
International Electronic Journal of Algebra

Volume 21 (2017) 127-136

BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION

Mohammed Tamekkante and El Mehdi Bouba

Received: 5 May 2016; Revised: 30 August 2016

Communicated by Abdullah Harmancı
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ous settings of duplications and amalgamations, and capitalize on recent results
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1. Introduction

Throughout, all rings considered are commutative with unity and all modules

are unital. For a ring R, w.dim(R) will denote the weak global dimension of R. For

an R-module M , the flat dimension of M is denoted by fdR(M).

The following diagram of ring homomorphisms

R

µ2

��

ι2 // R1

µ1

��
R2

ι1 // R′

is called pullback (or fiber product) if the homomorphism ι2 × µ2 : R → R1 × R2

induces an isomorphism of R onto the subring of R1 ×R2 given by

µ1 × ι1 := {(r1, r2) | µ1(r1) = ι1(r2)}.

The weak global dimension of a fiber product has been studied previously. In

1992, S. Scrivanti [19] obtained the following upper bound on the weak global

dimension of R, assuming that ι1 is surjective,

w.dim(R) ≤ max{w.dim(R1) + fdR(R1),w.dim(R2) + fdR(R2)}.

The aim of this paper is to study the weak global dimension of a subclass of

pullbacks rings called bi-amalgamated algebras introduced in [13].
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Let f : A → B and g : A → C be two ring homomorphisms and let J and

J ′ be two ideals of B and C, respectively, such that f−1(J) = g−1(J ′). The bi-

amalgamation of A with (B,C) along (J, J ′) with respect to (f, g) is the subring of

B × C given by

A ./f,g (J, J ′) = {(f(a) + j, g(a) + j′) | a ∈ A, (j, j′) ∈ J × J ′}.

This construction was introduced in [13] as a natural generalization of duplications

[5,6] and amalgamations [7,8]. Given a ring homomorphism f : A→ B and an ideal

J of B, the bi-amalgamation A ./ι,f (f−1(J), J) coincides with the amalgamated

algebra introduced in 2009 by D’Anna, Finocchiaro, and Fontana ([7,8]) as the

following subring of A×B:

A ./f J = {(a, f(a) + j) | a ∈ A, j ∈ J}.

When A = B and f = idA, the amalgamated A ./idA I is called amalgamated

duplication of a ring A along the ideal I and denoted A ./ I (Introduced in 2007 by

D’Anna and Fontana, [6]). This construction can be presented as a bi-amalgamated

algebra as follows:

A ./ I = A ./id,id (I, I).

In [13], the authors provide original examples of bi-amalgamations and, in particu-

lar, show that Boisen-Sheldon’s CPI-extensions [3] can be viewed as bi-amalgama-

tions. They also showed how these bi-amalgamations arise as pullbacks. Given

f : A → B and g : A → C two ring homomorphisms and J and J ′ be two ideals

of B and C, respectively, such that f−1(J) = g−1(J ′) := I, the bi-amalgamation is

determined by the following pullback:

A ./f,g (J, J ′)

µ2

����

µ1 // // f(A) + J

α

��
g(A) + J ′

β // A/I

where µ1 and µ2 are the surjection morphisms induced from the canonical surjec-

tions of (f(A) + J) × (g(A) + J ′) into f(A) + J and g(A) + J ′, respectively, and

α(f(a) + j) = ā and β(g(a) + j′) = ā, for each a ∈ A and j, j′ ∈ J × J ′. That is

A ./f,g (J, J ′) = α×A
I
β.

In this paper, we characterize the bi-amalgamations of small weak global di-

mension. All obtained results recover and compare to previous works carried on



BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION 129

various settings of duplications and amalgamations, and capitalize on recent results

on bi-amalgamations ([1,4,14,18]).

2. Bi-amalgamation of small weak global dimension

Let f : A → B and g : A → C be two ring homomorphisms and let J and J ′

be two proper ideals of B and C, respectively, such that I := f−1(J) = g−1(J ′).

Throughout this paper, A ./f,g (J, J ′) will denote the bi-amalgamation of A with

(B,C) along (J, J ′) with respect to (f, g). Unless another statement, the ideals J

and J ′ are seen as ideals of f(A) + J and g(A) + J ′, respectively.

