

BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION

Mohammed Tamekkante and El Mehdi Bouba

Received: 5 May 2016; Revised: 30 August 2016 Communicated by Abdullah Harmancı

ABSTRACT. In this paper, we characterize the bi-Amalgamations of small weak global dimension. The new results compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations.

Mathematics Subject Classification (2010): 13F05 Keywords: (Bi)-Amalgamated algebra, weak global dimension

1. Introduction

Throughout, all rings considered are commutative with unity and all modules are unital. For a ring R, w.dim(R) will denote the weak global dimension of R. For an R-module M, the flat dimension of M is denoted by $fd_R(M)$.

The following diagram of ring homomorphisms

$$\begin{array}{ccc} R & \stackrel{\iota_2}{\longrightarrow} & R_1 \\ & & & & & \\ \mu_2 & & & & \\ R_2 & \stackrel{\iota_1}{\longrightarrow} & R' \end{array}$$

is called pullback (or fiber product) if the homomorphism $\iota_2 \times \mu_2 : R \to R_1 \times R_2$ induces an isomorphism of R onto the subring of $R_1 \times R_2$ given by

$$\mu_1 \times \iota_1 := \{ (r_1, r_2) \mid \mu_1(r_1) = \iota_1(r_2) \}.$$

The weak global dimension of a fiber product has been studied previously. In 1992, S. Scrivanti [19] obtained the following upper bound on the weak global dimension of R, assuming that ι_1 is surjective,

w.dim
$$(R) \le \max\{\text{w.dim}(R_1) + \text{fd}_R(R_1), \text{w.dim}(R_2) + \text{fd}_R(R_2)\}.$$

The aim of this paper is to study the weak global dimension of a subclass of pullbacks rings called bi-amalgamated algebras introduced in [13].

Let $f : A \to B$ and $g : A \to C$ be two ring homomorphisms and let J and J' be two ideals of B and C, respectively, such that $f^{-1}(J) = g^{-1}(J')$. The biamalgamation of A with (B, C) along (J, J') with respect to (f, g) is the subring of $B \times C$ given by

$$A \bowtie^{f,g} (J,J') = \{ (f(a) + j, g(a) + j') \mid a \in A, (j,j') \in J \times J' \}.$$

This construction was introduced in [13] as a natural generalization of duplications [5,6] and amalgamations [7,8]. Given a ring homomorphism $f: A \to B$ and an ideal J of B, the bi-amalgamation $A \bowtie^{\iota,f} (f^{-1}(J), J)$ coincides with the amalgamated algebra introduced in 2009 by D'Anna, Finocchiaro, and Fontana ([7,8]) as the following subring of $A \times B$:

$$A \bowtie^{f} J = \{ (a, f(a) + j) \mid a \in A, \ j \in J \}.$$

When A = B and $f = id_A$, the amalgamated $A \bowtie^{id_A} I$ is called amalgamated duplication of a ring A along the ideal I and denoted $A \bowtie I$ (Introduced in 2007 by D'Anna and Fontana, [6]). This construction can be presented as a bi-amalgamated algebra as follows:

$$A \bowtie I = A \bowtie^{\mathrm{id},\mathrm{id}} (I, I).$$

In [13], the authors provide original examples of bi-amalgamations and, in particular, show that Boisen-Sheldon's CPI-extensions [3] can be viewed as bi-amalgamations. They also showed how these bi-amalgamations arise as pullbacks. Given $f: A \to B$ and $g: A \to C$ two ring homomorphisms and J and J' be two ideals of B and C, respectively, such that $f^{-1}(J) = g^{-1}(J') := I$, the bi-amalgamation is determined by the following pullback:

where μ_1 and μ_2 are the surjection morphisms induced from the canonical surjections of $(f(A) + J) \times (g(A) + J')$ into f(A) + J and g(A) + J', respectively, and $\alpha(f(a) + j) = \bar{a}$ and $\beta(g(a) + j') = \bar{a}$, for each $a \in A$ and $j, j' \in J \times J'$. That is

$$A \bowtie^{f,g} (J,J') = \alpha \times_{\underline{A}} \beta$$

In this paper, we characterize the bi-amalgamations of small weak global dimension. All obtained results recover and compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations ([1,4,14,18]).

