International Electronic Journal of Algebra
Volume 21 (2017) 127-136

BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION

Mohammed Tamekkante and El Mehdi Bouba
Received: 5 May 2016; Revised: 30 August 2016
Communicated by Abdullah Harmancı

Abstract

In this paper, we characterize the bi-Amalgamations of small weak global dimension. The new results compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations.

Mathematics Subject Classification (2010): 13F05
Keywords: (Bi)-Amalgamated algebra, weak global dimension

1. Introduction

Throughout, all rings considered are commutative with unity and all modules are unital. For a ring $R, \mathrm{w} \cdot \operatorname{dim}(R)$ will denote the weak global dimension of R. For an R-module M, the flat dimension of M is denoted by $\mathrm{fd}_{R}(M)$.

The following diagram of ring homomorphisms

is called pullback (or fiber product) if the homomorphism $\iota_{2} \times \mu_{2}: R \rightarrow R_{1} \times R_{2}$ induces an isomorphism of R onto the subring of $R_{1} \times R_{2}$ given by

$$
\mu_{1} \times \iota_{1}:=\left\{\left(r_{1}, r_{2}\right) \mid \mu_{1}\left(r_{1}\right)=\iota_{1}\left(r_{2}\right)\right\}
$$

The weak global dimension of a fiber product has been studied previously. In 1992, S. Scrivanti [19] obtained the following upper bound on the weak global dimension of R, assuming that ι_{1} is surjective,

$$
\mathrm{w} \cdot \operatorname{dim}(R) \leq \max \left\{\mathrm{w} \cdot \operatorname{dim}\left(R_{1}\right)+\mathrm{fd}_{R}\left(R_{1}\right), \mathrm{w} \cdot \operatorname{dim}\left(R_{2}\right)+\mathrm{fd}_{R}\left(R_{2}\right)\right\}
$$

The aim of this paper is to study the weak global dimension of a subclass of pullbacks rings called bi-amalgamated algebras introduced in [13].

Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be two ring homomorphisms and let J and J^{\prime} be two ideals of B and C, respectively, such that $f^{-1}(J)=g^{-1}\left(J^{\prime}\right)$. The biamalgamation of A with (B, C) along $\left(J, J^{\prime}\right)$ with respect to (f, g) is the subring of $B \times C$ given by

$$
A \bowtie^{f, g}\left(J, J^{\prime}\right)=\left\{\left(f(a)+j, g(a)+j^{\prime}\right) \mid a \in A,\left(j, j^{\prime}\right) \in J \times J^{\prime}\right\}
$$

This construction was introduced in [13] as a natural generalization of duplications $[5,6]$ and amalgamations $[7,8]$. Given a ring homomorphism $f: A \rightarrow B$ and an ideal J of B, the bi-amalgamation $A \bowtie^{\iota, f}\left(f^{-1}(J), J\right)$ coincides with the amalgamated algebra introduced in 2009 by D'Anna, Finocchiaro, and Fontana ($[7,8]$) as the following subring of $A \times B$:

$$
A \bowtie^{f} J=\{(a, f(a)+j) \mid a \in A, j \in J\} .
$$

When $A=B$ and $f=\operatorname{id}_{A}$, the amalgamated $A \bowtie^{\mathrm{id}_{A}} I$ is called amalgamated duplication of a ring A along the ideal I and denoted $A \bowtie I$ (Introduced in 2007 by D'Anna and Fontana, [6]). This construction can be presented as a bi-amalgamated algebra as follows:

$$
A \bowtie I=A \bowtie^{\mathrm{id}, \mathrm{id}}(I, I)
$$

In [13], the authors provide original examples of bi-amalgamations and, in particular, show that Boisen-Sheldon's CPI-extensions [3] can be viewed as bi-amalgamations. They also showed how these bi-amalgamations arise as pullbacks. Given $f: A \rightarrow B$ and $g: A \rightarrow C$ two ring homomorphisms and J and J^{\prime} be two ideals of B and C, respectively, such that $f^{-1}(J)=g^{-1}\left(J^{\prime}\right):=I$, the bi-amalgamation is determined by the following pullback:

where μ_{1} and μ_{2} are the surjection morphisms induced from the canonical surjections of $(f(A)+J) \times\left(g(A)+J^{\prime}\right)$ into $f(A)+J$ and $g(A)+J^{\prime}$, respectively, and $\alpha(f(a)+j)=\bar{a}$ and $\beta\left(g(a)+j^{\prime}\right)=\bar{a}$, for each $a \in A$ and $j, j^{\prime} \in J \times J^{\prime}$. That is

$$
A \bowtie^{f, g}\left(J, J^{\prime}\right)=\alpha \times_{\frac{A}{T}} \beta
$$

In this paper, we characterize the bi-amalgamations of small weak global dimension. All obtained results recover and compare to previous works carried on
various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations $([1,4,14,18])$.

2. Bi-amalgamation of small weak global dimension

Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be two ring homomorphisms and let J and J^{\prime} be two proper ideals of B and C, respectively, such that $I:=f^{-1}(J)=g^{-1}\left(J^{\prime}\right)$. Throughout this paper, $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ will denote the bi-amalgamation of A with (B, C) along $\left(J, J^{\prime}\right)$ with respect to (f, g). Unless another statement, the ideals J and J^{\prime} are seen as ideals of $f(A)+J$ and $g(A)+J^{\prime}$, respectively.

Notice that in the presence of the equality $f^{-1}(J)=g^{-1}\left(J^{\prime}\right), J=B$ if and only if $J^{\prime}=C$; and in this case $A \bowtie^{f, g}\left(J, J^{\prime}\right)=B \times C$. Therefore, in this paper, we will omit this trivial case (i.e., J and J^{\prime} will always be proper) since $\mathrm{w} \cdot \operatorname{dim}(B \times C)=\max \{\mathrm{w} \cdot \operatorname{dim}(B), \mathrm{w} \cdot \operatorname{dim}(C)\}$.

This section characterizes the bi-amalgamations of weak global dimension smaller or equal to one.

Rings with weak global dimension zero are those for which all modules over R are flat. These are exactly the von Neumann regular rings (also called absolutely flat rings). The following characterizations of von Neumann regular rings can be found in $[10,16]$. Let R be a ring. The following conditions are equivalent:
(1) R is von Neumann regular.
(2) For every $x \in R$, there exists $y \in R$ such that $x^{2} y=x$.
(3) R has Krull dimension 0 and is reduced.

The first main result establishes necessary and sufficient conditions for a biamalgamation to have weak global dimension zero. To this purpose, we need the following lemma. For a given ring R, let $\operatorname{dim}(R)$ denote the Krull dimension of R.

Lemma 2.1. $\operatorname{dim}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right)=\max \left\{\operatorname{dim}(f(A)+J), \operatorname{dim}\left(g(A)+J^{\prime}\right)\right\}$.
Proof. Let $\left(f(a)+j, g(b)+j^{\prime}\right) \in(f(A)+J) \times\left(g(A)+J^{\prime}\right)$. It is immediately checked that it is a root of the monic polynomial

$$
g(X)=\left(X-(f(a)+j, g(a))\left(X-\left(f(b), g(b)+j^{\prime}\right)\right)\right.
$$

It is easy to see the $g(X) \in A \bowtie^{f, g}\left(J, J^{\prime}\right)[X]$. Hence, the ring $(f(A)+J) \times(g(A)+$ $\left.J^{\prime}\right)$ is integral over $A \bowtie^{f, g}\left(J, J^{\prime}\right)$. More precisely, every element of $(f(A)+J) \times$ $\left(g(A)+J^{\prime}\right)$ has degree at most two over $A \bowtie^{f, g}\left(J, J^{\prime}\right)$. By [15, Theorem 48], it follows immediately that

$$
\left.\operatorname{dim}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right)=\operatorname{dim}\left((f(A)+J) \times\left(g(A)+J^{\prime}\right)\right)\right\}
$$

Thus, the conclusion is an easy consequence of the fact that $\operatorname{Spec}((f(A)+J) \times$ $\left.\left(g(A)+J^{\prime}\right)\right)$ is canonically homeomorphic to the disjoint union of $\operatorname{Spec}(f(A)+J)$ and $\operatorname{Spec}\left(g(A)+J^{\prime}\right)$.