Notice that in the presence of the equality f−1(J) = g−1(J ′), J = B if and

only if J ′ = C; and in this case A ./f,g (J, J ′) = B × C. Therefore, in this

paper, we will omit this trivial case (i.e., J and J ′ will always be proper) since

w.dim(B × C) = max{w.dim(B),w.dim(C)}.
This section characterizes the bi-amalgamations of weak global dimension smaller

or equal to one.

Rings with weak global dimension zero are those for which all modules over R

are flat. These are exactly the von Neumann regular rings (also called absolutely

flat rings). The following characterizations of von Neumann regular rings can be

found in [10,16]. Let R be a ring. The following conditions are equivalent:

(1) R is von Neumann regular.

(2) For every x ∈ R, there exists y ∈ R such that x2y = x.

(3) R has Krull dimension 0 and is reduced.

The first main result establishes necessary and sufficient conditions for a bi-

amalgamation to have weak global dimension zero. To this purpose, we need the

following lemma. For a given ring R, let dim(R) denote the Krull dimension of R.

Lemma 2.1. dim(A ./f,g (J, J ′)) = max{dim(f(A) + J),dim(g(A) + J ′)}.

Proof. Let (f(a) + j, g(b) + j′) ∈ (f(A) + J) × (g(A) + J ′). It is immediately

checked that it is a root of the monic polynomial

g(X) = (X − (f(a) + j, g(a)) (X − (f(b), g(b) + j′)) .

It is easy to see the g(X) ∈ A ./f,g (J, J ′)[X]. Hence, the ring (f(A)+J)× (g(A)+

J ′) is integral over A ./f,g (J, J ′). More precisely, every element of (f(A) + J) ×
(g(A) + J ′) has degree at most two over A ./f,g (J, J ′). By [15, Theorem 48], it

follows immediately that

dim(A ./f,g (J, J ′)) = dim((f(A) + J)× (g(A) + J ′))}.
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Thus, the conclusion is an easy consequence of the fact that Spec((f(A) + J) ×
(g(A) + J ′)) is canonically homeomorphic to the disjoint union of Spec(f(A) + J)

and Spec(g(A) + J ′). �

Proposition 2.2. The ring A ./f,g (J, J ′) is von Neumann regular if and only if

f(A) + J and g(A) + J ′ are von Neumann regular.

Proof. (⇒) Let f(a)+ j ∈ f(A)+J . Since A ./f,g (J, J ′) is von Neumann regular,

there exists (f(b) + j1, g(b) + j′1) ∈ A ./f,g (J, J ′) such that (f(a) + j, g(a))2(f(b) +

j1, g(b) + j′1) = (f(a) + j, g(a)). Thus, (f(a) + j)2(f(b) + j1) = f(a) + j. Hence,

f(A)+J is von Neumann regular. Similarly, we prove that g(A)+J ′ is von Neumann

regular.

(⇐) Since f(A) + J and g(A) + J ′ are von Neumann regular, they are reduced

and have Krull dimension zero. Thus, using [13, Remark 4.8] and Lemma 2.1,

A ./f,g (J, J ′) is reduced and of Krull dimension zero. Consequently, A ./f,g (J, J ′)

is von Neumann regular. �

Corollary 2.3. The ring A ./f J is von Neumann regular if and only if A and

f(A) + J are von Neumann regular.

Example 2.4. Let n and k be two positive integers with 0 < k < n and let R be

the subring of (Z/nZ)
2

defined by

R := {(a, b) ∈ (Z/nZ)
2 | k divides a− b}.

Then, the global dimension of R is 0 when n is a square-free, and ∞ otherwise.

Proof. Consider the canonical surjection of rings f : Z → Z/nZ and set J = (k).

It is easily seen that

Z ./f,f (J, J) = {(a+ kc, a+ kd) ∈ (Z/nZ)
2 | a, , c, d ∈ Z} = R.

Note also that R is Noetherian since f(A) + J = Z/nZ is Noetherian ([13, Propo-

sition 4.2]), and so the weak global dimension coincides with the global dimension.