2. Bi-amalgamation of small weak global dimension

Let $f: A \to B$ and $g: A \to C$ be two ring homomorphisms and let J and J'be two proper ideals of B and C, respectively, such that $I := f^{-1}(J) = g^{-1}(J')$. Throughout this paper, $A \bowtie^{f,g} (J, J')$ will denote the bi-amalgamation of A with (B, C) along (J, J') with respect to (f, g). Unless another statement, the ideals Jand J' are seen as ideals of f(A) + J and g(A) + J', respectively.

Notice that in the presence of the equality $f^{-1}(J) = g^{-1}(J')$, J = B if and only if J' = C; and in this case $A \bowtie^{f,g} (J,J') = B \times C$. Therefore, in this paper, we will omit this trivial case (i.e., J and J' will always be proper) since w.dim $(B \times C) = \max\{w.\dim(B), w.\dim(C)\}.$

This section characterizes the bi-amalgamations of weak global dimension smaller or equal to one.

Rings with weak global dimension zero are those for which all modules over R are flat. These are exactly the von Neumann regular rings (also called absolutely flat rings). The following characterizations of von Neumann regular rings can be found in [10,16]. Let R be a ring. The following conditions are equivalent:

- (1) R is von Neumann regular.
- (2) For every $x \in R$, there exists $y \in R$ such that $x^2y = x$.
- (3) R has Krull dimension 0 and is reduced.

The first main result establishes necessary and sufficient conditions for a biamalgamation to have weak global dimension zero. To this purpose, we need the following lemma. For a given ring R, let dim(R) denote the Krull dimension of R.

Lemma 2.1. $\dim(A \bowtie^{f,g} (J, J')) = \max\{\dim(f(A) + J), \dim(g(A) + J')\}.$

Proof. Let $(f(a) + j, g(b) + j') \in (f(A) + J) \times (g(A) + J')$. It is immediately checked that it is a root of the monic polynomial

$$g(X) = (X - (f(a) + j, g(a)) (X - (f(b), g(b) + j'))).$$

It is easy to see the $g(X) \in A \bowtie^{f,g} (J, J')[X]$. Hence, the ring $(f(A) + J) \times (g(A) + J')$ is integral over $A \bowtie^{f,g} (J, J')$. More precisely, every element of $(f(A) + J) \times (g(A) + J')$ has degree at most two over $A \bowtie^{f,g} (J, J')$. By [15, Theorem 48], it follows immediately that

$$\dim(A \bowtie^{f,g} (J,J')) = \dim((f(A) + J) \times (g(A) + J'))).$$

Thus, the conclusion is an easy consequence of the fact that $\text{Spec}((f(A) + J) \times (g(A) + J'))$ is canonically homeomorphic to the disjoint union of Spec(f(A) + J) and Spec(g(A) + J').

Proposition 2.2. The ring $A \bowtie^{f,g} (J, J')$ is von Neumann regular if and only if f(A) + J and g(A) + J' are von Neumann regular.

Proof. (\Rightarrow) Let $f(a) + j \in f(A) + J$. Since $A \bowtie^{f,g} (J, J')$ is von Neumann regular, there exists $(f(b) + j_1, g(b) + j'_1) \in A \bowtie^{f,g} (J, J')$ such that $(f(a) + j, g(a))^2 (f(b) + j_1, g(b) + j'_1) = (f(a) + j, g(a))$. Thus, $(f(a) + j)^2 (f(b) + j_1) = f(a) + j$. Hence, f(A) + J is von Neumann regular. Similarly, we prove that g(A) + J' is von Neumann regular.

