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Abstract. Let R be a commutative ring with nonzero identity and I a proper

ideal of R. The ideal-based zero-divisor graph of R with respect to the ideal

I, denoted by ΓI(R), is the graph on vertices {x ∈ R \ I | xy ∈ I for some

y ∈ R\I}, where distinct vertices x and y are adjacent if and only if xy ∈ I. In

this paper, we give a complete classification of when an ideal-based zero-divisor

graph of a commutative ring is complemented or uniquely complemented based

on the total quotient ring of R/I.
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1. Preliminaries

Let R be a commutative ring with nonzero identity, I a proper ideal of R, and

Z(R) the set of zero-divisors of R. Throughout this paper, a graph will always be a

simple graph, i.e., an undirected graph without multiple edges or loops. In 1988, I.

Beck used zero-divisors to produce a graph given a ring R [3]; he was interested in

colorings of these graphs. In 1999, D. F. Anderson and P. S. Livingston modified

Beck’s definition to the following [2,5]; the zero-divisor graph of R, denoted by Γ(R),

is the graph on the vertex set Z(R)∗ = Z(R) \ {0}, where two distinct vertices x

and y are adjacent if and only if xy = 0. In 2001, S. P. Redmond gave the following

definition ([6] and [7]) as a generalization of the zero-divisor graph; the graph on

vertex set {x ∈ R \ I | xy ∈ I for some y ∈ R \ I}, where distinct vertices x and y

are adjacent if and only if xy ∈ I. This is called the ideal-based zero-divisor graph

of R with respect to the ideal I, denoted by ΓI(R). Note that ΓI(R) and Γ(R/I)

are non-empty if and only if I is not a prime ideal of R.

Recall that a ring R is von Neumann regular if for every x ∈ R, there exists

a y ∈ R such that x = xyx. In [1], the authors find a connection between a

ring being von Neumann regular and a graph property called complemented. They

define a ∼ b if a and b are not adjacent, yet they are adjacent to exactly the same
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vertices of G. Given distinct vertices a and b of a graph G, we say that the vertices

are orthogonal, denoted a ⊥ b, if a and b are adjacent and there is no vertex adjacent

to both a and b. Notice that a ⊥ b if and only if a and b are adjacent and the edge

a − b is not part of triangle (a 3-cycle) in G. A graph G is called complemented

if given any vertex a of G, there exists a vertex b of G such that a ⊥ b. A graph

G is uniquely complemented if it is complemented and a ⊥ b and a ⊥ c imply that

a ∼ c. The preceding relations and definitions are from [1] and [4]. In [1, Theorem

3.5], the authors show that for a reduced ring R, Γ(R) is uniquely complemented

if and only if Γ(R) is complemented, if and only if T (R) is von Neumann regular.

In this paper, we extend this result to ΓI(R).

Throughout this paper, R will be a commutative ring with nonzero identity, Z(R)

its set of zero-divisors, nil(R) its ideal of nilpotent elements, and total quotient ring

T (R) = RS , where S = R \ {0}. Given an ideal I of R, we define
√
I = {r ∈ R |

rk ∈ I for some k ∈ N}. A ring R is reduced if nil(R) =
√
{0} = {0}. Notice that

R/I is reduced if and only if
√
I = I. An ideal I is a radical ideal if

√
I = I. Let

Z and Zn denote the integers and the integers modulo n, respectively. We will also

use the well-known result that |Z(R)| = 2 if and only if R/I ∼= Z4 or Z2[X]/(X2).

We will denote the set of vertices of a graph G by V (G). In this paper, we will

also use that |V (ΓI(R))| = |I||V (Γ(R/I)| [7, Corollary 2.7]. We say that a graph is

complete on n vertices, denoted by Kn, if it is a graph on n vertices in which each

vertex is connected to all other vertices.

2. When ΓI(R) is complemented or uniquely complemented

We consider the situation in two cases: either I is a radical ideal of R or I is a

non-radical ideal of R.

Proposition 2.1. Let R be a commutative ring with nonzero identity and I a

nonzero, non-radical ideal of R. If |V (Γ(R/I))| ≥ 2, then ΓI(R) is not comple-

mented.

