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 Solving optimization problems is still a big challenge in the area of optimization 

algorithms. Many proposed algorithms in the literature don’t consider the relations 

between the variables of the nature of the problem. However, a recently published 

algorithm, called “Bayesian Multiploid Genetic Algorithm” exploits the relations 

between the variables and then solves the given problem. It also uses more than one 

genotype unlike the simple Genetic Algorithm (GA) and it acts like an implicit memory 

in order to remember the old but good solutions. In this work, the well-known 

Multidimensional Knapsack Problem (MKP) is solved by the Bayesian Multiploid 

Genetic Algorithm. And the results show that exploiting relations between the variables 

gets a huge advantage in solving the given problem. 
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1. Introduction 

Constraint Optimization Problems (COP) are still 

a big challenge in the area of computer science. One 

of them is the Multidimensional Knapsack Problem 

(MKP). The MKP is an extended version of the 

standard 0-1 Knapsack Problem (KP). While 

standard KP has only one resource, the MKP can has 

more than one resource. MKP is actually can be 

considered a real-world problem. Many real-world 

problems can be solved by MKP, such as cutting 

stock[1], loading problems [2], resource allocation 

for distributed computing[3], project selection[4], 

etc. MKP is still a current benchmark problem that 

continues to be solved with different approaches in 

recent years[5]–[8]. 

In the past ten years, many metaheuristic (MH) 

techniques are applied to solve different NP-Hard 

global optimization problems. Some of them are the 

following: Estimation of Distribution Algorithms 

(EDA)[9], Artificial Bee Colony (ABC)[10], 

Harmony Search (HS)[11], Ant Colony Optimization 
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(ACO)[12], Whale Optimization Algorithm 

(WOA)[13], Bat Algorithm (BA)[14], etc. However, 

all of them mentioned before don’t consider the 

interactions between the problem’s variables. In an 

ecosystem, all the objects have connected some way 

and they affect each other.   

For this reason, it is important to exploit 

interactions between the variables and then use them 

to solve the problem effectively.  

In this work, the Bayesian Multiploid Genetic 

Algorithm (BMGA)[15] is used, which has both an 

implicit memory scheme (to remember old solutions) 

and a Bayesian Network (to exploit interactions 

between variables) in order to solve the well-known 

Multidimensional Knapsack Problem (MKP) 

considering as a real-world benchmark problem.  

To evaluate the BMGA’s performance, six 

algorithms are selected as comparative algorithms. 

Note that, the results for the six algorithms listed 

below are already taken from the [16] and compared 
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to the BMGA’s results. 

• Moth Search Algorithm (MS)[17, s.]: A new 

optimization algorithm that is inspired by the 

Levy flights and the phototaxis of the months. In 

this method, the fittest individual is considered the 

light source. The moths close to the fittest one fly 

in the form of Levy flights. On the other hand, 

because of the phototaxis, the moths far from the 

fittest one fly to the fittest one with big steps. 

These two different behaviors are the exploration 

and the exploitation of any other optimization 

method. 

• Self-Learning MS (SLMS)[16]: In regular MS, 

each individual update their positions according 

to the fittest one. But it may cause it to fall into 

the local optimum. Authors, introduce a new self-

learning strategy to enable individuals to update 

their positions not only according to the fittest one 

but also the closer individuals which have fitter 

than themselves. 

• Modified multi-verse optimization algorithm 

(MMVO)[18]: In this algorithm, authors are 

inspired by the popular multi-verse theory which 

is based on three concepts: the wormhole, the 

black hole, and the white hole. In the algorithm, 

each universe is considered a solution candidate. 

If an individual gets close to the white hole, means 

it is getting better fitness values, and vice-versa 

(closing to the black hole), it is getting worse 

fitness values. And the wormholes are used as a 

diversification operator in the algorithm to 

maintain the diversity in the population. 

• Binary Gravitational Search Algorithm 

(BGSA)[19]: This is the binary version of GSA 

which is based on Newton’s laws of gravity and 

motion: The gravitational force affects the objects 

and makes them attract each other. In the 

algorithm, each object is considered an agent, and 

each one of them has its mass. And their masses 

define their fitness values. As time passes, objects 

are attracted by the fitter masses which leads them 

to get a better fitness value. 