(\Leftarrow) Since f(A) + J and g(A) + J' are von Neumann regular, they are reduced and have Krull dimension zero. Thus, using [13, Remark 4.8] and Lemma 2.1, $A \bowtie^{f,g} (J, J')$ is reduced and of Krull dimension zero. Consequently, $A \bowtie^{f,g} (J, J')$ is von Neumann regular.

Corollary 2.3. The ring $A \bowtie^f J$ is von Neumann regular if and only if A and f(A) + J are von Neumann regular.

Example 2.4. Let n and k be two positive integers with 0 < k < n and let R be the subring of $(\mathbb{Z}/n\mathbb{Z})^2$ defined by

$$R := \{ (\overline{a}, \overline{b}) \in (\mathbb{Z}/n\mathbb{Z})^2 \mid k \text{ divides } a - b \}.$$

Then, the global dimension of R is 0 when n is a square-free, and ∞ otherwise.

Proof. Consider the canonical surjection of rings $f : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ and set $J = (\overline{k})$. It is easily seen that

$$\mathbb{Z} \bowtie^{f,f} (J,J) = \{ (\overline{a+kc}, \overline{a+kd}) \in (\mathbb{Z}/n\mathbb{Z})^2 \mid a, c, d \in \mathbb{Z} \} = R.$$

Note also that R is Noetherian since $f(A) + J = \mathbb{Z}/n\mathbb{Z}$ is Noetherian ([13, Proposition 4.2]), and so the weak global dimension coincides with the global dimension. If $\operatorname{gldim}(R) < \infty$, then R is a regular ring. Thus, by [11, Corollary 8.5], $\operatorname{gldim}(R) = \operatorname{dim}(R)$ (the Krull dimension). On the other hand, by using Lemma 2.1, $\operatorname{dim}(R) = \operatorname{dim}(\mathbb{Z}/n\mathbb{Z}) = 0$. Hence, $\operatorname{gldim}(R)$ is 0. Moreover, by Proposition 2.2, $\operatorname{gldim}(R) = 0$ if and only if $\operatorname{gldim}(\mathbb{Z}/n\mathbb{Z}) = 0$. On the other hand, it is known that $\operatorname{gldim}(\mathbb{Z}/n\mathbb{Z}) = 0$ when n is square-free, and ∞ otherwise ([17, Corollary 5.19]). Thus, the global dimension of R is 0 if and only if n is a square-free, and ∞ otherwise. Set $Max(A, I) := Max(A) \cap V(I) = \{\mathfrak{m} \in Max(A) \mid I \subseteq \mathfrak{m}\}$. For any $\mathfrak{m} \in Max(A, I)$, consider the multiplicative subsets

$$S_{\mathfrak{m}} := (f(A)+J) - (f(\mathfrak{m})+J) = f(A-\mathfrak{m})+J, \quad S'_{\mathfrak{m}} := (g(A)+J') - (g(\mathfrak{m})+J') = g(A-\mathfrak{m})+J'$$

of B and C, respectively. One can easily check $J_{f(\mathfrak{m})+J} = J_{S_{\mathfrak{m}}}$ (resp. $J'_{g(\mathfrak{m})+J'} = J'_{S'_{\mathfrak{m}}}$) where $J_{f(\mathfrak{m})+J}$ (resp. $J'_{g(\mathfrak{m})+J'}$) is the localization of J (resp. J') as an ideal of f(A) + J (resp. g(A) + J'), and $J_{S_{\mathfrak{m}}}$ (resp. $J'_{S'_{\mathfrak{m}}}$) is the localization of J (resp. J') as an ideal of J (resp. C). All along the rest of this paper, J (resp. J') is seen as an ideal of f(A) + J (resp. g(A) + J').

Recall that a ring R is arithmetical if every finitely generated ideal is locally principal [9,12]. In [14], the authors proved that if w.dim $(f(A) + J) \leq 1$, w.dim $(g(A) + J') \leq 1$, $J \cap \operatorname{Nil}(B) = (0)$, $J' \cap \operatorname{Nil}(C) = (0)$, and for each $\mathfrak{m} \in \operatorname{Max}(A, I)$, $J_{f(\mathfrak{m})+J} = (0)$ or $J'_{g(\mathfrak{m})+J'} = (0)$, then w.dim $(A \bowtie^{f,g} (J, J')) \leq 1$. The converse holds if I is radical.