Proposition 2.2. The ring $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is von Neumann regular if and only if $f(A)+J$ and $g(A)+J^{\prime}$ are von Neumann regular.

Proof. (\Rightarrow) Let $f(a)+j \in f(A)+J$. Since $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is von Neumann regular, there exists $\left(f(b)+j_{1}, g(b)+j_{1}^{\prime}\right) \in A \bowtie^{f, g}\left(J, J^{\prime}\right)$ such that $(f(a)+j, g(a))^{2}(f(b)+$ $\left.j_{1}, g(b)+j_{1}^{\prime}\right)=(f(a)+j, g(a))$. Thus, $(f(a)+j)^{2}\left(f(b)+j_{1}\right)=f(a)+j$. Hence, $f(A)+J$ is von Neumann regular. Similarly, we prove that $g(A)+J^{\prime}$ is von Neumann regular.
(\Leftarrow) Since $f(A)+J$ and $g(A)+J^{\prime}$ are von Neumann regular, they are reduced and have Krull dimension zero. Thus, using [13, Remark 4.8] and Lemma 2.1, $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is reduced and of Krull dimension zero. Consequently, $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is von Neumann regular.

Corollary 2.3. The ring $A \bowtie^{f} J$ is von Neumann regular if and only if A and $f(A)+J$ are von Neumann regular.

Example 2.4. Let n and k be two positive integers with $0<k<n$ and let R be the subring of $(\mathbb{Z} / n \mathbb{Z})^{2}$ defined by

$$
R:=\left\{(\bar{a}, \bar{b}) \in(\mathbb{Z} / n \mathbb{Z})^{2} \mid k \text { divides } a-b\right\}
$$

Then, the global dimension of R is 0 when n is a square-free, and ∞ otherwise.

Proof. Consider the canonical surjection of rings $f: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ and set $J=(\bar{k})$. It is easily seen that

$$
\mathbb{Z} \bowtie^{f, f}(J, J)=\left\{(\overline{a+k c}, \overline{a+k d}) \in(\mathbb{Z} / n \mathbb{Z})^{2} \mid a,, c, d \in \mathbb{Z}\right\}=R .
$$

Note also that R is Noetherian since $f(A)+J=\mathbb{Z} / n \mathbb{Z}$ is Noetherian ([13, Proposition 4.2]), and so the weak global dimension coincides with the global dimension. If $\operatorname{gldim}(R)<\infty$, then R is a regular ring. Thus, by [11, Corollary 8.5], $\operatorname{gldim}(R)=$ $\operatorname{dim}(R)$ (the Krull dimension). On the other hand, by using Lemma 2.1, $\operatorname{dim}(R)=$ $\operatorname{dim}(\mathbb{Z} / n \mathbb{Z})=0$. Hence, $\operatorname{gldim}(R)$ is 0 . Moreover, by Proposition $2.2, \operatorname{gldim}(R)=0$ if and only if gldim $(\mathbb{Z} / n \mathbb{Z})=0$. On the other hand, it is known that gldim $(\mathbb{Z} / n \mathbb{Z})=$ 0 when n is square-free, and ∞ otherwise ([17, Corollary 5.19]). Thus, the global dimension of R is 0 if and only if n is a square-free, and ∞ otherwise.

