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Abstract 

The mathematical modeling of epileptic seizures appearing in small neural populations can follow a few alternative ways: modeling 

of individual cells and their interaction vs. modeling groups and clusters on neurons. The purpose of this work is invention of a novel 

continuous (population-based) model for the appearance of the hyper-synchronized firing cells of the epileptiform type. In the same 

time, we use here the master equations based on the transition probabilities among different states of the cell excitation and hyper-

synchronization. We developed an ODE model combining the dynamical equations for different sub-populations (unexcited, excited, 

and, as our novelty, hypersynchronized). Our model may serve as a simple but powerful tool to analyze the appearance and 

development of epileptiform dynamics in artificial neural networks. It can cover different cases of microepilepsy, and also may open 

the gate for studying drug-resistant epilepsy regime. Our dynamical set can be extended with the control inputs mimicking the 

external perturbations of the neural clusters with the electrical or optogenetic signals. In this case, the set of control algorithms can be 

applied to detect and suppress the epileptiform dynamics. Thus, the dynamic processes of epilepsy in small neural populations do not 

demand necessary the development of detailed models for individual neurons. Even the ‘averaged’ dynamical set for the unexcited, 

excited and hypersynchronized sub-populations can serve as an efficient tool for investigation and numerical simulations of 

microscopic seizures. 
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Küçük Nöral Popülasyonlarda Uyarma ve Hipersenkronizasyon için 

İstatistiksel Model 

Öz 

Küçük nöral popülasyonlarda ortaya çıkan epileptik nöbetlerin matematiksel modellemesi birkaç alternatif yol izleyebilir: tek tek 

hücrelerin modellenmesi ve bunların etkileşimi ile nöronlar üzerindeki grupların ve kümelerin modellenmesi. Bu çalışmanın amacı, 

epileptiform tipte hiper-senkronize ateşleyen hücrelerin ortaya çıkması için yeni bir sürekli (nüfusa dayalı) bir modelin icadıdır. Aynı 

zamanda, burada hücre uyarımının ve hiper senkronizasyonun farklı durumları arasındaki geçiş olasılıklarına dayanan ana denklemleri 

kullanmaktayız. Farklı alt popülasyonlar için dinamik denklemleri birleştiren bir ADD modeli geliştirdik (uyarılmamış, uyarılmış ve 

yeniliğimiz olarak hipersenkronize olmuş). Modelimiz, yapay nöral ağlarında epileptiform dinamiklerin ortaya çıkısını ve gelişimini 

analiz etmek için basit ama güçlü bir araç olarak hizmet edebilir. Farklı mikroepilepsi vakalarını kapsayabilir ve ayrıca ilaca dirençli 

epilepsi rejimini incelemenin kapısını açabilir. Dinamik setimiz, elektriksel veya optogenetik sinyallerle nöral kümelerin dış 

tedirginliklerini taklit eden kontrol girdileri ile genişletilebilir. Bu durumda, epileptiform dinamikleri saptamak ve bastırmak için bir 

dizi kontrol algoritması uygulanabilir. Bu nedenle, küçük nöral popülasyonlardaki epilepsinin dinamik süreçleri, bireysel nöronlar için 

gerekli ayrıntılı modellerin geliştirilmesini gerektirmez. Uyarılmamış, uyarılmış ve hipersenkronize alt popülasyonlar için ‘ortalama’ 

dinamik set bile, mikroskobik nöbetlerin incelenmesi ve sayısal simülasyonları için etkili bir araç olarak hizmet verebilir. 

 

Anahtar Kelimeler: Küçük nöron popülasyonları, nöral uyarılmalar, ana denklem, hipersenkronizasyon, epileptiform dinamikler. 
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1. Introduction 

The mathematical modeling of epileptic seizures appearing 

in small neural populations can follow a few alternative ways: 

modeling of individual cells and their interaction vs. modeling 

groups and clusters on neurons (Kesmia et al., 2020). 