• Binary Hybrid Topology Particle Swarm 

Optimization (BHTPSO)[19]: In the simple 

PSO[20], the particles may fall into local 

optimum if their velocities are zero. Because zero 

velocity means the particle’s fitness value is good 

and shouldn’t be changed. To overcome this, a 

small value is added to their velocities for 

acceleration and enables them to escape from the 

local optimum. 

• Binary Hybrid Topology Particle Swarm 

Optimization Quadratic Interpolation (BHTPSO-

QI)[19]: This is the form of BHTPSO which is 

incorporated with a quadratic crossover operator.  

This paper continues as follows: In Section 2, the 

BMGA is explained. In Section 3, MKP and its 

datasets are explained. In Section 4, the results are 

shown and finally, Section 5 concludes the paper. 

 

2. Bayesian Multiploid Genetic Algorithm 

The BMGA is constructed on the simple GA. 

However, it differs from simple GA in many ways.  

First, the individuals in the simple GA have only 

one chromosome to represent a candidate solution. 

Both genetic operators and fitness calculations are 

done over this chromosome for each individual. 

However, in BMGA, each individual has two 

different structures: The genotypes and a phenotype. 

As we know, in nature, all living things have 

genotypes and phenotypes. Genotypes are inherited 

from the parents. However, the phenotype is the one 

that decides a living thing will look like to what.  

The number of genotypes in an individual can be 

more than one. This feature provides an implicit 

memory scheme to the algorithm. Because all the 

genetic operators (crossover – mutation) are executed 

on the genotypes and the fitness calculations are 

executed on the phenotype of the individual. In this 

way, genotypes act like a memory. On the other hand, 

each individual has only one phenotype and its fitness 

value is calculated using that phenotype. That is, no 

matter how many genotypes an individual has, only 

one phenotype determines its fitness value. The 

structure of an individual is illustrated in Figure 1. 

Second, BMGA uses a well-known Bayesian 

Algorithm 1 Pseudocode of BMGA 

𝑔 ← 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠 

𝑝𝑜𝑝 ← 𝑖𝑛𝑖𝑡(𝑝𝑜𝑝𝑆𝑖𝑧𝑒, 𝑔) 

𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑝𝑟𝑜𝑏𝑉𝑒𝑐[ ] 

𝐰𝐡𝐢𝐥𝐞 𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑚𝑒𝑡 𝐝𝐨 

𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒2𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝑝𝑜𝑝, 𝑝𝑟𝑜𝑏𝑉𝑒𝑐[ ]) 

𝑏𝑒𝑠𝑡 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑜𝑝) 

𝐵𝑁 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐵𝑁(𝑝𝑜𝑝) 

𝑎𝑢𝑥𝑃𝑜𝑝 ← 𝑠𝑎𝑚𝑝𝑙𝑒𝐵𝑁(𝐵𝑁) 

𝑝𝑟𝑜𝑏𝑉𝑒𝑐[ ] ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑃𝑟𝑜𝑏𝑉𝑒𝑐(𝑎𝑢𝑥𝑃𝑜𝑝) 

𝑝𝑜𝑝 ← 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑝) 

𝑝𝑜𝑝 ← 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝𝑜𝑝) 

𝑝𝑜𝑝 ← 𝑏𝑖𝑡𝑤𝑖𝑠𝑒𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝) 

𝐫𝐞𝐭𝐮𝐫𝐧 𝑏𝑒𝑠𝑡 
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Optimization Algorithm (BOA)[21] in it, in order to 

exploit the interactions between the variables. The 

BOA starts with a randomly generated population 

and creates a Bayesian Network (BN) by using this 

population. Since there is no prior information, BOA 

uses a greedy algorithm to form different BNs and 

then measure their quality using a special metric. 

After the algorithm finds the most suitable BN, then 

samples new individuals using that final BN. This 

procedure continues until a termination condition is 

met. 

 
Figure 1 Illustration of an individual 

 

In BMGA, the BOA is used in order to form a 

probability vector to determine the phenotypes of the 

individuals in the population. This works like this: 

First, the GA part of the BMGA randomly generates 

a population. In this generating part, only the 

genotypes of the individuals are generated. For 

instance, if an individual has four genotypes, and the 

size of the population is 100, then 400 genotypes are 

generated. Next, a probability vector is randomly 

formed to determine the phenotypes of the 

individuals for the first iteration. The probability 

vector is formed via genotypes of the best k% 

individuals of the population by calculating the 

probability of being 1 for each gene using Equation 

1. After the probability of being 1 is calculated the 

Equation 1, for each gene in the phenotype, a random 

real number is generated between 0 and 1. This 

generated value is then compared to the 

corresponding value in the probability vector to 

determine the value of the phenotype. Assuming that 

number of genotypes is g, this comparison is held by 

using Equation 2 and Equation 3. 

