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Abstract. Let S = End(M) be the ring of endomorphisms of a right R-module M. In this paper we define the
minus parital order for the endomorphism ring of modules. Also, we extend study of minus partial order to the
endomorphism ring of a (Rickart) module. Thus, several well-known results concerning minus partial order are
generalized.
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1. Introduction

Throughout this article rings are associative with nonzero unity, modules are right modules unless otherwise spec-
ified, and morphisms will be written on the left of their arguments. We write S = End(M) for the ring of all endo-
morphisms of a module M. For a submodule N of M, we use N ≤ M(N < M) to mean that N is a submodule of M
(respectively, proper submodule), and we write N ≤⊕ M to indicate that N is a direct summand of M. We always use
M to stand for the ring of all n × n matrices over a ring R. The left annihilator of α ∈ S = End(M) is denoted by lS (α).
Similarly, the right annihilator of α ∈ S = End(M) is denoted by rS (α). The set of idempotents of a ring is denoted by
E(−). General background material can be found in [1].

The shorted operators have been introduce in [2] and [3]. The shorted operators are related to electrical network
theory, especially computing to a shorted electrical circuit. Also, they used to parallel connections and electrical
duality to further algebraic theorems. (see eg. [2, 3, 11]). In [12] and [13], the authors studied the partial order (called
the natural partial order) on regular semigroup S . The minus partial order was extensively studied in [5] and [11].
Šemrl defined in [17] the minus partial order on B(H). Let H be a Hilbert space and B(H) the algebra of all bounded
linear operators on H. For A, B ∈ B(H) we write A � B if and only if there exist idempotent operators P,Q ∈ B(H) such
that ImP = ImA, Ker(A) = Ker(Q), PA = PB and AQ = BQ. Following Šemrl’s approach, the authors introduced
in [4] the minus partial order on a ring: Let R be a ring with the unity 1 and a, b ∈ R, then we write a � b if there exist
idempotent elements p, q ∈ R such that lR(a) = R(1 − p), rR(a) = (1 − q)R, pa = pb and aq = bq.

In this paper, we will introduce the minus partial order for modules using their endomorphism rings: Let M be a
module, S = End(M) with identity 1M and α, β ∈ S = End(M). Then, we write α � β if and only if there exist
idempotents p, q ∈ S such that the following hold:

(1) lS (α) = S (1 − p)
(2) Ker(α) = (1 − q)(M)
(3) pα = pβ
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(4) αq = βq

In Theorem 2.4, we will present another equivalent definition of the minus partial order over endomorphism ring of a
module M as: Let α, β be idempotents in S = End(M). Then, α � β iff αβ = βα = α. Among other results, some
known results are generalized. For example, we show that the partial order ≤− is equivalent to the minus partial order
� on a von Neumann regular ring: For a module M and α, β ∈ S = End(M), if α + β is regular, then α ≤⊕ α + β iff
α ≤− α + β, and if S is a von Neumann regular ring with unit 1S , then α � β iff α ≤− β (Theorem 2.5).

A ring R is called right Rickart if the right annihilator of any single element of R is generated by an idempotent
as a right ideal. A left Rickart ring is defined similarly. In [4], the authors proved that this is indeed a partial order
when R is a Rickart ring. Let M be an R-module with S = End(M). We say that M is a Rickart module if the right
annihilator in M of any single element of S is generated by an idempotent of S ; or equivalently, rS (α) = Ker(α) ≤⊕ M
for every α ∈ S ; or equivalently, for every ϕ ∈ S , rM(ϕ) = Ker(ϕ) = eM for some e2 = e ∈ S . The notion of Rickart
module has been recently studied in [9] and also partial order has been studied on Rickart rings in [10, 18, 19]. In [15]
and [16] the authors studied regular homomorphism and give some characterizations of regular homomorphism. In the
third section, the notion of the module-theoretic version of the minus partial order is extended to endomorphism rings
of (Rickart modules) which are Rickart rings. It is shown that if S = End(M) is a Rickart ring and α, β ∈ S . Then
α � β iff β − α � β (Corollary 3.5). Recall that S = End(M) is a von Neumann regular ring with unit 1S , then α � β
iff α ≤− β (Theorem 2.5). We also obtain that if S = End(M) is a Rickart ring and α, β ∈ S then the operator � is a
partial order in S , then α � β iff β − α � β (Corollary 3.5).

