
Gazioğlu E., Journal of Soft Computing and Artificial Intelligence 03(02): 58-64, 2022

Journal of Soft Computing

and

Artificial Intelligence
Journal homepage: https://dergipark.org.tr/en/pub/jscai

International

Open Access

Volume 03

Issue 02

December, 2022

58

Research Article

Solving Multidimensional Knapsack Problem with Bayesian Multiploid Genetic

Algorithm

Emrullah Gazioğlu1

1Computer Engineering Department, Engineering Faculty, Sirnak University, 73000, Sirnak, Türkiye

 ARTICLE INFO ABSTRACT

Article history:

Received

Revised

Accepted

 Solving optimization problems is still a big challenge in the area of optimization

algorithms. Many proposed algorithms in the literature don’t consider the relations

between the variables of the nature of the problem. However, a recently published

algorithm, called “Bayesian Multiploid Genetic Algorithm” exploits the relations

between the variables and then solves the given problem. It also uses more than one

genotype unlike the simple Genetic Algorithm (GA) and it acts like an implicit memory

in order to remember the old but good solutions. In this work, the well-known

Multidimensional Knapsack Problem (MKP) is solved by the Bayesian Multiploid

Genetic Algorithm. And the results show that exploiting relations between the variables

gets a huge advantage in solving the given problem.

Keywords:

Bayesian Optimization

Algorithm

MKP

Genetic Algorithm

Optimization

1. Introduction

Constraint Optimization Problems (COP) are still

a big challenge in the area of computer science. One

of them is the Multidimensional Knapsack Problem

(MKP). The MKP is an extended version of the

standard 0-1 Knapsack Problem (KP). While

standard KP has only one resource, the MKP can has

more than one resource. MKP is actually can be

considered a real-world problem. Many real-world

problems can be solved by MKP, such as cutting

stock[1], loading problems [2], resource allocation

for distributed computing[3], project selection[4],

etc. MKP is still a current benchmark problem that

continues to be solved with different approaches in

recent years[5]–[8].

In the past ten years, many metaheuristic (MH)

techniques are applied to solve different NP-Hard

global optimization problems. Some of them are the

following: Estimation of Distribution Algorithms

(EDA)[9], Artificial Bee Colony (ABC)[10],

Harmony Search (HS)[11], Ant Colony Optimization

1 Corresponding author
e-mail: gazioglu@sirnak.edu.tr
 DOI: 10.55195/jscai.1216193

(ACO)[12], Whale Optimization Algorithm

(WOA)[13], Bat Algorithm (BA)[14], etc. However,

all of them mentioned before don’t consider the

interactions between the problem’s variables. In an

ecosystem, all the objects have connected some way

and they affect each other.

For this reason, it is important to exploit

interactions between the variables and then use them

to solve the problem effectively.

In this work, the Bayesian Multiploid Genetic

Algorithm (BMGA)[15] is used, which has both an

implicit memory scheme (to remember old solutions)

and a Bayesian Network (to exploit interactions

between variables) in order to solve the well-known

Multidimensional Knapsack Problem (MKP)

considering as a real-world benchmark problem.

To evaluate the BMGA’s performance, six

algorithms are selected as comparative algorithms.

Note that, the results for the six algorithms listed

below are already taken from the [16] and compared

https://dergipark.org.tr/en/pub/jscai
mailto:gazioglu@sirnak.edu.tr
https://orcid.org/0000-0002-7615-305X

Gazioğlu E., Journal of Soft Computing and Artificial Intelligence 03(02): 58-64, 2022

59

to the BMGA’s results.

• Moth Search Algorithm (MS)[17, s.]: A new

optimization algorithm that is inspired by the

Levy flights and the phototaxis of the months. In

this method, the fittest individual is considered the

light source. The moths close to the fittest one fly

in the form of Levy flights. On the other hand,

because of the phototaxis, the moths far from the

fittest one fly to the fittest one with big steps.

These two different behaviors are the exploration

and the exploitation of any other optimization

method.

• Self-Learning MS (SLMS)[16]: In regular MS,

each individual update their positions according

to the fittest one. But it may cause it to fall into

the local optimum. Authors, introduce a new self-

learning strategy to enable individuals to update

their positions not only according to the fittest one

but also the closer individuals which have fitter

than themselves.

