = g + (1 — g) one has p X g matrix

_a10
a—oo.

Ba ﬂz)
3 B

Let
ﬂ =

be p X ¢ matrix. We get

0 0/\ B B 0 0
by writing p(8 — @) = 0 in matrix form. Therefore, p(84 — @) = 0 and pB, = 0. Since pa; = a1, pBs = B4, and

pBr = B, we get @ = B4 and B, = 0. Analogously, from (8 — a)g = 0 we get 83 = 0. So we have the statement

(P 0) (54 - ,32) _ (P(ﬁ4 -aj) Pﬁz) -0

(1). For the statement (2), suppose v € Sp and va; = 0. From (1), we a@ = so va = 0 which implies

(¢31
0 O
vels(a) =S(1 - p)=Is(p), thatis v = vp = 0. For the statement (3), suppose v(m) € g(M) and av(m) = 0, we have
av(m) = 0 by (1). So v(m) € Ker(a) = (1 — g)(M) = Ker(q) which gives v(m) € Ker(q) N g(M) = 0.

For the converse, let the statements (1) — (3) hold for idempotents p,q € S. It is easy to see that p(a — 8) =

p 0\(0 0} a (0 01)[(qg 0O\ _ - .
(0 O) (0 —,81) =0and (@ - B)g = (0 a0 o= 0. So statements (3) and (4) of Definition 2.1 are verified.

Now, we prove lg(a) = S(1 — p). If y € S(1 — p) then one can write y as g X p martix:
(0 7
v (0 74) '
Clearly ya = 0, that is y € Is(a). For the reverse inclusion, let w € Is (@) then for w = (

_[wiay 0 _
a_(a)3a1 0)_0

wp W2
w3 a)4’

So, we get wia; = 0 and w3a; = 0. But wi, w3 € Sp so w; = w3 = 0 by (2). Hence, w = (8 32) e S - p).
4

a; 0 . I () .

0 0) and ¢ X ¢ matrix 1 — g = 0 l—q) direct
calculation gives the equality. More precisely, let m € Ker(a), then 0 = a(m) = a(q(m)) = a;(q(m)). But g = 0 by
(3) which gives Ker(a@) € (1 — q)(M). For the reverse inclusion let m € (1 — ¢)(M) that is m = (1 — g)(m=*). Then,

a(m) = a((1 —q)(m*)) = (a(1 —q))(m=*) = 0 by calculation of matrix representation of @ and 1 —¢q. So we are done. O

Now we prove Ker(a) = (1 — g)(M). For p X g matrix a = (

3. Tue Minus PARTIAL ORDER IN ENDOMORPHISM RINGS OF RICKART MODULES

According to [9], a right R-module M with § = Endr(M) is called Rickart if the right annihilator in M of any single
element of S is generated by an idempotent of S. Equivalently, for every ¢ € S, ry(p) = Ker(yp) = eM for some
e?=ecS.

Let us also denote:
LP(@) ={p € ES):Ils(@)=5S1-p)},
RP(a) ={q € E(S) : Ker(a) = (1 — g)M}.
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By Lemma 2.3, we get

LP(a) ={p € E(S) : Is(@) = Is(p)},
RP(a@) ={q € E(S) : Ker(a) = Ker(q)}.

We also note that by [9] if M is a Rickart module, then S is a right Rickart ring. Thus, we see that if M is a Rickart
module, then RP(«) is nonempty.

Lemma 3.1. Leta € S, p € LP(@) and q € RP(a). Then,
(1) LP(@) = {(g l{;) :prepSU-p,

0
(2) RP(a) = {(qq] O) Lq1 € (1-)Sq)

Proof. Suppose that p € LP(@) and g € RP(e). Then, (1 — p)a = 0 and (1 — g) = 0. Let p’ = (g ’(’)1) asapxp

P 0
0 1-

’ _ 0 —P1 an 0 _ 00
(l_p)“‘(o l—p)(O 0)‘(0 o)'

_[w1 w2 . . w1w20110_ _ _ _ _
Ifw_(w3 w4)els(a)lsap><pmatr1x,then(w3 w4)(0 O)—Oandwlcn_O(a)la—O),wwl—0(w3a—0).

matrix. We get p’> = p’. By using | = ( p) and (1 — p’) € Is (@), we obtain

Thus, w; = w1p = 0and w3 = w3p = 0. Also suppose that w; = 0 and w3 = 0. So wa = 0. From (8 32) (I(; %1) =0,
4

we get w € Ig(p’), so Is(a@) C Is(p’). By using (1 — p’)a = 0 and Lemma 2.3, Is(p’) = S(1 — p’) C Is(a). Then,
Is(@)=S(1-p’)and p’ € LP(a).

Assume that p’ = ﬁz il) € LP(a) be a p X p matrix. Also we have Ig(@) = S(1 — p’) = Is(p’) and I (@) = Is(p).
3 P4

Thus,
/ pP—D2 —Pp1 p 0 p—-p2 O
O= 1— = =
(=ror (—p3 1—p—p4)(0 0) (—m 0)

and p, = p and p3 = 0. Considering Is (@) C Is(p”), we get
0= 0 w2\ [P D1 _ 0 wWo P4
0 w4f\0 p4 0 waps

and wsps = 0 from wy € (1 - p)S(1 - p). I wy = 1 — p, we get ps = 0. Hence, p’ = (p pi

0 O
Similarly, we can obtain the statement (2). |

), this completes the proof.

Corollary 3.2. Let a < B fora,B €S and let p,q € E(S) be the corresponding idempotents. Then,

(P eLP(@):a=pp}= {(é7 %1) :p1 € pS(1 = p)and p1Bi = 0}
and

{¢ €RP(a):a=pq'}= {(;1 8) tq1 € (1 —q)Sqand g1 = 0},

where By is as in Theorem 2.6.