Proof. Since I 6=
√
I, there exists an r ∈ R \ I such that r2 ∈ I. Then r ∈

V (ΓI(R)). We claim that r has no complement in ΓI(R). Let s be any vertex of

ΓI(R) adjacent to r; so rs ∈ I. Notice that r 6= s as they are distinct adjacent

vertices of ΓI(R). Then there are two possibilities: (1) there exists an i ∈ I such

that s = r + i or (2) s 6= r + i for all i ∈ I.

Case (1): Assume there exists an i ∈ I such that s = r + i. Then r + I = s+ I

in R/I. Since |V (Γ(R/I))| ≥ 2 and Γ(R/I) is connected, there exists a vertex t+ I

adjacent to r+I = s+I in Γ(R/I). Notice that t, r, s = r+i are all distinct vertices
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of ΓI(R) that are mutually adjacent. Thus the edge r − s is part of a triangle in

ΓI(R); so s is not a complement of r in ΓI(R).

Case (2): Assume s 6= r + i for all i ∈ I. Since I is non-zero, choose 0 6= i ∈ I.

Then the vertices s, r, r + i are distinct mutually adjacent vertices of ΓI(R). Thus

the edge r− s is part of a triangle in ΓI(R); so, as before, s is not a complement of

r in ΓI(R).

Thus no vertex adjacent to r is a complement of r; so ΓI(R) is not complemented.

�

Lemma 2.2. Let R be a commutative ring with nonzero identity and I an ideal of

R. If Γ(R/I) ∼= K1, then ΓI(R) ∼= K |I|.

Proof. |V (Γ(R/I))| = 1 if and only if |Z(R/I)| = 2, if and only if R/I ∼= Z4

or Z2[X]/(X2). Thus V (Γ(R/I)) = {a + I}, where a2 ∈ I. Then V (ΓI(R)) =

{a + i}i∈I . Notice that (a + i)(a + j) ∈ I for all i, j ∈ I. Moreover |V (ΓI(R))| =

|I||V (Γ(R/I))| = |I| · 1 = |I|. Thus ΓI(R) ∼= K |I|. �

Theorem 2.3. Let R be a commutative ring with nonzero identity and I a non-

radical ideal of R. Then ΓI(R) is complemented if and only if ΓI(R) ∼= K2.

Proof. The “⇐” implication is clear. Conversely assume that ΓI(R) is comple-

mented. Then |V (Γ(R/I))| ≤ 1 by Proposition 2.1. Since I is not prime (as it is

non-radical), it follows that |V (Γ(R/I))| = 1. Thus ΓI(R) ∼= K |I| by Lemma 2.2.

Since the only complemented complete graph is K2, it follows that |I| = 2 and

ΓI(R) ∼= K2. �

Notice that if |V (Γ(R/I))| = 1, then R/I ∼= Z4 or Z2[X]/(X2); so
√
I 6= I.

Moreover, in this case, ΓI(R) is complemented if and only if |I| = 2 by the preceding

theorem. Thus it remains to investigate the case when |V (Γ(R/I))| ≥ 2.

Theorem 2.4. Let R be a commutative ring with nonzero identity and I a nonzero,

non-prime ideal of R. Then ΓI(R) is complemented and |V (Γ(R/I))| ≥ 2 if and

only if Γ(R/I) is complemented and
√
I = I.

Proof. “⇒” Assume that ΓI(R) is complemented and |V (Γ(R/I))| ≥ 2. Then

I =
√
I by Proposition 2.1. So it remains to show that Γ(R/I) is complemented.

Let r+ I be vertex of Γ(R/I). Then r is a vertex of ΓI(R). By assumption, ΓI(R)

is complemented; so there exists a vertex s of ΓI(R) such that r ⊥ s. We first

show that r + I 6= s + I. Assume to the contrary; then r − s = i ∈ I. Thus

r(r− s) = ri ∈ I. Since r ⊥ s, then rs ∈ I. Hence r2 = ri+ rs ∈ I, and thus r ∈ I
since

√
I = I. This is a contradiction since r + I 6= I. Thus r + I 6= s + I. Since
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r ⊥ s in ΓI(R) and r+I 6= s+I, it follows that r+I is adjacent to s+I in Γ(R/I).