 

𝑃𝑟𝑜𝑏𝑉𝑒𝑐𝑡𝑜𝑟𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑛𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑔𝑒𝑛𝑒

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
    (1) 

 

       𝑣𝑎𝑙 = (𝑟𝑎𝑛𝑑() < 𝑃𝑟𝑜𝑏𝑉𝑒𝑐𝑡𝑜𝑟𝑖)? 1: 0               (2) 

                                                                                                                                         

                 𝑝ℎ𝑒𝑛𝑜𝑖 = {

0,          ∑ 𝑔𝑒𝑛𝑜𝑖 = 0
𝑔

1,          ∑ 𝑔𝑒𝑛𝑜𝑖 = 𝑔
𝑔

𝑣𝑎𝑙,                         𝑜𝑡ℎ𝑒𝑟

           (3) 

 

Once the phenotypes are determined, the fitness 

values of all individuals are calculated. After this first 

iteration, for the latter iterations, a new BN is 

constructed by using the same rule, and then a second 

population is sampled via BN. This second 

population is named auxiliary population, in short, 

“aux-pop”. The aux-pop has only one chromosome 

like in the simple GA. For the latter iterations, the 

probability vector is formed by the aux-pop, again, 

using Equation 1.  

After explaining the key points of the BMGA, now 

we can explain it in general. The general pseudocode 

of the BMGA is given in Algorithm 1. After the BOA 

parts of the BMGA are executed, next, the GA part 

of the BMGA starts to run. 

The standard tournament selection (size of n) is 

applied in the BMGA’s selection phase: Randomly 

chosen n solution candidates are compared and the 

fittest one is passed on to the next generation. This 

operation is performed until the size of the next 

generation is satisfied. Without recalculating its 

fitness value, the elite solution candidate from the last 

iteration is passed on to the current generation 

(elitism). 

The uniform crossover approach is employed for 

crossover operation. It begins by randomly 

generating a mask vector in binary and then selecting 

two individuals, say 𝑖1 , and 𝑖2, at each iteration. For 

each variable j (genes in chromosome), if the mask 

vector’s corresponding value is 1, 𝑖1’s 1st genotype’s 

𝑗𝑡ℎ variable is swapped with 𝑖2’s 2nd genotype’s 𝑗𝑡ℎ 

variable with a probability of 𝑝𝑐. This procedure is 

performed on each pair of genotypes in each solution 

candidate separately. 

The simple bitwise mutation is employed as a 

mutation tool. The genotypes of each solution 

candidate are inverted with a probability of pm in the 

bitwise mutation process. 

 

3. Preparing Test Environment 

3.1.  Multidimensional Knapsack Problem 

MKP is a well-known benchmark problem for 

optimization algorithms. The goal of the problem 

finding a subset of given a number of items that obtain 

the optimal profit value while satisfying the given 

constraints. In this problem, there are 𝑛  items, 𝑚 

resources, and 𝑛 × 𝑚 constraints. The formulation of 

the problem is given in Equation 4 and Equation 5. 

 

max              ∑ 𝑝𝑗 × 𝑥𝑗
𝑛
𝑗=1                               (4) 

subject to ∑ 𝑟𝑖𝑗 × 𝑥𝑗 ≤ 𝑐𝑖 ,   ∀𝑖∈ {1,2, … , 𝑚}𝑛
𝑗=1       (5) 
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where 𝑛 is the number of items, 𝑚 is the number of 

resources (knapsacks), 𝑥𝑗  denotes the whether the 

item 𝑗 is collected, 𝑝𝑗 is the profit of the item 𝑗, 𝑟𝑖𝑗 is 

the consumption of the 𝑗𝑡ℎ  item at the 𝑖𝑡ℎ  resource 

and finally 𝑐𝑖 is the capacity of the 𝑖𝑡ℎ resource. 

In order to test BMGA for MKPs, the first five 

problems are taken from the six different datasets 

which are provided on the well-known OR-LIB[22].  