2. TheMinus Partial Order for End(−) of aModule

Let M be a right R-module and S := End(M). We define the minus partial order � for S = End(M).

Definition 2.1. Let M be a module, S = End(M) with identity 1M and α, β ∈ S = End(M). Then, we write α � β if
and only if there exist idempotents p, q ∈ S such that the followings hold:

(1) lS (α) = S (1 − p)
(2) Ker(α) = (1 − q)(M)
(3) pα = pβ
(4) αq = βq.

Remark 2.2. By Definition 2.1, one can see that α = pα and α = αq.

Lemma 2.3. Let M be a module, p and q be two idempotents in S = End(M) and α ∈ S . Then,

(1) lS (p) = S (1 − p)
(2) (1 − q)(M) = Ker(q)
(3) Ker(lS (p)) = p(M)
(4) lS (α) = S (1 − p)⇔ Ker(lS (α)) = Ker(lS (p)).

Proof.
(1) If u ∈ lS (p), then u = u(1 − p) ∈ S (1 − p). Since (1 − p)p = 0, we get S (1 − p) ⊆ lS (p) .
(2) It is obvious by [1, Lemma 5.6].
(3) The claim is

Ker(lS (p)) = Ker(S (1 − p)) = {m ∈ M : γ(1 − p)(m) = 0 for every γ ∈ S }
= {m ∈ M : (1 − p)(m) = 0}
= {m ∈ M : p(m) = m} = p(M).

(4) (⇒:) By (1), we have lS (α) = S (1 − p) = lS (p) so Ker(lS (α)) = Ker(lS (p)).
(⇐:) Assume Ker(lS (α)) = Ker(lS (p)). Then Ker(lS (α)) = p(M) by (3). Let γ ∈ lS (α). Since p(m) ∈ p(M) =

Ker(lS (α)) we have γ(p(m)) = 0 which implies γ = γ(1− p) ∈ S (1− p). On the other hand, suppose now γ ∈ S (1− p) =

lS (p). As α(M) ⊆ Ker(lS (α)) = Ker(lS (p)) = p(M), we have, for every α(m) ∈ α(M), there exists m∗ ∈ M such that
α(m) = p(m∗). So γα(m) = γp(m∗) = 0 by γp = 0 which completes the proof. �

Theorem 2.4. Let M be a module, α, β be idempotents in S = End(M). Then, α � β iff αβ = βα = α.



The Minus Partial Order on Endomorphism Rings 112

Proof. Let α, β be idempotent morphisms in S and αβ = βα = α. Then by Lemma 2.3, lS (α) = S (1 − α) and
(1 − β)(M) = Ker(β). So α � β by assumption. On the other hand, suppose α � β. So there exist idempotents p, q ∈ S
as in Definition 2.1. Therefore αβ = (pα)β = (pβ)β = pβ = α and βα = β(αq) = β(βq) = βq = α. �

Following von Neumann [20], an element a in a ring R is regular if a = aba for some b ∈ R and R is called a
regular ring if every element is regular. Let M and N be right R-modules and α : M → N be a homomorphism. The
homomorphism α is called regular if, there exists a homomorphism γ : N → M such that α = αγα by [8]. According
to [7] and [6], for any two elements a, b in a von Neumann regular ring R, the relations ≤⊕ and ≤− on R are defined as
follows:

a ≤⊕ b if and only if bR = aR ⊕ (b − a)R, and called it the direct sum partial order.
a ≤− b if there exists an x ∈ R such that ax = bx and xa = xb, where axa = a, and we say that a is less than or equal

to b under the minus partial order.
Let M and N be right R-modules. For any α, β ∈ Hom(M,N), we define the partial order ≤⊕ and the minus partial

order ≤− as follows:
α ≤⊕ β⇔ βS = αS ⊕ (β − α)S

and
α ≤− β if there exists a γ ∈ Hom(N,M) such that γα = γβ and αγ = βγ, where α = αγα.