In our second main result of this section, we give a complete characterization for a bi-amalgamation to have weak global dimension at most 1. Before that, we give necessary and sufficient conditions for a bi-amalgamation to be reduced.

Proposition 2.5. The ring $A \bowtie^{f,g} (J, J')$ is reduced if and only if

- (1) $J \cap \text{Nil}(B) = (0)$ and $J' \cap \text{Nil}(C) = (0)$.
- (2) $f^{-1}(\operatorname{Nil}(B) + J) \cap g^{-1}(\operatorname{Nil}(C) + J') = I.$

Proof. (\Rightarrow) Following [13, Proposition 4.7], (1) is satisfied. Moreover, it is easily seen that $I \subseteq f^{-1}(\operatorname{Nil}(B) + J) \cap g^{-1}(\operatorname{Nil}(C) + J')$. Now, let $x \in f^{-1}(\operatorname{Nil}(B) + J) \cap g^{-1}(\operatorname{Nil}(C) + J')$. Then, there exists $j \in J$ and $j' \in J$ such that $f(x) + j \in \operatorname{Nil}(B)$ and $f(x) + j' \in \operatorname{Nil}(C)$. Hence, there exists a positive integer n such that $(f(x) + j)^n = 0$ and $(g(x) + j')^n = 0$. Then, $(f(x) + j, g(x) + j')^n = (0, 0)$, and so (f(x) + j, g(x) + j') = (0, 0) since $A \bowtie^{f,g} (J, J')$ is reduced. Hence, $x \in I$. Consequently, (2) is satisfied.

 $(\Leftarrow) \text{ Let } (f(x)+j,g(x)+j') \in A \bowtie^{f,g} (J,J') \text{ such that } (f(x)+j,g(x)+j')^n = (0,0)$ for some positive integer n. Then, $(f(x)+j)^n = 0$ and $(g(x)+j')^n = 0$. Then, $f(x)+j \in \operatorname{Nil}(B)$ and $g(x)+j' \in \operatorname{Nil}(C)$. Thus, $x \in f^{-1}(\operatorname{Nil}(B)+J) \cap g^{-1}(\operatorname{Nil}(C)+J') = I$. Accordingly, $f(x)+j \in J \cap \operatorname{Nil}(B) = (0)$ and $g(x)+j' \in J' \cap \operatorname{Nil}(C) = (0)$. Consequently, $A \bowtie^{f,g} (J,J')$ is reduced. \Box

Proposition 2.5 recovers the special case of amalgamated algebras, as recorded in the next corollary. **Corollary 2.6.** [7, Proposition 5.4] $A \bowtie^f J$ is reduced if and only if A is reduced and $J \cap \operatorname{Nil}(B) = (0)$.

Proof. Recall that $A \bowtie^f J = A \bowtie^{\iota, f} (f^{-1}(J), J)$. Thus, using Proposition 2.5, $A \bowtie^f J$ is reduced if and only if

- (1) $f^{-1}(J) \cap \text{Nil}(A) = (0)$ and $J \cap \text{Nil}(B) = (0)$.
- (2) $(\operatorname{Nil}(A) + f^{-1}(J)) \cap f^{-1}(\operatorname{Nil}(B) + J) = f^{-1}(J).$

But $\operatorname{Nil}(A) + f^{-1}(J) \subseteq f^{-1}(\operatorname{Nil}(B) + J)$. Hence, the condition (2) becomes $\operatorname{Nil}(A) + f^{-1}(J) = f^{-1}(J)$, or equivalently $\operatorname{Nil}(A) \subseteq f^{-1}(J)$. Hence, $A \bowtie^f J$ is reduced if and only if $\operatorname{Nil}(A) = (0)$ and $J \cap \operatorname{Nil}(B) = (0)$. Thus, we have the desired result. \Box