If gldim(R) <∞, then R is a regular ring. Thus, by [11, Corollary 8.5], gldim(R) =

dim(R) (the Krull dimension). On the other hand, by using Lemma 2.1, dim(R) =

dim(Z/nZ) = 0. Hence, gldim(R) is 0. Moreover, by Proposition 2.2, gldim(R) = 0

if and only if gldim (Z/nZ) = 0. On the other hand, it is known that gldim (Z/nZ) =

0 when n is square-free, and ∞ otherwise ([17, Corollary 5.19]). Thus, the global

dimension of R is 0 if and only if n is a square-free, and ∞ otherwise. �
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Set Max(A, I) := Max(A) ∩ V(I) = {m ∈ Max(A) | I ⊆ m}. For any m ∈
Max(A, I), consider the multiplicative subsets

Sm := (f(A)+J)−(f(m)+J) = f(A−m)+J, S′
m := (g(A)+J ′)−(g(m)+J ′) = g(A−m)+J ′

of B and C, respectively. One can easily check Jf(m)+J = JSm
(resp. J ′g(m)+J′ =

J ′S′
m

) where Jf(m)+J (resp. J ′g(m)+J′) is the localization of J (resp. J ′) as an ideal

of f(A) + J (resp. g(A) + J ′), and JSm
(resp. J ′S′

m
) is the localization of J (resp.

J ′) as an ideal of B (resp. C). All along the rest of this paper, J (resp. J ′) is seen

as an ideal of f(A) + J (resp. g(A) + J ′).

Recall that a ring R is arithmetical if every finitely generated ideal is locally prin-

cipal [9,12]. In [14], the authors proved that if w.dim(f(A) +J) ≤ 1, w.dim(g(A) +

J ′) ≤ 1, J ∩ Nil(B) = (0), J ′ ∩ Nil(C) = (0), and for each m ∈ Max(A, I),

Jf(m)+J = (0) or J ′g(m)+J′ = (0), then w.dim
(
A ./f,g (J, J ′)

)
≤ 1. The converse

holds if I is radical.

In our second main result of this section, we give a complete characterization for

a bi-amalgamation to have weak global dimension at most 1. Before that, we give

necessary and sufficient conditions for a bi-amalgamation to be reduced.

Proposition 2.5. The ring A ./f,g (J, J ′) is reduced if and only if

(1) J ∩Nil(B) = (0) and J ′ ∩Nil(C) = (0).

(2) f−1 (Nil(B) + J) ∩ g−1 (Nil(C) + J ′) = I.

Proof. (⇒) Following [13, Proposition 4.7], (1) is satisfied. Moreover, it is easily

seen that I ⊆ f−1 (Nil(B) + J)∩g−1 (Nil(C) + J ′). Now, let x ∈ f−1 (Nil(B) + J)∩
g−1 (Nil(C) + J ′). Then, there exits j ∈ J and j′ ∈ J such that f(x) + j ∈
Nil(B) and f(x) + j′ ∈ Nil(C). Hence, there exists a positive integer n such that

(f(x) + j)n = 0 and (g(x) + j′)n = 0. Then, (f(x) + j, g(x) + j′)n = (0, 0), and

so (f(x) + j, g(x) + j′) = (0, 0) since A ./f,g (J, J ′) is reduced. Hence, x ∈ I.

Consequently, (2) is satisfied.

(⇐) Let (f(x)+j, g(x)+j′) ∈ A ./f,g (J, J ′) such that (f(x)+j, g(x)+j′)n = (0, 0)

for some positive integer n. Then, (f(x)+j)n = 0 and (g(x)+j′)n = 0. Then, f(x)+

j ∈ Nil(B) and g(x)+j′ ∈ Nil(C). Thus, x ∈ f−1 (Nil(B) + J)∩g−1 (Nil(C) + J ′) =

I. Accordingly, f(x) + j ∈ J ∩ Nil(B) = (0) and g(x) + j′ ∈ J ′ ∩ Nil(C) = (0).

Consequently, A ./f,g (J, J ′) is reduced. �

Proposition 2.5 recovers the special case of amalgamated algebras, as recorded

in the next corollary.
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Corollary 2.6. [7, Proposition 5.4] A ./f J is reduced if and only if A is reduced

and J ∩Nil(B) = (0).