Theorem 2.5. Let M a module and α, β ∈ S = End(M). Then,
(1) If α + β is regular, then α ≤⊕ α + β iff α ≤− α + β.
(2) If S is a von Neumann regular ring then α � β iff α ≤− β.

Proof.
(1) The claim follows from [14, Theorem 10].
(2) (:⇒) Let p, q be idempotents of S as in Definition 2.1. Since S is von Neumann regular there exists γ ∈ S
such that αγα = α. Let τ = qγp. Then, we have ατα = α(qγp)α = αγα = α, ατ = αqγp = βqγp = βτ,
τα = qγpα = qγpβ = τβ. Hence α ≤− β.
(⇐:) Suppose α ≤− β. So there exists γ ∈ S such that αγα = α, αγ = βγ, γα = γβ. Let p = αγ and q = γα. Clearly,
p is an idempotent in S and 1 − p ∈ lS (α). If η ∈ lS (α), then ηp = η(αγ) = 0 so η = η(1 − p) ∈ S (1 − p). Moreover,
pα = αγα = αγβ = pβ. Similarly, q is an idempotent in S and (1 − q)(m) ∈ Ker(α). If m ∈ Ker(α) then α(m) = 0
which implies γ(α(m)) = q(m) = 0. So for m ∈ Ker(α), m = m− q(m) = (1− q)(m) ∈ (1− q)(M). Now, it is easy to see
that αq = βq as above. �

Let 1S be the identity of S then for the orthogonal idempotents of S there exists a decomposition of the identity 1S ,
i.e., 1S = e1 + · · · + en. Let 1S = e1 + · · · + en and 1S = f1 + · · · + fn be two decomposition of the identity of a ring S .
Then, for any α ∈ S , we have

α = 1Sα1S = (e1 + . . . + en)α( f1 + . . . + fn) =

n∑
i, j=1

eiα f j,

and by the above

S =

n⊕
i, j=1

eiS f j.

Let αi j = eiα f j then one can write α as e × f matrix:


α11 . . . α1n
...

. . .
...

αn1 . . . αnn

 .
Theorem 2.6. Let M be a module and let α, β ∈ S = End(M). Then, α � β if and only if there exist idempotents
p, q ∈ S such that the following hold:
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(1) α =

(
α1 0
0 0

)
and β =

(
α1 0
0 β1

)
. In fact you can easily see that α1 = α and β1 = β(1 − q);

(2) If v ∈ S p and vα1 = 0 then v = 0;
(3) If v(m) ∈ q(M) and α1v(m) = 0 for any m ∈ M and v ∈ S then v = 0.

Proof. Suppose that α, β ∈ S and p, q ∈ S are idempotents as in Definition 2.1. We know that α = pα = αq = pαq, so
for decompositions 1S = p + (1 − p) and 1S = q + (1 − q) one has p × q matrix

α =

(
α1 0
0 0

)
.

Let

β =

(
β4 β2
β3 β1

)
be p × q matrix. We get (

p 0
0 0

) (
β4 − α1 β2
β3 β1

)
=

(
p(β4 − α1) pβ2

0 0

)
= 0

by writing p(β − α) = 0 in matrix form. Therefore, p(β4 − α1) = 0 and pβ2 = 0. Since pα1 = α1, pβ4 = β4, and
pβ2 = β2, we get α1 = β4 and β2 = 0. Analogously, from (β − α)q = 0 we get β3 = 0. So we have the statement

(1). For the statement (2), suppose v ∈ S p and vα1 = 0. From (1), we α =

(
α1 0
0 0

)
so vα = 0 which implies

v ∈ lS (α) = S (1 − p) = lS (p), that is v = vp = 0. For the statement (3), suppose v(m) ∈ q(M) and α1v(m) = 0, we have
αv(m) = 0 by (1). So v(m) ∈ Ker(α) = (1 − q)(M) = Ker(q) which gives v(m) ∈ Ker(q) ∩ q(M) = 0.