The individual cell (‘discrete’) approach uses the ‘first 

principles’ for the intra- and extracellular processes forming the 

action potential in the axon and transferring the pulse to the next 

companion neurons (Izhikevich, 2003). Differential systems 

based on the axon membrane voltage and the gate variable(s) for 

the ion channels are capable to reproduce the complex 

combination of slow and fast dynamics triggering the 

epileptifom processes in the small clusters of such cells 

(Stefanescu et al., 2012).  

The cell cluster-based (‘continuous’) approach deals with 

the average characteristics of neural groups and focuses on a 

certain small number of states occurring in the neural dynamical 

system (da Silva et al., 2003). The averaged continuous model 

for the neural population contains a set of attractors gradually 

deforming the system evolution from pre- and interictal to ictal 

phases and back (Namiki et al., 2020). 

The purpose of this work is invention of a novel continuous 

(population-based) model for the appearing the hyper-

synchronized firing cells of the epileptiform type. In the same 

time, we use here the master equations based on the transition 

probabilities among different states of the cell excitation and 

hyper-synchronization. We define three states of the small neural 

cluster: unexcited, excited and hypersynchronized. The variables 

related to the transitions among the states could be constants or 

functions of the state populations and the time. The principal 

feature of our model is satisfaction to the normalization 

properties.  

Our approach can be extended with the control parameters. 

In the perspective it allows to investigate the appearance of 

epilepsy and its efficient detection and suppression in the frame 

of a relatively simple mathematical model.  

2. Review of the Existing Models for Small 

Neuron Populations 

In this section, we make a short review of two models which 

inspired our novel approach for the description of the excitation 

processes of neurons in the small clusters. 

2.1. The Tomanik-Ahmed Model for Small Neuron 

Population 

The ‘continuous’ Tomanik model for the epileptic seizures 

is based on the complex network approach (Tomanik, 2020). 

The neural population is divided according to three levels of the 

excitations for the cells participating in the seizure: the low 

(unexcited) population L, the medium excited population M, and 

the high (excited) population H. Their dynamics are described 

with the set of three ODEs. 
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There is a reduced version of this model without the medium 

variable M (Ahmed, 2020): 
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Model (1)-(2) has distinct disadvantages. It does not study the 

details the dynamics of the energy for the excitation processes 

and does not reflect the conservation laws. The model does not 

preserve the normalization: L + M + H = const.  

The Tomanik-Ahmed model also does not consider the 

hypersynchronization phase, it focuses only on the excitation 

processes of the cells without studying the collective effects. 

2.2. The Buice-Cowan Model 

At first, the dynamical model of Buice-Cowan considers 

three states of a single neuron spiking (Fig.1): quiescent state (q) 

when the neuron action potential rests at the level –70 mV; 

activated state (a), when the potential arises up to + 40 mV; and 

the refractory state (r), when it drops down up to the level  –80 

mV (Buice and Cowan, 2009).  

 

 

Figure 1. The dynamical phases of a single neural action 

potential (Buice and Cowan, 2009). 

 

The neuron can follow the cyclic dynamics q → a → r → q → 

…, but the reverse transition process r → a is also allowed. In 

the last case, one observes the neuron producing a train of spikes 

due to the transitions a → r → a → r → …, see Fig.2. 
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Figure 2. State transitions for a single neuron (Buice and 

Cowan, 2009). 

 

The corresponding probabilities of the transition processes 

(per unit of time) are denoted as f, g, α, and β, see Fig.2. Then 

from a single neuron one can come to the total number of 

neurons Q, A and R in the quiescent, activated and refractory 

states, such that Q + A + R = N, with N for the total number of 

cells in the population.  

The probabilities to find a certain neuron from the 

population at the moment t in the states (q), (a) and (r) are: 

P(q,t), P(a,t) and P(r,t). They satisfy the Buice-Cowan master 

equations (Buice and Cowan, 2009):  
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Set (3) has the normalization: 
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In the simplest version of the Buice-Cowan model, the 

transition probabilities f, g, α, β are constant parameters. 