Proof. Recall that A ./f J = A ./ι,f (f−1(J), J). Thus, using Proposition 2.5,

A ./f J is reduced if and only if

(1) f−1(J) ∩Nil(A) = (0) and J ∩Nil(B) = (0).

(2)
(
Nil(A) + f−1(J)

)
∩ f−1 (Nil(B) + J) = f−1(J).

But Nil(A)+f−1(J) ⊆ f−1 (Nil(B) + J). Hence, the condition (2) becomes Nil(A)+

f−1(J) = f−1(J), or equivalently Nil(A) ⊆ f−1(J). Hence, A ./f J is reduced if

and only if Nil(A) = (0) and J∩Nil(B) = (0). Thus, we have the desired result. �

Proposition 2.7. w.dim
(
A ./f,g (J, J ′)

)
≤ 1 if and only if

(1) f(A)+J and g(A)+J ′ are both arithmetical and, for every m ∈ Max(A, I),

Jf(m)+J = (0) or J ′g(m)+J′ = (0).

(2) J ∩Nil(B) = (0) and J ′ ∩Nil(C) = (0).

(3) f−1 (Nil(B) + J) ∩ g−1 (Nil(C) + J ′) = I.

Proof. Recall that a ring R has weak global dimension at most 1 if and only if

R is arithmetical and reduced ([2, Theorem 3.5]). A combination of this fact with

Proposition 2.5 and [14, Theorem 2.1] leads to the desired conclusion. �

For the special case of amalgamations, we get the following result.

Corollary 2.8. ([14, Corollary 2.9]) w.dim
(
A ./f J

)
≤ 1 if and only if w.dim(A) ≤

1, f(A)+J is arithmetical, J∩Nil(B) = (0), and for every m ∈ Max(A, I), Im = (0)

or Jf(m)+J = (0).

Proof. As in the proof of Corollary 2.6, the conditions (2) and (3) of Proposition 2.7

means, in the case of amalgamated algebras, that A is reduced and J∩Nil(B) = (0).

Combining this with the fact that w.dim(R) ≤ 1 if and only if R is reduced and

arithmetical, we get the desired result. �

Remark 2.9. Recall that an ideal I is called pure if R/I is a flat R-module. If

A is local and I 6= (0), then, w.dim
(
A ./f J

)
≤ 1 implies that J is a pure ideal

of f(A) + J . Indeed, if m is the unique maximal ideal of A, then from Corollary

2.8, Jf(m)+J = (0) since I 6= (0) (and so Im 6= (0)). Note that f(m) + J is the

unique maximal ideal of f(A) + J which contains J . Indeed, if P is a maximal

ideal of f(A) + J which contains J and f(x) + j ∈ P , then f(x) ∈ P , and so

x ∈ f−1(P ) ⊆ m. Thus, for each L ∈ Spec (f(A) + J) \{f(m) + J}, J * L, and so

JL = (f(A) + J)L. Hence, using [10, Theorem 1.2.15], J is a pure ideal.
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In the local case, the bi-amalgamations of weak dimension ≤ 1 have a simple

characterization. Recall that, from [13, Proposition 5.4], the ring A ./f,g (J, J ′) is

local if and only if J 6= B and f(A) + J and g(A) + J ′ are local.

Corollary 2.10. If A ./f,g (J, J ′) is local, then w.dim
(
A ./f,g (J, J ′)

)
≤ 1 if and

only if “J = 0 and w.dim(g(A) + J ′) ≤ 1” or “J ′ = 0 and w.dim(f(A) + J) ≤ 1”.

Proof. From [13, Proposition 5.4], there is a unique maximal ideal m of A contain-

ing I. Thus, the unique maximal ideal of f(A) + J (resp. g(A) + J ′) is f(m) + J

(resp. g(m) + J ′). If w.dim
(
A ./f,g (J, J ′)

)
≤ 1 then, by using Proposition 2.7, we

have Jf(m)+J = (0) or J ′g(m)+J′ = (0). In the first case, J = 0 since f(A)+J is local,

and similarly in the second case J ′ = 0. The rest of the proof is easily deduced from

[13, Proposition 4.1]. Indeed, if J = 0 (resp. J ′ = 0) then A ./f,g (J, J ′) ∼= g(A)+J ′

(resp. A ./f,g (J, J ′) ∼= f(A) + J). �

Corollary 2.11. w.dim(A ./f,f (J, J)) ≤ 1 if and only if w.dim(f(A) + J) ≤ 1

and J is a pure ideal of f(A) + J .