• Modified multi-verse optimization algorithm

(MMVO)[18]: In this algorithm, authors are

inspired by the popular multi-verse theory which

is based on three concepts: the wormhole, the

black hole, and the white hole. In the algorithm,

each universe is considered a solution candidate.

If an individual gets close to the white hole, means

it is getting better fitness values, and vice-versa

(closing to the black hole), it is getting worse

fitness values. And the wormholes are used as a

diversification operator in the algorithm to

maintain the diversity in the population.

• Binary Gravitational Search Algorithm

(BGSA)[19]: This is the binary version of GSA

which is based on Newton’s laws of gravity and

motion: The gravitational force affects the objects

and makes them attract each other. In the

algorithm, each object is considered an agent, and

each one of them has its mass. And their masses

define their fitness values. As time passes, objects

are attracted by the fitter masses which leads them

to get a better fitness value.

• Binary Hybrid Topology Particle Swarm

Optimization (BHTPSO)[19]: In the simple

PSO[20], the particles may fall into local

optimum if their velocities are zero. Because zero

velocity means the particle’s fitness value is good

and shouldn’t be changed. To overcome this, a

small value is added to their velocities for

acceleration and enables them to escape from the

local optimum.

• Binary Hybrid Topology Particle Swarm

Optimization Quadratic Interpolation (BHTPSO-

QI)[19]: This is the form of BHTPSO which is

incorporated with a quadratic crossover operator.

This paper continues as follows: In Section 2, the

BMGA is explained. In Section 3, MKP and its

datasets are explained. In Section 4, the results are

shown and finally, Section 5 concludes the paper.

2. Bayesian Multiploid Genetic Algorithm

The BMGA is constructed on the simple GA.

However, it differs from simple GA in many ways.

First, the individuals in the simple GA have only

one chromosome to represent a candidate solution.

Both genetic operators and fitness calculations are

done over this chromosome for each individual.

However, in BMGA, each individual has two

different structures: The genotypes and a phenotype.

As we know, in nature, all living things have

genotypes and phenotypes. Genotypes are inherited

from the parents. However, the phenotype is the one

that decides a living thing will look like to what.

The number of genotypes in an individual can be

more than one. This feature provides an implicit

memory scheme to the algorithm. Because all the

genetic operators (crossover – mutation) are executed

on the genotypes and the fitness calculations are

executed on the phenotype of the individual. In this

way, genotypes act like a memory. On the other hand,

each individual has only one phenotype and its fitness

value is calculated using that phenotype. That is, no

matter how many genotypes an individual has, only

one phenotype determines its fitness value. The

structure of an individual is illustrated in Figure 1.

Second, BMGA uses a well-known Bayesian

Algorithm 1 Pseudocode of BMGA

𝑔 ← 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠

𝑝𝑜𝑝 ← 𝑖𝑛𝑖𝑡(𝑝𝑜𝑝𝑆𝑖𝑧𝑒, 𝑔)

𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑝𝑟𝑜𝑏𝑉𝑒𝑐[]

𝐰𝐡𝐢𝐥𝐞 𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑚𝑒𝑡 𝐝𝐨

𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒2𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝑝𝑜𝑝, 𝑝𝑟𝑜𝑏𝑉𝑒𝑐[])

𝑏𝑒𝑠𝑡 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑜𝑝)

𝐵𝑁 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐵𝑁(𝑝𝑜𝑝)

𝑎𝑢𝑥𝑃𝑜𝑝 ← 𝑠𝑎𝑚𝑝𝑙𝑒𝐵𝑁(𝐵𝑁)

𝑝𝑟𝑜𝑏𝑉𝑒𝑐[] ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑃𝑟𝑜𝑏𝑉𝑒𝑐(𝑎𝑢𝑥𝑃𝑜𝑝)

𝑝𝑜𝑝 ← 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑝)

𝑝𝑜𝑝 ← 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝𝑜𝑝)

𝑝𝑜𝑝 ← 𝑏𝑖𝑡𝑤𝑖𝑠𝑒𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝)

𝐫𝐞𝐭𝐮𝐫𝐧 𝑏𝑒𝑠𝑡

 Gazioğlu E., Journal of Soft Computing and Artificial Intelligence 03(02): 58-64, 2022

60

Optimization Algorithm (BOA)[21] in it, in order to

exploit the interactions between the variables. The

BOA starts with a randomly generated population

and creates a Bayesian Network (BN) by using this

population. Since there is no prior information, BOA

uses a greedy algorithm to form different BNs and

then measure their quality using a special metric.