Set $\operatorname{Max}(A, I):=\operatorname{Max}(A) \cap \mathrm{V}(I)=\{\mathfrak{m} \in \operatorname{Max}(A) \mid I \subseteq \mathfrak{m}\}$. For any $\mathfrak{m} \in$ $\operatorname{Max}(A, I)$, consider the multiplicative subsets
$S_{\mathfrak{m}}:=(f(A)+J)-(f(\mathfrak{m})+J)=f(A-\mathfrak{m})+J, \quad S_{\mathfrak{m}}^{\prime}:=\left(g(A)+J^{\prime}\right)-\left(g(\mathfrak{m})+J^{\prime}\right)=g(A-\mathfrak{m})+J^{\prime}$
of B and C, respectively. One can easily check $J_{f(\mathfrak{m})+J}=J_{S_{\mathfrak{m}}}$ (resp. $J_{g(\mathfrak{m})+J^{\prime}}^{\prime}=$ $J_{S_{\mathfrak{m}}^{\prime}}^{\prime}$) where $J_{f(\mathfrak{m})+J}$ (resp. $J_{g(\mathfrak{m})+J^{\prime}}^{\prime}$) is the localization of J (resp. J^{\prime}) as an ideal of $f(A)+J$ (resp. $g(A)+J^{\prime}$), and $J_{S_{\mathrm{m}}}$ (resp. $J_{S_{\mathrm{m}}^{\prime}}^{\prime}$) is the localization of J (resp. $\left.J^{\prime}\right)$ as an ideal of B (resp. C). All along the rest of this paper, J (resp. J^{\prime}) is seen as an ideal of $f(A)+J$ (resp. $g(A)+J^{\prime}$).

Recall that a ring R is arithmetical if every finitely generated ideal is locally principal $[9,12]$. In [14], the authors proved that if w.dim $(f(A)+J) \leq 1$, w.dim $(g(A)+$ $\left.J^{\prime}\right) \leq 1, J \cap \operatorname{Nil}(B)=(0), J^{\prime} \cap \operatorname{Nil}(C)=(0)$, and for each $\mathfrak{m} \in \operatorname{Max}(A, I)$, $J_{f(\mathfrak{m})+J}=(0)$ or $J_{g(\mathfrak{m})+J^{\prime}}^{\prime}=(0)$, then w.dim $\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right) \leq 1$. The converse holds if I is radical.

In our second main result of this section, we give a complete characterization for a bi-amalgamation to have weak global dimension at most 1. Before that, we give necessary and sufficient conditions for a bi-amalgamation to be reduced.

Proposition 2.5. The ring $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is reduced if and only if
(1) $J \cap \operatorname{Nil}(B)=(0)$ and $J^{\prime} \cap \operatorname{Nil}(C)=(0)$.
(2) $f^{-1}(\operatorname{Nil}(B)+J) \cap g^{-1}\left(\operatorname{Nil}(C)+J^{\prime}\right)=I$.

Proof. (\Rightarrow) Following [13, Proposition 4.7], (1) is satisfied. Moreover, it is easily seen that $I \subseteq f^{-1}(\operatorname{Nil}(B)+J) \cap g^{-1}\left(\operatorname{Nil}(C)+J^{\prime}\right)$. Now, let $x \in f^{-1}(\operatorname{Nil}(B)+J) \cap$ $g^{-1}\left(\operatorname{Nil}(C)+J^{\prime}\right)$. Then, there exits $j \in J$ and $j^{\prime} \in J$ such that $f(x)+j \in$ $\operatorname{Nil}(B)$ and $f(x)+j^{\prime} \in \operatorname{Nil}(C)$. Hence, there exists a positive integer n such that $(f(x)+j)^{n}=0$ and $\left(g(x)+j^{\prime}\right)^{n}=0$. Then, $\left(f(x)+j, g(x)+j^{\prime}\right)^{n}=(0,0)$, and so $\left(f(x)+j, g(x)+j^{\prime}\right)=(0,0)$ since $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is reduced. Hence, $x \in I$. Consequently, (2) is satisfied.
(\Leftarrow) Let $\left(f(x)+j, g(x)+j^{\prime}\right) \in A \bowtie^{f, g}\left(J, J^{\prime}\right)$ such that $\left(f(x)+j, g(x)+j^{\prime}\right)^{n}=(0,0)$ for some positive integer n. Then, $(f(x)+j)^{n}=0$ and $\left(g(x)+j^{\prime}\right)^{n}=0$. Then, $f(x)+$ $j \in \operatorname{Nil}(B)$ and $g(x)+j^{\prime} \in \operatorname{Nil}(C)$. Thus, $x \in f^{-1}(\operatorname{Nil}(B)+J) \cap g^{-1}\left(\operatorname{Nil}(C)+J^{\prime}\right)=$ I. Accordingly, $f(x)+j \in J \cap \operatorname{Nil}(B)=(0)$ and $g(x)+j^{\prime} \in J^{\prime} \cap \operatorname{Nil}(C)=(0)$. Consequently, $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is reduced.