For the converse, let the statements (1) − (3) hold for idempotents p, q ∈ S . It is easy to see that p(α − β) =(
p 0
0 0

) (
0 0
0 −β1

)
= 0 and (α − β)q =

(
0 0
0 −β1

) (
q 0
0 0

)
= 0. So statements (3) and (4) of Definition 2.1 are verified.

Now, we prove lS (α) = S (1 − p). If γ ∈ S (1 − p) then one can write γ as q × p martix:

γ =

(
0 γ2
0 γ4

)
.

Clearly γα = 0, that is γ ∈ lS (α). For the reverse inclusion, let ω ∈ lS (α) then for ω =

(
ω1 ω2
ω3 ω4

)
,

ωα =

(
ω1α1 0
ω3α1 0

)
= 0.

So, we get ω1α1 = 0 and ω3α1 = 0. But ω1, ω3 ∈ S p so ω1 = ω3 = 0 by (2). Hence, ω =

(
0 ω2
0 ω4

)
∈ S (1 − p).

Now we prove Ker(α) = (1 − q)(M). For p × q matrix α =

(
α1 0
0 0

)
and q × q matrix 1 − q =

(
0 0
0 1 − q

)
direct

calculation gives the equality. More precisely, let m ∈ Ker(α), then 0 = α(m) = α(q(m)) = α1(q(m)). But q = 0 by
(3) which gives Ker(α) ⊆ (1 − q)(M). For the reverse inclusion let m ∈ (1 − q)(M) that is m = (1 − q)(m∗). Then,
α(m) = α((1−q)(m∗)) = (α(1−q))(m∗) = 0 by calculation of matrix representation of α and 1−q. So we are done. �

3. TheMinus Partial Order in Endomorphism Rings of RickartModules

According to [9], a right R-module M with S = EndR(M) is called Rickart if the right annihilator in M of any single
element of S is generated by an idempotent of S . Equivalently, for every ϕ ∈ S , rM(ϕ) = Ker(ϕ) = eM for some
e2 = e ∈ S .

Let us also denote:

LP(α) = {p ∈ E(S ) : lS (α) = S (1 − p)},
RP(α) = {q ∈ E(S ) : Ker(α) = (1 − q)M}.
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By Lemma 2.3, we get

LP(α) = {p ∈ E(S ) : lS (α) = lS (p)},
RP(α) = {q ∈ E(S ) : Ker(α) = Ker(q)}.

We also note that by [9] if M is a Rickart module, then S is a right Rickart ring. Thus, we see that if M is a Rickart
module, then RP(α) is nonempty.

Lemma 3.1. Let α ∈ S , p ∈ LP(α) and q ∈ RP(α). Then,

(1) LP(α) = {

(
p p1
0 0

)
: p1 ∈ pS (1 − p)},

(2) RP(α) = {

(
q 0
q1 0

)
: q1 ∈ (1 − q)S q}.

Proof. Suppose that p ∈ LP(α) and q ∈ RP(α). Then, (1 − p)α = 0 and α(1 − q) = 0. Let p′ =

(
p p1
0 0

)
as a p × p

matrix. We get p′2 = p′. By using 1 =

(
p 0
0 1 − p

)
and (1 − p′) ∈ lS (α), we obtain

(1 − p′)α =

(
0 −p1
0 1 − p

) (
α1 0
0 0

)
=

(
0 0
0 0

)
.

If ω =

(
ω1 ω2
ω3 ω4

)
∈ lS (α) is a p × p matrix, then

(
ω1 ω2
ω3 ω4

) (
α1 0
0 0

)
= 0 and ω1α1 = 0 (ω1α = 0), ω3α1 = 0 (ω3α = 0).

Thus, ω1 = ω1 p = 0 andω3 = ω3 p = 0. Also suppose thatω1 = 0 andω3 = 0. Soωα = 0. From
(
0 ω2
0 ω4

) (
p p1
0 0

)
= 0,

we get ω ∈ lS (p′), so lS (α) ⊆ lS (p′). By using (1 − p′)α = 0 and Lemma 2.3, lS (p′) = S (1 − p′) ⊆ lS (α). Then,
lS (α) = S (1 − p′) and p′ ∈ LP(α).