There are 30 different problems in that dataset and 

each has a different problem size. All problems have 

a tightness ratio of 0.25, however, their number of 

items and number of resources is changing. Also, 

they are encoded as “cbX-Y” in the result table, 

which means “Chu-Beasley, dataset X, problem Y”.  

All the necessary information is given in Table 2. 

In this work, all 30 datasets are solved by BMGA. 

Then, the results are compared to the results obtained 

from [16] 
 

3.2. Experimental Studies 

For the experimental tests, first, some parameters of 

BMGA are set. These settings can be seen in Table 1. 

 
Table 1 Parameter settings 

 

Note that, each value in Table 1 is obtained by 

conducting a number of preliminary sensitivity 

tests[15].  

For each test, with the same set of seeds, 30 

independent runs were performed. For each run, best-

of-generation (BOG) is saved and the overall 

performance is calculated as shown in Equation 6. 

𝐹̅𝐵𝑂𝐺 =
1

𝐺
∑ (

1

𝑁
∑ 𝐹𝐵𝑂𝐺𝑖𝑗

𝑁
𝑗=1 )𝐺

𝑖=1                  (6) 

where 𝐺 is the number of generations, 𝑁 is the number 

of runs, 𝐹𝐵𝑂𝐺𝑖𝑗
 is the BOG of the 𝑗𝑡ℎ  run’s 𝑖𝑡ℎ 

generation. Last, 𝐹̅𝐵𝑂𝐺  is the overall offline 

performance.  

 

4. Results  

After setting the parameters in Table 1, the BMGA 

is tested for 30 different MKP datasets. For each 

problem, 30 independent runs are executed. The results 

can be seen in Table 2. Also, the charts of the first 

problems of each group can be seen in Figure 2. 

In the table, “Optimum” is the best-known optimum 

value so far provided in [22], “Best” is the best solution 

found during each test, and “Mean” is the average 

performance for the particular problem. In the "Prob. 

size" column, the size of the problem is given. For 

example, “5x100-0.25” means that the problem has 5 

resources, 100 items, and a tightness ratio of 0.25. 

Results show that BMGA is capable to solve MKP, 

is competitive, and obtains better solutions in terms of 

#Mean and #Best for most of the problem instances 

because of its Bayesian probability vector. More 

clearly, both in terms of #Best and #Mean, BMGA has 

got better results in 20 of 30 problems. 

Although BMGA performs better than the other 

algorithms, for the test instances with 500 items, it 

performs slightly worse than the other test instances. 

That is because having more items means a bigger BN. 

And since BOA’s BN is constructed with a 1-incoming 

edge rule, it is getting hard to exploit relations between 

the variables. 

 

5. Conclusion 

In this paper, the well-known optimization problem, 

the MKP, is solved by a recently proposed algorithm, 

the BMGA.  

BMGA combines the powers of EDA and MS. By 

saying EDA, we mean BOA and by saying MS, we 

mean GA. While the MS part is responsible for the 

optimization process, the EDA part is responsible for 

exploiting relations between variables. Since it is a 

recently proposed algorithm, it has become mandatory 

to solve well-known optimization benchmark 

problems such as MKP. 

For testing, BMGA is used to solve the most popular 

optimization dataset library’s MKP instances. Then, 

the results are compared to the most recent paper. To 

get a fair comparison, the same number of fitness value 

calculations were done. The results showed that 

BMGA outperforms even the latest proposed 

algorithms. 

This work tells us that exploiting the relations 

between the problem variables is important and useful 

while solving global optimization problems. 

Parameter Value 

number of generations 1000 

Size of the population 100 

Probability of crossover 1.0 

Probability of mutation 0.03 

Tournament size 4 

number of genotypes 4 

Population rate to form BN 0.1 
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Table 2 Results for the test sets 

Table 2 Results for the test sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Prob. size Prob. Optimum Profit BMGA MS SLMS MMVO BGSA BHTPSO BHTPSO-QI 