Proposition 2.5 recovers the special case of amalgamated algebras, as recorded in the next corollary.

Corollary 2.6. [7, Proposition 5.4] $A \bowtie^{f} J$ is reduced if and only if A is reduced and $J \cap \operatorname{Nil}(B)=(0)$.

Proof. Recall that $A \bowtie^{f} J=A \bowtie^{\iota, f}\left(f^{-1}(J), J\right)$. Thus, using Proposition 2.5, $A \bowtie^{f} J$ is reduced if and only if
(1) $f^{-1}(J) \cap \operatorname{Nil}(A)=(0)$ and $J \cap \operatorname{Nil}(B)=(0)$.
(2) $\left(\operatorname{Nil}(A)+f^{-1}(J)\right) \cap f^{-1}(\operatorname{Nil}(B)+J)=f^{-1}(J)$.

But $\operatorname{Nil}(A)+f^{-1}(J) \subseteq f^{-1}(\operatorname{Nil}(B)+J)$. Hence, the condition (2) becomes $\operatorname{Nil}(A)+$ $f^{-1}(J)=f^{-1}(J)$, or equivalently $\operatorname{Nil}(A) \subseteq f^{-1}(J)$. Hence, $A \bowtie^{f} J$ is reduced if and only if $\operatorname{Nil}(A)=(0)$ and $J \cap \operatorname{Nil}(B)=(0)$. Thus, we have the desired result.

Proposition 2.7. w.dim $\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right) \leq 1$ if and only if
(1) $f(A)+J$ and $g(A)+J^{\prime}$ are both arithmetical and, for every $\mathfrak{m} \in \operatorname{Max}(A, I)$, $J_{f(\mathfrak{m})+J}=(0)$ or $J_{g(\mathfrak{m})+J^{\prime}}^{\prime}=(0)$.
(2) $J \cap \operatorname{Nil}(B)=(0)$ and $J^{\prime} \cap \operatorname{Nil}(C)=(0)$.
(3) $f^{-1}(\operatorname{Nil}(B)+J) \cap g^{-1}\left(\operatorname{Nil}(C)+J^{\prime}\right)=I$.

Proof. Recall that a ring R has weak global dimension at most 1 if and only if R is arithmetical and reduced ([2, Theorem 3.5]). A combination of this fact with Proposition 2.5 and [14, Theorem 2.1] leads to the desired conclusion.

For the special case of amalgamations, we get the following result.
Corollary 2.8. ([14, Corollary 2.9]) w.dim $\left(A \bowtie^{f} J\right) \leq 1$ if and only if $\mathrm{w} \cdot \operatorname{dim}(A) \leq$ $1, f(A)+J$ is arithmetical, $J \cap \operatorname{Nil}(B)=(0)$, and for every $\mathfrak{m} \in \operatorname{Max}(A, I), I_{\mathfrak{m}}=(0)$ or $J_{f(\mathfrak{m})+J}=(0)$.