Assume that p′ =

(
p2 p1
p3 p4

)
∈ LP(α) be a p × p matrix. Also we have lS (α) = S (1 − p′) = lS (p′) and lS (α) = lS (p).

Thus,

0 = (1 − p′)p =

(
p − p2 −p1
−p3 1 − p − p4

) (
p 0
0 0

)
=

(
p − p2 0
−p3 0

)
and p2 = p and p3 = 0. Considering lS (α) ⊆ lS (p′), we get

0 =

(
0 ω2
0 ω4

) (
p p1
0 p4

)
=

(
0 ω2 p4
0 ω4 p4

)
and ω4 p4 = 0 from ω4 ∈ (1− p)S (1− p). If ω4 = 1− p, we get p4 = 0. Hence, p′ =

(
p p1
0 0

)
, this completes the proof.

Similarly, we can obtain the statement (2). �

Corollary 3.2. Let α � β for α, β ∈ S and let p, q ∈ E(S ) be the corresponding idempotents. Then,

{p′ ∈ LP(α) : α = p′β} = {

(
p p1
0 0

)
: p1 ∈ pS (1 − p) and p1β1 = 0}

and

{q′ ∈ RP(α) : α = βq′} = {

(
q 0
q1 0

)
: q1 ∈ (1 − q)S q and β1q1 = 0},

where β1 is as in Theorem 2.6.

Proof. From α � β, we have

α =

(
α1 0
0 0

)
, β =

(
α1 0
0 β1

)
.
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If p′ =

(
p p1
0 0

)
with p1 ∈ pS (1 − p) and p1β1 = 0 and by Lemma 3.1, then p′ ∈ LP(α). We get

p′β =

(
p p1
0 0

) (
α1 0
0 β1

)
=

(
pα1 p1β1
0 0

)
.

Since α1 = pαq, we have pα1 = α1. Then,

p′β =

(
α1 0
0 0

)
= α.

For the converse, assume that p′ ∈ LP(α) and α = p′β. From Lemma 3.1, we have p′ =

(
p p1
0 0

)
. Thus, we write

α =

(
α1 0
0 0

)
p×q

= p′β =

(
α1 p1β1
0 0

)
.

Hence, p1β1 = 0. �

We proceed to obtain an equivalent condition of the minus partial order in endomorphism rings of Rickart modules.

Theorem 3.3. Let S be a Rickart ring and α, β ∈ S . Then, α ≤− β iff α, β have the matrix form as follows:

α =

(
α1 0
0 0

)
p×q

, β =

(
α1 0
0 β1

)
p×q

,

where p, q ∈ E(S ).

Proof. Let α, β ∈ S and α ≤− β. There exist p, q ∈ E(S ) such that α = pβ = βq. Then, pα = α and α = αq. Thus,

(1 − p)α = 0 and α(1 − q) = 0 which implies that α =

(
α1 0
0 0

)
p×q

where α1 = pαq. Let
(
β4 β2
β3 β1

)
p×q

. Then,

β4 = pβq = pαq = α1,
β3 = (1 − p)βq = (1 − p)pβ = 0,
β2 = pβ(1 − q) = βq(1 − q) = 0.

Thus, β =

(
α1 0
0 β1

)
p×q

.

For the converse, let α and β have the stated above matrix forms. From pα1 = ppαq = α1 = pαqq = α1q, then

pβ =

(
p 0
0 0

)
p×p

(
α1 0
0 β1

)
p×q

=

(
α1 0
0 0

)
p×q

= α,

βq =

(
α1 0
0 β1

)
p×q

(
q 0
0 0

)
q×q

=

(
α1 0
0 0

)
p×q

= α.

So, α ≤− β. �

Recall that R is a right Rickart ring with only two idempotents 0 and 1 iff R is a domain (see [9, Remark 4.10]).