Proof. Following Proposition 2.7, w.dim(A ./f,f (J, J)) ≤ 1 if and only if

(1) f(A) + J is an arithmetical ring.

(2) for every m ∈ Max(A, I), Jf(m)+J = (0).

(3) J ∩Nil(B) = (0).

(4) f−1 (Nil(B) + J) = I.

On the other hand, it is clear that for each L ∈ Max(f(A) + J) such that J * L,

JL = (f(A) + J)L. Thus, condition (2) is equivalent to that JL = (0) or JL =

(f(A) + J)L for each L ∈ Max(f(A) + J), which is also equivalent to that J is a

pure ideal of f(A) + J (by [10, Theorem 1.2.15]).

If (3) and (4) holds, then for each f(x) + j ∈ Nil(f(A) + J), we have f(x) ∈
Nil(f(A) + J) + J . Hence, x ∈ f−1 (Nil(B) + J) = I. Then, f(x) + j ∈ J ∩
Nil(f(A) + J) ⊆ J ∩Nil(B) = (0). Consequently f(A) + J is reduced. Conversely,

if f(A) + J is reduced then (3) holds since J ∩ Nil(B) ⊆ J ∩ Nil(f(A) + J) = (0).

Moreover, for each x ∈ f−1 (Nil(B) + J), f(x) ∈ Nil(B) + J . Then, there exists

j ∈ J such that f(x)+ j ∈ Nil(B)∩ (f(A)+J) = Nil(f(A)+J) = (0). Thus, x ∈ I.

Trivially, I ⊆ f−1 (Nil(B) + J). Consequently, (4) holds immediately. Accordingly,

by [2, Theorem 3.5], we have the desired result. �

Corollary 2.11 recovers a known result for duplications.

Corollary 2.12. ([4, Theorem 4.1(1)]) w.dim(A ./ I) ≤ 1 if and only if w.dim(A) ≤
1 and I is a pure ideal of A.
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The intervention of the ring A/I (with the meaning of the below proposition)

gives a more simple characterization of bi-amalgamations of weak global dimension

at most 1.

Proposition 2.13. The following conditions are equivalent:

(1) sup{w.dim (A/I) ,w.dim
(
A ./f,g (J, J ′)

)
} ≤ 1.

(2) sup{w.dim(f(A)+J),w.dim(g(A)+J ′)} ≤ 1 and for every m ∈ Max(A, I),

Jf(m)+J = (0) or J ′g(m)+J′ = (0).

Proof. (⇒) Since w.dim (A/I) ≤ 1, A/I is reduced, and so I is radical. Thus, (2)

follows immediately from [14, Corollary 2.8].

(⇐) Since sup{w.dim(f(A) + J),w.dim(g(A) + J ′)} ≤ 1, the rings f(A) + J

and g(A) + J ′ are both arithmetical and reduced. Then, by [13, Remark 4.8]

and [14, Theorem 2.1], A ./f,g (J, J ′) is a reduced arithmetical ring, and so

w.dim
(
A ./f,g (J, J ′)

)
≤ 1. Now, let m ∈ Max(A, I) and consider the following

isomorphism of rings ψ : AI →
f(A)+J

J , a 7→ f(a). We have ψ
(
m
I

)
= f(m)+J

J . Thus,

ψ induces an isomorphism between
(
A
I

)
m
I

and
(
f(A)+J

J

)
f(m)+J

J

. Then, we have the

following isomorphism of rings(
A

I

)
m
I

∼=
(f(A) + J)f(m)+J

Jf(m)+J
.

Similarly, we have the following isomorphism of rings(
A

I

)
m
I

∼=
(g(A) + J ′)g(m)+J′

J ′g(m)+J′
.

Since for every m ∈ Max(A, I), Jf(m)+J = (0) or J ′g(m)+J′ = (0), every localization

of A
I by its maximal ideals is isomorphic or to a localization of f(A) + J or to a

localization of g(A) + J ′. Then, using [10, Theorem 1.3.14], w.dim (A/I) ≤ 1. �
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