Proof. As in the proof of Corollary 2.6, the conditions (2) and (3) of Proposition 2.7 means, in the case of amalgamated algebras, that A is reduced and $J \cap \mathrm{Nil}(B)=(0)$. Combining this with the fact that w. $\operatorname{dim}(R) \leq 1$ if and only if R is reduced and arithmetical, we get the desired result.

Remark 2.9. Recall that an ideal I is called pure if R / I is a flat R-module. If A is local and $I \neq(0)$, then, w.dim $\left(A \bowtie^{f} J\right) \leq 1$ implies that J is a pure ideal of $f(A)+J$. Indeed, if \mathfrak{m} is the unique maximal ideal of A, then from Corollary 2.8, $J_{f(\mathfrak{m})+J}=(0)$ since $I \neq(0)$ (and so $I_{\mathfrak{m}} \neq(0)$). Note that $f(\mathfrak{m})+J$ is the unique maximal ideal of $f(A)+J$ which contains J. Indeed, if P is a maximal ideal of $f(A)+J$ which contains J and $f(x)+j \in P$, then $f(x) \in P$, and so $x \in f^{-1}(P) \subseteq \mathfrak{m}$. Thus, for each $L \in \operatorname{Spec}(f(A)+J) \backslash\{f(\mathfrak{m})+J\}, J \nsubseteq L$, and so $J_{L}=(f(A)+J)_{L}$. Hence, using [10, Theorem 1.2.15], J is a pure ideal.

In the local case, the bi-amalgamations of weak dimension ≤ 1 have a simple characterization. Recall that, from [13, Proposition 5.4], the ring $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is local if and only if $J \neq B$ and $f(A)+J$ and $g(A)+J^{\prime}$ are local.

Corollary 2.10. If $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is local, then $\mathrm{w} \cdot \operatorname{dim}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right) \leq 1$ if and only if " $J=0$ and $\mathrm{w} \cdot \operatorname{dim}\left(g(A)+J^{\prime}\right) \leq 1$ " or " $J^{\prime}=0$ and $\mathrm{w} \cdot \operatorname{dim}(f(A)+J) \leq 1$ ".

Proof. From [13, Proposition 5.4], there is a unique maximal ideal \mathfrak{m} of A containing I. Thus, the unique maximal ideal of $f(A)+J$ (resp. $g(A)+J^{\prime}$) is $f(\mathfrak{m})+J$ (resp. $\left.g(\mathfrak{m})+J^{\prime}\right)$. If $\mathrm{w} \cdot \operatorname{dim}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right) \leq 1$ then, by using Proposition 2.7 , we have $J_{f(\mathfrak{m})+J}=(0)$ or $J_{g(\mathfrak{m})+J^{\prime}}^{\prime}=(0)$. In the first case, $J=0$ since $f(A)+J$ is local, and similarly in the second case $J^{\prime}=0$. The rest of the proof is easily deduced from [13, Proposition 4.1]. Indeed, if $J=0$ (resp. $J^{\prime}=0$) then $A \bowtie^{f, g}\left(J, J^{\prime}\right) \cong g(A)+J^{\prime}$ $\left(\right.$ resp. $\left.A \bowtie^{f, g}\left(J, J^{\prime}\right) \cong f(A)+J\right)$.

Corollary 2.11. w.dim $\left(A \bowtie^{f, f}(J, J)\right) \leq 1$ if and only if $\mathrm{w} \cdot \operatorname{dim}(f(A)+J) \leq 1$ and J is a pure ideal of $f(A)+J$.

Proof. Following Proposition 2.7, w. $\operatorname{dim}\left(A \bowtie^{f, f}(J, J)\right) \leq 1$ if and only if
(1) $f(A)+J$ is an arithmetical ring.
(2) for every $\mathfrak{m} \in \operatorname{Max}(A, I), J_{f(\mathfrak{m})+J}=(0)$.
(3) $J \cap \operatorname{Nil}(B)=(0)$.
(4) $f^{-1}(\operatorname{Nil}(B)+J)=I$.