Theorem 3.4. Let S be Rickart ring and α, β ∈ S . Then, α � β if and only if there exists 1S = e1 + e2 + e3 and
1S = f1 + f2 + f3 such that the following conditions hold

(1) α =

α1 0 0
0 0 0
0 0 0

 and β =

α1 0 0
0 β1 0
0 0 0

 as e × f matrix,

(2) If v ∈ S e1 and vα1 = 0, then v = 0,
(3) If v ∈ f1S and α1v = 0, then v = 0,
(4) If v ∈ S e2 and vβ1 = 0, then v = 0,
(5) If v ∈ f2S and β1v = 0, then v = 0.
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Proof. (⇐:) This implication follows from Theorem 2.6.

(⇒:) Let α � β. Considering Theorem 2.6, we have α =

(
α1 0
0 0

)
and β =

(
α1 0
0 β1

)
p×q

as p × q matrix, if v ∈ S p and

vα1 = 0 then v = 0, if v(m) ∈ q(M) and α1v(m) = 0 for any m ∈ M then v = 0. Since S is Rickart ring, there exists
r, s ∈ E(R) such that lS (β1) = S (1 − r) = lS (r) and rM(β1) = Ker(β1) = (1 − s)(M). From β1 ∈ (1 − p)S (1 − q), we
write pβ1 = 0. Then, p ∈ lS (β1) = lS (r), so pr = 0. Suppose that r′ = r − rp(1 − r) = r − rp = r(1 − p). We get
r′2 = (r − rp)(r − rp) = r − rp = r(1 − p) = r′, so r′ ∈ E(S ). On the other hand, if ωβ1 = 0, then ω ∈ lS (β1) = lS (r)
and ωr = 0. So ωr′ = 0. Then, we have (1− r′)β1 = 0 from β1 = rβ1. Thus, lS (β1) = lS (r′) = S (1− r′). Also if pr = 0,
then p ∈ lS (r) = lS (β1) = lS (r′) and pr′ = 0. Then, r′p = r(1 − p)p = 0. Set e1 = p, e2 = r′ and e3 = 1 − p − r′. Thus,
1S = e1 + e2 + e3 is decomposition of the identity of the ring S and by lS (β1) = lS (r′) = S (1 − r′), we conclude that
ωβ1 = 0 implies ω = 0 when ω ∈ S e2.

Moreover, set f1 = q, f2 = (1 − q)s and f3 = 1 − f1 − f2. We get 1S = f1 + f2 + f3 decomposition of the identity
of the ring S . Thus, we obtain the statement (5). Since e1 = p and f1 = q, the statement (2) and (3) are satisfied from
Theorem 2.6. We have e2β1 f2 = r(1− p)β1(1−q)s = rβ1s = β1s = β1 since lS (β1) = S (1−r) and Ker(β1) = (1− s)(M).
This show that the statement (1) holds. �

Moreover, from Theorem 3.4 it follows that the statement (1) − (5) are equivalent to e1 ∈ LP(α), e2 ∈ LP(β − α),
f1 ∈ RP(α) and f2 ∈ RP(β − α).

Corollary 3.5. Let S be Rickart ring and α, β ∈ S . Then, α � β iff β − α � β.

Theorem 3.6. Suppose that S is Rickart ring and α, β ∈ S . Then, α � β if and only if there exists idempotents
e1 ∈ LP(α), e2 ∈ LP(β − α), f1 ∈ RP(α) and f2 ∈ RP(β − α) such that e1e2 = 0 and f2 f1 = 0.

Proof. (⇒:) Suppose that e1 ∈ LP(α), e2 ∈ LP(β − α) and e1e2 = 0. Then, (1 − e1)α = 0 and (1 − e1)(β − α) = 0, so
e1β = e1α + e1(β − α) = α + e1e2(β − α) = α. Also assume that f1 ∈ RP(α), f2 ∈ RP(β − α) and f2 f1 = 0. We write
α f1 = α and β f1 = α f1 + (β − α) f1 = α + (β − α) f2 f1. Thus, we get α � β ∈ S .

(⇐:) It follows from Theorem 3.4. �
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