It now remains only to show there is no other vertex in Γ(R/I) adjacent to both

of these. Assume to the contrary; then there exists a vertex t+ I adjacent to both

r + I and s+ I (hence t+ I, r + I, and s+ I are distinct elements of R/I). Then

notice that r, t, s are distinct, mutually adjacent vertices of ΓI(R). But this is a

contradiction as r ⊥ s in ΓI(R). Therefore r+ I ⊥ s+ I. Since r+ I ∈ V (Γ(R/I))

was chosen arbitrarily, it follows that Γ(R/I) is complemented.

“⇐” Assume that Γ(R/I) is complemented and
√
I = I. Since Γ(R/I) is com-

plemented and nonempty, it follows that |V (Γ(R/I)| ≥ 2. Let r ∈ V (ΓI(R)); then

r + I ∈ V (Γ(R/I)). Since Γ(R/I) is complemented, there exists a vertex s + I

in Γ(R/I) such that r + I ⊥ s + I. Since these are vertices in Γ(R/I), it follows

that neither is zero in R/I; hence r, s 6∈ I and rs ∈ I. Thus r and s are adjacent

vertices in ΓI(R). We claim that r ⊥ s in ΓI(R). Assume to the contrary; then

there exists a t ∈ R \ I such that r, s, and t are distinct and mutually adjacent in

ΓI(R). Using that
√
I = I, a similar argument to that in the forward implication

shows that r + I, s + I, and t + I are distinct vertices of Γ(R/I). It then follows

that r + I, s+ I, and t+ I are distinct, mutually adjacent vertices of Γ(R/I); but

this is a contradiction as r+ I ⊥ s+ I. Therefore r ⊥ s in ΓI(R). Since r ∈ ΓI(R)

was chosen arbitrarily, it follows that ΓI(R) is complemented. �

Combining the previous two theorems yields the following result.

Corollary 2.5. Let R be a commutative ring with nonzero identity and I a proper

nonzero non-prime ideal of R. Then ΓI(R) is complemented if and only if exactly

one of the following statements holds.

(1) R/I ∼= Z4 or R/I ∼= Z2[X]/(X2), and |I| = 2.

(2) Γ(R/I) is complemented and I is a radical ideal of R.

Using the fact that R/I is reduced if and only if
√
I = I, we can extend the

previous theorem to the following corollary using [1, Theorem 3.5]. Recall that if I

is a prime ideal, then all of the graphs in question are empty. We will consider the

empty graph to be vacuously uniquely complemented.

Corollary 2.6. Let R be a commutative ring with nonzero identity and I a radical

ideal of R. Then the following statements are equivalent.

(1) ΓI(R) is complemented.

(2) Γ(R/I) is complemented.

(3) Γ(R/I) is uniquely complemented.

(4) T (R/I) is von Neumann regular.



202 JESSE GERALD SMITH JR

We proceed to consider when ΓI(R) is uniquely complemented. Based on the

preceding results, we are led to conjecture that when I is a radical ideal, then ΓI(R)

is uniquely complemented if and only if ΓI(R) is complemented. The following two

lemmas are similar to those found in [6, pp. 55-56].

Lemma 2.7. Let R be a commutative ring with nonzero identity and I a radical

ideal of R. Then x ⊥ y in ΓI(R) if and only if x+ I ⊥ y + I in Γ(R/I).

Proof. Notice the lemma is vacuously true when I = {0}. Assume I 6= {0}.
“⇒” First notice that

√
I = I and xy ∈ I implies that x+ I 6= y+ I. Otherwise,

y = x+ i for some i ∈ I. Then x2 = x(x+ i)−xi = xy−xi ∈ I. But x ∈ V (ΓI(R))

implies that x 6∈ I. Hence x ∈
√
I and x 6∈ I, but this is a contradiction as

√
I = I.

Also, (x + I)(y + I) = 0 + I, so that x + I and y + I are adjacent vertices of

Γ(R/I). Assume to the contrary, that there exists z + I ∈ V (Γ(R/I)) such that

x+ I− y+ I− z+ I−x+ I is a triangle in Γ(R/I). Then x− y− z−x is a triangle

in ΓI(R), which is a contradiction as x ⊥ y in ΓI(R). Therefore, x + I ⊥ y + I in

Γ(R/I) as desired.