After the algorithm finds the most suitable BN, then

samples new individuals using that final BN. This

procedure continues until a termination condition is

met.

Figure 1 Illustration of an individual

In BMGA, the BOA is used in order to form a

probability vector to determine the phenotypes of the

individuals in the population. This works like this:

First, the GA part of the BMGA randomly generates

a population. In this generating part, only the

genotypes of the individuals are generated. For

instance, if an individual has four genotypes, and the

size of the population is 100, then 400 genotypes are

generated. Next, a probability vector is randomly

formed to determine the phenotypes of the

individuals for the first iteration. The probability

vector is formed via genotypes of the best k%

individuals of the population by calculating the

probability of being 1 for each gene using Equation

1. After the probability of being 1 is calculated the

Equation 1, for each gene in the phenotype, a random

real number is generated between 0 and 1. This

generated value is then compared to the

corresponding value in the probability vector to

determine the value of the phenotype. Assuming that

number of genotypes is g, this comparison is held by

using Equation 2 and Equation 3.

𝑃𝑟𝑜𝑏𝑉𝑒𝑐𝑡𝑜𝑟𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑛𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑔𝑒𝑛𝑒

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 (1)

 𝑣𝑎𝑙 = (𝑟𝑎𝑛𝑑() < 𝑃𝑟𝑜𝑏𝑉𝑒𝑐𝑡𝑜𝑟𝑖)? 1: 0 (2)

 𝑝ℎ𝑒𝑛𝑜𝑖 = {

0, ∑ 𝑔𝑒𝑛𝑜𝑖 = 0
𝑔

1, ∑ 𝑔𝑒𝑛𝑜𝑖 = 𝑔
𝑔

𝑣𝑎𝑙, 𝑜𝑡ℎ𝑒𝑟

 (3)

Once the phenotypes are determined, the fitness

values of all individuals are calculated. After this first

iteration, for the latter iterations, a new BN is

constructed by using the same rule, and then a second

population is sampled via BN. This second

population is named auxiliary population, in short,

“aux-pop”. The aux-pop has only one chromosome

like in the simple GA. For the latter iterations, the

probability vector is formed by the aux-pop, again,

using Equation 1.

After explaining the key points of the BMGA, now

we can explain it in general. The general pseudocode

of the BMGA is given in Algorithm 1. After the BOA

parts of the BMGA are executed, next, the GA part

of the BMGA starts to run.

The standard tournament selection (size of n) is

applied in the BMGA’s selection phase: Randomly

chosen n solution candidates are compared and the

fittest one is passed on to the next generation. This

operation is performed until the size of the next

generation is satisfied. Without recalculating its

fitness value, the elite solution candidate from the last

iteration is passed on to the current generation

(elitism).

The uniform crossover approach is employed for

crossover operation. It begins by randomly

generating a mask vector in binary and then selecting

two individuals, say 𝑖1 , and 𝑖2, at each iteration. For

each variable j (genes in chromosome), if the mask

vector’s corresponding value is 1, 𝑖1’s 1st genotype’s

𝑗𝑡ℎ variable is swapped with 𝑖2’s 2nd genotype’s 𝑗𝑡ℎ

variable with a probability of 𝑝𝑐. This procedure is

performed on each pair of genotypes in each solution

candidate separately.

The simple bitwise mutation is employed as a

mutation tool. The genotypes of each solution

candidate are inverted with a probability of pm in the

bitwise mutation process.

3. Preparing Test Environment

3.1. Multidimensional Knapsack Problem

MKP is a well-known benchmark problem for

optimization algorithms. The goal of the problem

finding a subset of given a number of items that obtain

the optimal profit value while satisfying the given

constraints. In this problem, there are 𝑛 items, 𝑚

resources, and 𝑛 × 𝑚 constraints. The formulation of

the problem is given in Equation 4 and Equation 5.

max ∑ 𝑝𝑗 × 𝑥𝑗
𝑛
𝑗=1 (4)

subject to ∑ 𝑟𝑖𝑗 × 𝑥𝑗 ≤ 𝑐𝑖 , ∀𝑖∈ {1,2, … , 𝑚}𝑛
𝑗=1 (5)

Gazioğlu E., Journal of Soft Computing and Artificial Intelligence 03(02): 58-64, 2022

61

where 𝑛 is the number of items, 𝑚 is the number of

resources (knapsacks), 𝑥𝑗 denotes the whether the

item 𝑗 is collected, 𝑝𝑗 is the profit of the item 𝑗, 𝑟𝑖𝑗 is

the consumption of the 𝑗𝑡ℎ item at the 𝑖𝑡ℎ resource

and finally 𝑐𝑖 is the capacity of the 𝑖𝑡ℎ resource.