5x100-0.25 

cb1-1 24381 
Best 24311 24253 24231 24192 24152 24169 24301 

Mean 24072 24004 24015 24050 23835 23822 23821 

cb1-2 24274 
Best 24274 24258 24274 24274 23986 24109 23944 

Mean 24225 23934 24145 24274 23536 23657 23688 

cb1-3 23551 
Best 23247 23538 23538 23538 23386 23435 23418 

Mean 23175 23272 23440 23520 23041 23072 23073 

cb1-4 23534 
Best 23330 23256 23330 23288 23172 23253 23192 

Mean 23289 23024 23156 23120 22863 22928 22923 

cb1-5 23991 
Best 23952 23845 23947 23947 23755 23815 23774 

Mean 23901 23567 23800 23900 23459 23473 23527 

5x250-0.25 

cb2-1 59312 
Best 59203 58084 59107 58473 57565 57814 57800 

Mean 58980 57369 58736 58240 56554 56874 56685 

cb2-2 61472 
Best 61227 60248 61280 60692 60057 59982 59767 

Mean 61185 59386 61041 60390 58613 58588 58680 

cb2-3 62130 
Best 61831 61212 61787 61702 59936 60630 60524 

Mean 61684 59922 61476 61330 58975 59234 59186 

cb2-4 59463 
Best 59167 58386 59101 58441 57970 57736 57884 

Mean 58777 57752 58787 58300 56744 56773 56584 

cb2-5 58951 
Best 58753 57755 58485 58082 56959 57378 57550 

Mean 58566 56929 58097 58300 55961 56129 56361 

5x500-0.25 

cb3-1 120148 
Best 119992 116296 119914 119978 111206 114493 114438 

Mean 119921 115444 119625 119900 108930 111017 111469 

cb3-2 117879 
Best 116722 113732 117362 115634 108522 112821 112147 

Mean 115888 112257 116858 115400 106631 109276 109247 

cb3-3 121131 
Best 117859 117666 120888 119156 111271 114774 116099 

Mean 117083 116367 120711 118900 109430 112035 112001 

cb3-4 120804 
Best 120501 116454 120030 119124 111283 115828 114327 

Mean 119662 115396 119644 118900 109062 112200 111671 

cb3-5 122319 
Best 119059 117900 121907 121141 112391 115889 117242 

Mean 118284 116767 121512 120800 110564 112253 113364 

10x100-0.25 

cb4-1 23064 
Best 22917 22753 22835 22805 22836 22905 22876 

Mean 22694 22459 22604 22700 22334 22425 22449 

cb4-2 22801 
Best 22836 22611 22650 22630 22441 22573 22408 

Mean 22541 22255 22432 22480 21991 22047 22017 

cb4-3 22131 
Best 22012 21886 21962 22131 21849 21797 21949 

Mean 21662 21466 21632 21720 21313 21342 21461 

cb4-4 22772 
Best 22420 22319 22463 22347 22325 22418 22376 

Mean 22391 21992 22233 22160 21961 22037 22029 

cb4-5 22751 
Best 22312 22440 22619 22417 22168 22215 22254 

Mean 22182 22132 22279 22290 21840 21822 21903 

10x250-0.25 

cb5-1 59187 
Best 58820 57757 58725 58476 56928 57530 57036 

Mean 58812 56708 58148 58310 55759 55854 55960 

cb5-2 58781 
Best 58339 57363 58321 57937 56337 56568 56490 

Mean 58267 56793 58074 57790 55455 55443 55708 

cb5-3 58097 
Best 57804 56690 57764 57062 55573 56426 55982 

Mean 57626 56024 57372 56960 54638 54793 54727 

cb5-4 61000 
Best 60597 59930 60597 60326 58595 59030 59077 

Mean 60460 58934 60194 60030 57766 58057 57721 

cb5-5 58092 
Best 57567 56863 57233 56276 56186 56217 56204 

Mean 57559 56066 56961 56060 54850 54941 54872 

10x500-0.25 

cb6-1 117821 
Best 117371 113362 117287 – 108487 110996 111669 

Mean 116882 112541 116830 – 105760 107698 108367 

cb6-2 119249 
Best 118730 115022 118737 – 109569 114262 113001 

Mean 118250 114250 118385 – 106775 108648 109197 

cb6-3 119215 
Best 118905 115419 118488 – 109705 113987 112419 

Mean 118402 114372 118003 – 106853 108576 109004 

cb6-4 118829 
Best 117354 115038 118116 – 108628 112476 112198 

Mean 116593 113444 117714 – 105679 107692 107796 

cb6-5 116530 
Best 115334 112971 116530 – 106972 109567 109287 

Mean 114447 111707 115301 – 104509 106217 106212 
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Figure 2 Results for the first dataset of each group of problem size 
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