“⇐” Assume that x + I ⊥ y + I in Γ(R/I). Then xy ∈ I; whence x and y are

adjacent in ΓI(R). Assume that x 6⊥ y. Then there exists a vertex c adjacent to

both x and y in ΓI(R). We claim that then c+I is distinct from x+I and y+I and

each of these three vertices are adjacent to each other. To see that c+ I is distinct

from x + I and y + I, assume to the contrary. Without loss of generality, assume

c + I = x + I. Then c = x + i for some i ∈ I. Then cx ∈ I implies that x2 ∈ I,

which is a contradiction as
√
I = I and x + I is nonzero. Since x + I, y + I, and

c+ I are distinct and xy, yc, and xc ∈ I, it follows that x+ I, y+ I, and c+ I is a

three-cycle in Γ(R/I). But this is a contradiction as x+ I ⊥ y + I in Γ(R/I). �

Lemma 2.8. Let R be a commutative ring with nonzero identity and I a radical

ideal of R. If Γ(R/I) is uniquely complemented, x ⊥ y and x ⊥ z in ΓI(R), and

α ∈ R \ I, then
αy ∈ I if and only if αz ∈ I.

Proof. The statement is symmetric in terms of y and z; so it suffices to show

that αy ∈ I ⇒ αz ∈ I. By Lemma 2.7, x + I ⊥ y + I and x + I ⊥ z + I in

Γ(R/I). Since Γ(R/I) is uniquely complemented, it follows that annR/I(y + I) =

annR/I(z+ I) (here we also using the fact annR/I(y+ I) \ {y+ I} = annR/I(y+ I)

and annR/I(x+ I)\{x+ I} = annR/I(x+ I) since
√
I = I ). Assume αy ∈ I. Then

α+ I ∈ annR/I(y+ I) = annR/I(z+ I). Hence (α+ I)(z+ I) = 0 + I, and therefore

αz ∈ I as desired. �
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Theorem 2.9. Let R be a commutative ring with nonzero identity and I a radical

ideal of R. Then ΓI(R) is complemented if and only if ΓI(R) is uniquely comple-

mented.

Proof. If I = (0), then the result follows from [1, Theorem 3.5]. If ΓI(R) is the

empty graph, the statement holds vacuously. Assume that I 6= (0) and that ΓI(R)

is not the empty graph (i.e., I is not a prime ideal of R).

The reverse implication is by definition. Now assume ΓI(R) is complemented.

Then ΓI(R) has at least two elements, and thus V (Γ(R/I)) must be nonempty.

Since I is a radical ideal, it follows that |V (Γ(R/I))| 6= 1 (since there are only two

rings up to isomorphism with exactly 2 zero-divisors, and they are both non-reduced

rings). Thus |V (Γ(R/I))| ≥ 2, and hence Γ(R/I) is complemented by Theorem 2.4.

Moreover, Γ(R/I) is uniquely complemented by Corollary 2.6. The desired result

then follows from Lemma 2.8. �

Theorem 2.10. Let R be a commutative ring with nonzero identity and I a proper

radical ideal of R. Then the following statements are equivalent.

(1) ΓI(R) is complemented.

(2) ΓI(R) is uniquely complemented.

(3) Γ(R/I) is complemented.

(4) Γ(R/I) is uniquely complemented.

(5) T (R/I) is von Neumann regular.

Moreover, regardless if I is a radical or non-radical ideal, ΓI(R) is complemented

if and only if ΓI(R) is uniquely complemented.

Proof. If I is a prime ideal ideal of R, then all of the graphs in question are empty

and R/I is an integral domain. Thus all of the conditions hold.

If I = (0) and radical, then the theorem holds by [1, Theorem 3.5]; in this case,

the conditions (1) and (3) are equivalent as are conditions (2) and (4).

Assume that I is a nonzero, proper, non-prime, radical ideal of R. The equiva-

lences follow from Corollary 2.6 and Theorem 2.9.

For the “moreover statement,” if I is not a radical ideal, then ΓI(R) is com-

plemented if and only if ΓI(R) ∼= K2 by Theorem 2.3. However, K2 is uniquely

complemented. Thus, regardless of whether or not I is a radical ideal of R, we have

ΓI(R) is uniquely complemented if and only if ΓI(R) is complemented. �
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