Proposition 2.7. w.dim $(A \bowtie^{f,g} (J, J')) \leq 1$ if and only if

- (1) f(A) + J and g(A) + J' are both arithmetical and, for every $\mathfrak{m} \in Max(A, I)$, $J_{f(\mathfrak{m})+J} = (0)$ or $J'_{g(\mathfrak{m})+J'} = (0)$.
- (2) $J \cap \text{Nil}(B) = (0)$ and $J' \cap \text{Nil}(C) = (0)$.
- (3) $f^{-1}(\operatorname{Nil}(B) + J) \cap g^{-1}(\operatorname{Nil}(C) + J') = I.$

Proof. Recall that a ring R has weak global dimension at most 1 if and only if R is arithmetical and reduced ([2, Theorem 3.5]). A combination of this fact with Proposition 2.5 and [14, Theorem 2.1] leads to the desired conclusion.

For the special case of amalgamations, we get the following result.

Corollary 2.8. ([14, Corollary 2.9]) w.dim $(A \bowtie^f J) \leq 1$ if and only if w.dim $(A) \leq 1$, f(A)+J is arithmetical, $J \cap \operatorname{Nil}(B) = (0)$, and for every $\mathfrak{m} \in \operatorname{Max}(A, I)$, $I_{\mathfrak{m}} = (0)$ or $J_{f(\mathfrak{m})+J} = (0)$.

Proof. As in the proof of Corollary 2.6, the conditions (2) and (3) of Proposition 2.7 means, in the case of amalgamated algebras, that A is reduced and $J \cap \text{Nil}(B) = (0)$. Combining this with the fact that w.dim $(R) \leq 1$ if and only if R is reduced and arithmetical, we get the desired result.

Remark 2.9. Recall that an ideal I is called pure if R/I is a flat R-module. If A is local and $I \neq (0)$, then, w.dim $(A \bowtie^f J) \leq 1$ implies that J is a pure ideal of f(A) + J. Indeed, if \mathfrak{m} is the unique maximal ideal of A, then from Corollary 2.8, $J_{f(\mathfrak{m})+J} = (0)$ since $I \neq (0)$ (and so $I_{\mathfrak{m}} \neq (0)$). Note that $f(\mathfrak{m}) + J$ is the unique maximal ideal of f(A) + J which contains J. Indeed, if P is a maximal ideal of f(A) + J which contains J and $f(x) + j \in P$, then $f(x) \in P$, and so $x \in f^{-1}(P) \subseteq \mathfrak{m}$. Thus, for each $L \in \text{Spec}(f(A) + J) \setminus \{f(\mathfrak{m}) + J\}, J \not\subseteq L$, and so $J_L = (f(A) + J)_L$. Hence, using [10, Theorem 1.2.15], J is a pure ideal. In the local case, the bi-amalgamations of weak dimension ≤ 1 have a simple characterization. Recall that, from [13, Proposition 5.4], the ring $A \bowtie^{f,g} (J, J')$ is local if and only if $J \neq B$ and f(A) + J and g(A) + J' are local.

Corollary 2.10. If $A \bowtie^{f,g} (J, J')$ is local, then w.dim $(A \bowtie^{f,g} (J, J')) \leq 1$ if and only if "J = 0 and w.dim $(g(A) + J') \leq 1$ " or "J' = 0 and w.dim $(f(A) + J) \leq 1$ ".

Proof. From [13, Proposition 5.4], there is a unique maximal ideal \mathfrak{m} of A containing I. Thus, the unique maximal ideal of f(A) + J (resp. g(A) + J') is $f(\mathfrak{m}) + J$ (resp. $g(\mathfrak{m}) + J'$). If w.dim $(A \bowtie^{f,g} (J, J')) \leq 1$ then, by using Proposition 2.7, we have $J_{f(\mathfrak{m})+J} = (0)$ or $J'_{g(\mathfrak{m})+J'} = (0)$. In the first case, J = 0 since f(A) + J is local, and similarly in the second case J' = 0. The rest of the proof is easily deduced from [13, Proposition 4.1]. Indeed, if J = 0 (resp. J' = 0) then $A \bowtie^{f,g} (J, J') \cong g(A) + J'$ (resp. $A \bowtie^{f,g} (J, J') \cong f(A) + J$).