On the other hand, it is clear that for each $L \in \operatorname{Max}(f(A)+J)$ such that $J \nsubseteq L$, $J_{L}=(f(A)+J)_{L}$. Thus, condition (2) is equivalent to that $J_{L}=(0)$ or $J_{L}=$ $(f(A)+J)_{L}$ for each $L \in \operatorname{Max}(f(A)+J)$, which is also equivalent to that J is a pure ideal of $f(A)+J$ (by [10, Theorem 1.2.15]).
If (3) and (4) holds, then for each $f(x)+j \in \operatorname{Nil}(f(A)+J)$, we have $f(x) \in$ $\operatorname{Nil}(f(A)+J)+J$. Hence, $x \in f^{-1}(\operatorname{Nil}(B)+J)=I$. Then, $f(x)+j \in J \cap$ $\operatorname{Nil}(f(A)+J) \subseteq J \cap \operatorname{Nil}(B)=(0)$. Consequently $f(A)+J$ is reduced. Conversely, if $f(A)+J$ is reduced then (3) holds since $J \cap \operatorname{Nil}(B) \subseteq J \cap \operatorname{Nil}(f(A)+J)=(0)$. Moreover, for each $x \in f^{-1}(\operatorname{Nil}(B)+J), f(x) \in \operatorname{Nil}(B)+J$. Then, there exists $j \in J$ such that $f(x)+j \in \operatorname{Nil}(B) \cap(f(A)+J)=\operatorname{Nil}(f(A)+J)=(0)$. Thus, $x \in I$. Trivially, $I \subseteq f^{-1}(\operatorname{Nil}(B)+J)$. Consequently, (4) holds immediately. Accordingly, by [2, Theorem 3.5], we have the desired result.

Corollary 2.11 recovers a known result for duplications.
Corollary 2.12. ([4, Theorem $4.1(1)]) \mathrm{w} \cdot \operatorname{dim}(A \bowtie I) \leq 1$ if and only if $\mathrm{w} \cdot \operatorname{dim}(A) \leq$ 1 and I is a pure ideal of A.

The intervention of the ring A / I (with the meaning of the below proposition) gives a more simple characterization of bi-amalgamations of weak global dimension at most 1 .

Proposition 2.13. The following conditions are equivalent:
(1) $\sup \left\{\mathrm{w} \cdot \operatorname{dim}(A / I), \mathrm{w} \cdot \operatorname{dim}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right)\right\} \leq 1$.
(2) $\sup \left\{\mathrm{w} \cdot \operatorname{dim}(f(A)+J)\right.$, $\left.\mathrm{w} \cdot \operatorname{dim}\left(g(A)+J^{\prime}\right)\right\} \leq 1$ and for every $\mathfrak{m} \in \operatorname{Max}(A, I)$, $J_{f(\mathfrak{m})+J}=(0)$ or $J_{g(\mathfrak{m})+J^{\prime}}^{\prime}=(0)$.

Proof. (\Rightarrow) Since w. $\operatorname{dim}(A / I) \leq 1, A / I$ is reduced, and so I is radical. Thus, (2) follows immediately from [14, Corollary 2.8].
(\Leftarrow) Since $\sup \left\{\mathrm{w} \cdot \operatorname{dim}(f(A)+J)\right.$, w. $\left.\operatorname{dim}\left(g(A)+J^{\prime}\right)\right\} \leq 1$, the rings $f(A)+J$ and $g(A)+J^{\prime}$ are both arithmetical and reduced. Then, by [13, Remark 4.8] and [14, Theorem 2.1], $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is a reduced arithmetical ring, and so w.dim $\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right) \leq 1$. Now, let $\mathfrak{m} \in \operatorname{Max}(A, I)$ and consider the following isomorphism of rings $\psi: \frac{A}{I} \rightarrow \frac{f(A)+J}{J}, \bar{a} \mapsto \overline{f(a)}$. We have $\psi\left(\frac{\mathfrak{m}}{I}\right)=\frac{f(\mathfrak{m})+J}{J}$. Thus, ψ induces an isomorphism between $\left(\frac{A}{I}\right)_{\frac{\mathfrak{m}}{I}}$ and $\left(\frac{f(A)+J}{J}\right)_{\frac{f(\mathfrak{m})+J}{J}}$. Then, we have the following isomorphism of rings