In order to test BMGA for MKPs, the first five

problems are taken from the six different datasets

which are provided on the well-known OR-LIB[22].

There are 30 different problems in that dataset and

each has a different problem size. All problems have

a tightness ratio of 0.25, however, their number of

items and number of resources is changing. Also,

they are encoded as “cbX-Y” in the result table,

which means “Chu-Beasley, dataset X, problem Y”.

All the necessary information is given in Table 2.

In this work, all 30 datasets are solved by BMGA.

Then, the results are compared to the results obtained

from [16]

3.2. Experimental Studies

For the experimental tests, first, some parameters of

BMGA are set. These settings can be seen in Table 1.

Table 1 Parameter settings

Note that, each value in Table 1 is obtained by

conducting a number of preliminary sensitivity

tests[15].

For each test, with the same set of seeds, 30

independent runs were performed. For each run, best-

of-generation (BOG) is saved and the overall

performance is calculated as shown in Equation 6.

�̅�𝐵𝑂𝐺 =
1

𝐺
∑ (

1

𝑁
∑ 𝐹𝐵𝑂𝐺𝑖𝑗

𝑁
𝑗=1)𝐺

𝑖=1 (6)

where 𝐺 is the number of generations, 𝑁 is the number

of runs, 𝐹𝐵𝑂𝐺𝑖𝑗
 is the BOG of the 𝑗𝑡ℎ run’s 𝑖𝑡ℎ

generation. Last, �̅�𝐵𝑂𝐺 is the overall offline

performance.

4. Results

After setting the parameters in Table 1, the BMGA

is tested for 30 different MKP datasets. For each

problem, 30 independent runs are executed. The results

can be seen in Table 2. Also, the charts of the first

problems of each group can be seen in Figure 2.

In the table, “Optimum” is the best-known optimum

value so far provided in [22], “Best” is the best solution

found during each test, and “Mean” is the average

performance for the particular problem. In the "Prob.

size" column, the size of the problem is given. For

example, “5x100-0.25” means that the problem has 5

resources, 100 items, and a tightness ratio of 0.25.

Results show that BMGA is capable to solve MKP,

is competitive, and obtains better solutions in terms of

#Mean and #Best for most of the problem instances

because of its Bayesian probability vector. More

clearly, both in terms of #Best and #Mean, BMGA has

got better results in 20 of 30 problems.

Although BMGA performs better than the other

algorithms, for the test instances with 500 items, it

performs slightly worse than the other test instances.

That is because having more items means a bigger BN.

And since BOA’s BN is constructed with a 1-incoming

edge rule, it is getting hard to exploit relations between

the variables.

5. Conclusion

In this paper, the well-known optimization problem,

the MKP, is solved by a recently proposed algorithm,

the BMGA.

BMGA combines the powers of EDA and MS. By

saying EDA, we mean BOA and by saying MS, we

mean GA. While the MS part is responsible for the

optimization process, the EDA part is responsible for

exploiting relations between variables. Since it is a

recently proposed algorithm, it has become mandatory

to solve well-known optimization benchmark

problems such as MKP.

For testing, BMGA is used to solve the most popular

optimization dataset library’s MKP instances. Then,

the results are compared to the most recent paper. To

get a fair comparison, the same number of fitness value

calculations were done. The results showed that

BMGA outperforms even the latest proposed

algorithms.

This work tells us that exploiting the relations

between the problem variables is important and useful

while solving global optimization problems.