Corollary 2.11. w.dim $(A \bowtie^{f,f} (J,J)) \le 1$ if and only if w.dim $(f(A) + J) \le 1$ and J is a pure ideal of f(A) + J.

Proof. Following Proposition 2.7, w.dim $(A \bowtie^{f,f} (J,J)) \le 1$ if and only if

- (1) f(A) + J is an arithmetical ring.
- (2) for every $\mathfrak{m} \in \operatorname{Max}(A, I), J_{f(\mathfrak{m})+J} = (0).$
- (3) $J \cap Nil(B) = (0).$
- (4) $f^{-1}(\operatorname{Nil}(B) + J) = I.$

On the other hand, it is clear that for each $L \in Max(f(A) + J)$ such that $J \notin L$, $J_L = (f(A) + J)_L$. Thus, condition (2) is equivalent to that $J_L = (0)$ or $J_L = (f(A) + J)_L$ for each $L \in Max(f(A) + J)$, which is also equivalent to that J is a pure ideal of f(A) + J (by [10, Theorem 1.2.15]).

If (3) and (4) holds, then for each $f(x) + j \in \operatorname{Nil}(f(A) + J)$, we have $f(x) \in \operatorname{Nil}(f(A) + J) + J$. Hence, $x \in f^{-1}(\operatorname{Nil}(B) + J) = I$. Then, $f(x) + j \in J \cap \operatorname{Nil}(f(A) + J) \subseteq J \cap \operatorname{Nil}(B) = (0)$. Consequently f(A) + J is reduced. Conversely, if f(A) + J is reduced then (3) holds since $J \cap \operatorname{Nil}(B) \subseteq J \cap \operatorname{Nil}(f(A) + J) = (0)$. Moreover, for each $x \in f^{-1}(\operatorname{Nil}(B) + J)$, $f(x) \in \operatorname{Nil}(B) + J$. Then, there exists $j \in J$ such that $f(x) + j \in \operatorname{Nil}(B) \cap (f(A) + J) = \operatorname{Nil}(f(A) + J) = (0)$. Thus, $x \in I$. Trivially, $I \subseteq f^{-1}(\operatorname{Nil}(B) + J)$. Consequently, (4) holds immediately. Accordingly, by [2, Theorem 3.5], we have the desired result.

Corollary 2.11 recovers a known result for duplications.

Corollary 2.12. ([4, Theorem 4.1(1)]) w.dim $(A \bowtie I) \le 1$ if and only if w.dim $(A) \le 1$ and I is a pure ideal of A.

The intervention of the ring A/I (with the meaning of the below proposition) gives a more simple characterization of bi-amalgamations of weak global dimension at most 1.

Proposition 2.13. The following conditions are equivalent:

- (1) $\sup\{\operatorname{w.dim}(A/I), \operatorname{w.dim}(A \bowtie^{f,g}(J,J'))\} \le 1.$
- (2) $\sup\{\operatorname{w.dim}(f(A)+J), \operatorname{w.dim}(g(A)+J')\} \leq 1 \text{ and for every } \mathfrak{m} \in \operatorname{Max}(A, I), J_{f(\mathfrak{m})+J} = (0) \text{ or } J'_{g(\mathfrak{m})+J'} = (0).$

Proof. (\Rightarrow) Since w.dim $(A/I) \le 1$, A/I is reduced, and so I is radical. Thus, (2) follows immediately from [14, Corollary 2.8].