Proof. From a < 3, we have

_ a1 0 _ a1 0
(3 Y-l )
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Ifp' = (p pl) with p; € pS(1 — p) and p18; = 0 and by Lemma 3.1, then p’ € LP(«). We get

0 0
1o (P pPi\[ar O\ _ (pa; piBi
re=(5 5)(6 )=(5 8

Since a; = pagq, we have pa; = a;. Then,
’ [07] 0
(3 8-
For the converse, assume that p’ € LP(«) and a = p’B. From Lemma 3.1, we have p’ = (

_[(ar O _ a_[an piB
o= o), =75 79)
pxq

Hence, p18; = 0. O

P D1

0 0 ) Thus, we write

We proceed to obtain an equivalent condition of the minus partial order in endomorphism rings of Rickart modules.

Theorem 3.3. Let S be a Rickart ring and a, B € S. Then, a <~ B iff a, B have the matrix form as follows:
_|a 0 I 31 0
=[5 3, o[04,
pxq PXq

Proof. Leta, B € S and @ <~ B. There exist p, g € E(S) such that @ = pS = Bq. Then, pa = @ and @ = ag. Thus,

@ 0 where | = pag. Let Pa B2 . Then,
00 pX 3 B pXq

where p, g € E(S).

(1 - p)a =0 and a(1 — g) = 0 which implies that @ = (
q

B4 = pBq = paq = ay,
B3=0-p)pg=~1-ppBs=0,
B2 =pB(l—q)=pqg(1-¢q)=0.

0 B

For the converse, let @ and 8 have the stated above matrix forms. From pa; = ppaqg = a1 = paqgq = a,q, then
_(p O a 0 _f[ar O _
w=(o o) [0 a),, (0 o),
pXp pxq pxq

_far O q O _fa1 O _
ﬁ"‘(o ﬁl) (o 0) ‘(0 of ~«
pPXq gxq pPXq

So, @ <7 B. O

Thus,ﬁ:((ll 0) .
2

Recall that R is a right Rickart ring with only two idempotents O and 1 iff R is a domain (see [9, Remark 4.10]).

Theorem 3.4. Let S be Rickart ring and a,8 € S. Then, a < B if and only if there exists 1g = e| + ey + e3 and
ls = fi + fo + f3 such that the following conditions hold

(07 0 0 (0] 0 0
()a=10 0 OlandB=|0 B Oasex fmatrix,
0 0 O 0 0 O

(2)IfveSe andva; =0, thenv =0,
(3)Ifve fiS and av =0, thenv = 0,
(4)Ifve SeyandvB) =0, thenv =0,
(5)Ifve f,S and Biv =0, thenv = 0.
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Proof. (<:) This implication follows from Theorem 2.6.

0 0 B

va); = 0thenv = 0, if v(im) € g(M) and a;v(m) = 0 for any m € M then v = 0. Since S is Rickart ring, there exists
r,s € E(R) such that I[g(8)) = S(1 — r) = Is(r) and ry(B1) = Ker(B1) = (1 — s)(M). From B; € (1 — p)S(1 — g), we
write pB; = 0. Then, p € I5(B;) = Is(r), so pr = 0. Suppose that ¥’ = r—rp(1 —r) = r—rp = r(1 — p). We get
P2 = (r—rp)r—rp)=r—rp=r(1—p)=r,sor € E(S). On the other hand, if wB; = 0, then w € I5(By) = I5(r)
and wr = 0. So wr’ = 0. Then, we have (1 — r")B; = 0 from 8; = rB. Thus, Is(B1) = Is(r') = S(1 - r"). Also if pr =0,
then p € Is(r) = Is(B)) = Is(r')and pr' = 0. Then, ¥'p =r(1 — p)p =0. Sete; = p,e; =r and ez = 1 — p — . Thus,
lg = e + ey + e3 is decomposition of the identity of the ring S and by Is(8;) = Is(+") = S(1 — r’), we conclude that
wB; = 0 implies w = 0 when w € Se;.

Moreover, set fi = ¢, o = (1 —¢g)sand 5 =1 - fi — fo. We get lg = fi + f» + f3 decomposition of the identity
of the ring . Thus, we obtain the statement (5). Since e; = p and f; = ¢, the statement (2) and (3) are satisfied from
Theorem 2.6. We have e;3 > = r(1-p)B1(1—¢q)s = rB1s = B1s = B since Is(B1) = S(1 —r) and Ker(B;) = (1 —s)(M).
This show that the statement (1) holds. |

(=:) Let @ < B. Considering Theorem 2.6, we have @ = (%1 O) and 8 = (m 0) as p X g matrix, if v € S p and
pXq

Moreover, from Theorem 3.4 it follows that the statement (1) — (5) are equivalent to e; € LP(«), e; € LP(B — ),
fi € RP(@) and f; € RP(B — ).

Corollary 3.5. Let S be Rickart ring and a,B € S. Then, a < Biff B—a <B.

Theorem 3.6. Suppose that S is Rickart ring and a,8 € S. Then, a < B if and only if there exists idempotents
e; € LP(@), e; € LP(B— ), fi € RP(a) and f> € RP(B — @) such that e;e; = 0 and f>f; = 0.

Proof. (=:) Suppose that e; € LP(@), e; € LP(8 — a) and eje; = 0. Then, (1 —ej)a = 0and (1 —e))(8— @) =0, so
eif=ea+e(B—a)=a+eerf—a)=a Alsoassume that fj € RP(a), f» € RP(B8— @) and f>fi = 0. We write

afi=aandBfi =afi+B-a)fi =a+ (B -a)fofi. Thus, wegeta <BeS.
(<) It follows from Theorem 3.4. |
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