3. New Statistical Model for Small Neuron 

Population 

Our task is to reformulate the Buice-Cowan model adopting 

it for the excitations of the neuron populations in the small 

groups rather than the spiking of single cells, in the manner of 

the Tomanik-Ahmed system (1)-(2).  

Let’s define three sub-groups of the small neuron population: 

1. The lower level of excitation L (virtually not-excited 

neurons); 

2. The high level of the excitation H (excited neurons); 

3. The hyper-synchronized part of the population S.   

These three sub-groups are functions of time t, but the total 

number of neurons N in all three phases must be conserved:  

 

.NSHL =++                            (5) 

 

Let’s define now the transitions between the sub-populations 

L, H and S, see Fig.3. 

 

 

Figure 3. Transitions among different sub-groups L, H, and S in 

the small neural population. 

 

In Fig.3 the positive parameters Bij stand for the transition 

coefficients from i to j per unit of time (i, j = L, H, S).  

The transition processes presented in Fig.3 can be written in 

the form of the master equation for the population sub-groups: 
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Model (6) satisfies the normalization (5). 

In the general case, the coefficients Bij may depend on the 

time t and on the populations L, H, S as well.  

To give an example, we discuss here a particular choice in 

the form: 
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Model (7) corresponds to the following set of the transition 

parameters: 
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In (8) the probability to make a forward transition L → H → S 

and back is proportional to the number of cells in the ‘lower’ 

state of excitation.  The transitions between states L and S are 

forbidden.  
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Numerical simulations for the system (7) are presented in 

Fig.4.  

The total population N = 100, and the initial conditions are: 

L(0) = 100, H(0) = 0, S(0) = 0, i.e. the neurons in the system 

initially are not excited. The transition coefficients are chosen 

as: a = b = 1, α = β = 0.1. That means that the transitions 

between the states L and H are more probable than the 

transitions between the states H and S.  

In Fig.4 one can easily observe the developing of the excited 

(blue) and hypersynchronized (red) phases from the unexcited 

(green) phase. For the case (8) the asymptotic dynamics lead to 

the stabilization of all three phases.  

. 

 

Figure 4. Dynamics in the small neural population: unexcited 

phase L (green), excited phase H (blue) and hypersynchronized 

phase S (red) for model (7).   

 

Thus, in model (7) each phase will be stabilized 

asymptotically as time t → 0 at the level: 
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i.e. L∞ = H∞ = S∞ = N/3 for our particular choice of the transition 

parameters. 

4. Results and Discussion 

4.1. Results 

 We developed an ODE model combining the dynamical 

equations for different sub-populations (unexcited, excited, and, 

as our novelty, hypersynchronized). The dynamical system 

satisfies the normalization property, and it includes the details of 

the transitions between different subpopulations of the cells in a 

small neural cluster. 

4.2. Discussion 

Our model may serve as a simple but powerful tool to 

analyze the appearance and development of epileptiform 

dynamics in artificial neural networks. It can cover different 

cases of microepilepsy, and also may open the gate for studying 

drug-resistant epilepsy regime (Kwan et al., 2011). 

The dynamical set (6)-(7) can be equipped with the control 

inputs mimicking the external perturbations of the neural 

clusters with the electrical (Rattay, 1999) or optogenetic (Joshi 

et al., 2020) signals. In this case, the set of control algorithms 

can be applied to detect (Borisenok and Ünal, 2017; Borisenok, 

2021) and suppress (Borisenok et al., 2018; Borisenok, 2022) the 

epileptiform dynamics.  

5. Conclusion 

The dynamic processes of epilepsy in small neural 

populations do not demand necessary the development of 

detailed models for individual neurons. Even the ‘averaged’ 

dynamical set for the unexcited, excited and hypersynchronized 

sub-populations can serve as an efficient tool for investigation 

and numerical simulations of microscopic seizures. 
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