(\Leftarrow) Since $\sup\{w.\dim(f(A) + J), w.\dim(g(A) + J')\} \leq 1$, the rings f(A) + Jand g(A) + J' are both arithmetical and reduced. Then, by [13, Remark 4.8] and [14, Theorem 2.1], $A \bowtie^{f,g} (J, J')$ is a reduced arithmetical ring, and so w.dim $(A \bowtie^{f,g} (J, J')) \leq 1$. Now, let $\mathfrak{m} \in \operatorname{Max}(A, I)$ and consider the following isomorphism of rings $\psi : \frac{A}{I} \to \frac{f(A)+J}{J}, \overline{a} \mapsto \overline{f(a)}$. We have $\psi(\mathfrak{m}) = \frac{f(\mathfrak{m})+J}{J}$. Thus, ψ induces an isomorphism between $(\frac{A}{I})_{\frac{m}{T}}$ and $(\frac{f(A)+J}{J})_{\frac{f(\mathfrak{m})+J}{J}}$. Then, we have the following isomorphism of rings

$$\left(\frac{A}{I}\right)_{\frac{\mathfrak{m}}{I}} \cong \frac{(f(A)+J)_{f(\mathfrak{m})+J}}{J_{f(\mathfrak{m})+J}}.$$

Similarly, we have the following isomorphism of rings

$$\left(\frac{A}{I}\right)_{\frac{\mathfrak{m}}{I}} \cong \frac{(g(A)+J')_{g(\mathfrak{m})+J'}}{J'_{g(\mathfrak{m})+J'}}$$

Since for every $\mathfrak{m} \in \operatorname{Max}(A, I)$, $J_{f(\mathfrak{m})+J} = (0)$ or $J'_{g(\mathfrak{m})+J'} = (0)$, every localization of $\frac{A}{I}$ by its maximal ideals is isomorphic or to a localization of f(A) + J or to a localization of g(A) + J'. Then, using [10, Theorem 1.3.14], w.dim $(A/I) \leq 1$. \Box

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

- K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc., 41(3) (2015), 625-632.
- [2] S. Bazzoni and S. Glaz, *Prüfer rings*, in: J. Brewer, S. Glaz, W. Heinzer, B. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A tribute to the work of Robert Gilmer, Springer, New York, (2006), 55–72.

- [3] M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrum, Canad. J. Math., 29(4) (1977), 722-737.
- [4] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015), 249-261.
- [5] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat., 45(2) (2007), 241-252.
- [6] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443–459.
- [7] M. D'Anna, C. A. Finacchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, (2009), 155–172.
- [8] M. D'Anna, C. A. Finacchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9) (2010), 1633–1641.
- [9] L. Fuchs, Uber die ideale arithmetischer ringe, Comment. Math. Helv., 23 (1949), 334-341.
- [10] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math., 1371, Springer-Verlag, Berlin, 1989.
- [11] S. Greco and P. Salmon, Topics in m-Adic Topologies, Springer-Verlag, Berlin, Heidelberg, 1971.
- [12] C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar., 17 (1966), 115-123.
- [13] S. Kabbaj, K. Louartiti and M. Tamekkante, *Bi-amalgamated algebras along ideals*, J. Commut. Algebra, to appear (arXiv:1407.7074v1).
- [14] S. Kabbaj, N. Mahdou and M. A. S. Moutui, *Bi-amalgamations subject to the arithmetical property*, J. Algebra Appl., 16 (2017), 1750030 (11 pages).
- [15] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
- [16] T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Mathematics, Springer-Verlag, New York, First edition, 1995.
- [17] T. Y. Lam, Lectures on Modules and Rings, Springer Science and Business Media, 2012.
- [18] K. Louartiti and M. Tamekkante, Global dimension of bi-amalgamated algebras along pure ideals, Journal of Taibah University for Science, 9 (2015), 361–365.

 [19] S. Scrivanti, Homological dimension of pullbacks, Math. Scand., 71(1) (1992), 5–15.

Mohammed Tamekkante (Corresponding Author) and El Mehdi Bouba

Department of Mathematics Faculty of Science Box 11201 Zitoune University Moulay Ismail Meknes, Morocco e-mails: tamekkante@yahoo.fr (M. Tamekkante) mehdi8bouba@hotmail.fr (E. M. Bouba)

136