$$
\left(\frac{A}{I}\right)_{\frac{\mathfrak{m}}{I}} \cong \frac{(f(A)+J)_{f(\mathfrak{m})+J}}{J_{f(\mathfrak{m})+J}}
$$

Similarly, we have the following isomorphism of rings

$$
\left(\frac{A}{I}\right)_{\frac{\mathfrak{m}}{I}} \cong \frac{\left(g(A)+J^{\prime}\right)_{g(\mathfrak{m})+J^{\prime}}}{J_{g(\mathfrak{m})+J^{\prime}}^{\prime}}
$$

Since for every $\mathfrak{m} \in \operatorname{Max}(A, I), J_{f(\mathfrak{m})+J}=(0)$ or $J_{g(\mathfrak{m})+J^{\prime}}^{\prime}=(0)$, every localization of $\frac{A}{I}$ by its maximal ideals is isomorphic or to a localization of $f(A)+J$ or to a localization of $g(A)+J^{\prime}$. Then, using [10, Theorem 1.3.14], w. $\operatorname{dim}(A / I) \leq 1$.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc., 41(3) (2015), 625-632.
[2] S. Bazzoni and S. Glaz, Prüfer rings, in: J. Brewer, S. Glaz, W. Heinzer, B. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A tribute to the work of Robert Gilmer, Springer, New York, (2006), 55-72.
[3] M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrum, Canad. J. Math., 29(4) (1977), 722-737.
[4] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015), 249-261.
[5] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat., 45(2) (2007), 241-252.
[6] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
[7] M. D'Anna, C. A. Finacchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, (2009), 155-172.
[8] M. D'Anna, C. A. Finacchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9) (2010), 1633-1641.
[9] L. Fuchs, Uber die ideale arithmetischer ringe, Comment. Math. Helv., 23 (1949), 334-341.
[10] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math., 1371, SpringerVerlag, Berlin, 1989.
[11] S. Greco and P. Salmon, Topics in m-Adic Topologies, Springer-Verlag, Berlin, Heidelberg, 1971.
[12] C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar., 17 (1966), 115-123.
[13] S. Kabbaj, K. Louartiti and M. Tamekkante, Bi-amalgamated algebras along ideals, J. Commut. Algebra, to appear (arXiv:1407.7074v1).
[14] S. Kabbaj, N. Mahdou and M. A. S. Moutui, Bi-amalgamations subject to the arithmetical property, J. Algebra Appl., 16 (2017), 1750030 (11 pages).
[15] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
[16] T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Mathematics, Springer-Verlag, New York, First edition, 1995.
[17] T. Y. Lam, Lectures on Modules and Rings, Springer Science and Business Media, 2012.
[18] K. Louartiti and M. Tamekkante, Global dimension of bi-amalgamated algebras along pure ideals, Journal of Taibah University for Science, 9 (2015), 361-365.
[19] S. Scrivanti, Homological dimension of pullbacks, Math. Scand., 71(1) (1992), 5-15.

Mohammed Tamekkante (Corresponding Author) and El Mehdi Bouba
Department of Mathematics
Faculty of Science
Box 11201 Zitoune
University Moulay Ismail Meknes, Morocco
e-mails: tamekkante@yahoo.fr (M. Tamekkante)
mehdi8bouba@hotmail.fr (E. M. Bouba)