Parameter Value

number of generations 1000

Size of the population 100

Probability of crossover 1.0

Probability of mutation 0.03

Tournament size 4

number of genotypes 4

Population rate to form BN 0.1

Gazioğlu E., Journal of Soft Computing and Artificial Intelligence 03(02): 58-64, 2022

62

Table 2 Results for the test sets

Table 2 Results for the test sets

Prob. size Prob. Optimum Profit BMGA MS SLMS MMVO BGSA BHTPSO BHTPSO-QI

5x100-0.25

cb1-1 24381
Best 24311 24253 24231 24192 24152 24169 24301

Mean 24072 24004 24015 24050 23835 23822 23821

cb1-2 24274
Best 24274 24258 24274 24274 23986 24109 23944

Mean 24225 23934 24145 24274 23536 23657 23688

cb1-3 23551
Best 23247 23538 23538 23538 23386 23435 23418

Mean 23175 23272 23440 23520 23041 23072 23073

cb1-4 23534
Best 23330 23256 23330 23288 23172 23253 23192

Mean 23289 23024 23156 23120 22863 22928 22923

cb1-5 23991
Best 23952 23845 23947 23947 23755 23815 23774

Mean 23901 23567 23800 23900 23459 23473 23527

5x250-0.25

cb2-1 59312
Best 59203 58084 59107 58473 57565 57814 57800

Mean 58980 57369 58736 58240 56554 56874 56685

cb2-2 61472
Best 61227 60248 61280 60692 60057 59982 59767

Mean 61185 59386 61041 60390 58613 58588 58680

cb2-3 62130
Best 61831 61212 61787 61702 59936 60630 60524

Mean 61684 59922 61476 61330 58975 59234 59186

cb2-4 59463
Best 59167 58386 59101 58441 57970 57736 57884

Mean 58777 57752 58787 58300 56744 56773 56584

cb2-5 58951
Best 58753 57755 58485 58082 56959 57378 57550

Mean 58566 56929 58097 58300 55961 56129 56361

5x500-0.25

cb3-1 120148
Best 119992 116296 119914 119978 111206 114493 114438

Mean 119921 115444 119625 119900 108930 111017 111469

cb3-2 117879
Best 116722 113732 117362 115634 108522 112821 112147

Mean 115888 112257 116858 115400 106631 109276 109247

cb3-3 121131
Best 117859 117666 120888 119156 111271 114774 116099

Mean 117083 116367 120711 118900 109430 112035 112001

cb3-4 120804
Best 120501 116454 120030 119124 111283 115828 114327

Mean 119662 115396 119644 118900 109062 112200 111671

cb3-5 122319
Best 119059 117900 121907 121141 112391 115889 117242

Mean 118284 116767 121512 120800 110564 112253 113364

10x100-0.25

cb4-1 23064
Best 22917 22753 22835 22805 22836 22905 22876

Mean 22694 22459 22604 22700 22334 22425 22449

cb4-2 22801
Best 22836 22611 22650 22630 22441 22573 22408

Mean 22541 22255 22432 22480 21991 22047 22017

cb4-3 22131
Best 22012 21886 21962 22131 21849 21797 21949

Mean 21662 21466 21632 21720 21313 21342 21461

cb4-4 22772
Best 22420 22319 22463 22347 22325 22418 22376

Mean 22391 21992 22233 22160 21961 22037 22029

cb4-5 22751
Best 22312 22440 22619 22417 22168 22215 22254

Mean 22182 22132 22279 22290 21840 21822 21903

10x250-0.25

cb5-1 59187
Best 58820 57757 58725 58476 56928 57530 57036

Mean 58812 56708 58148 58310 55759 55854 55960

cb5-2 58781
Best 58339 57363 58321 57937 56337 56568 56490

Mean 58267 56793 58074 57790 55455 55443 55708

cb5-3 58097
Best 57804 56690 57764 57062 55573 56426 55982

Mean 57626 56024 57372 56960 54638 54793 54727

cb5-4 61000
Best 60597 59930 60597 60326 58595 59030 59077

Mean 60460 58934 60194 60030 57766 58057 57721

cb5-5 58092
Best 57567 56863 57233 56276 56186 56217 56204

Mean 57559 56066 56961 56060 54850 54941 54872

10x500-0.25

cb6-1 117821
Best 117371 113362 117287 – 108487 110996 111669

Mean 116882 112541 116830 – 105760 107698 108367

cb6-2 119249
Best 118730 115022 118737 – 109569 114262 113001

Mean 118250 114250 118385 – 106775 108648 109197

cb6-3 119215
Best 118905 115419 118488 – 109705 113987 112419

Mean 118402 114372 118003 – 106853 108576 109004

cb6-4 118829
Best 117354 115038 118116 – 108628 112476 112198

Mean 116593 113444 117714 – 105679 107692 107796

cb6-5 116530
Best 115334 112971 116530 – 106972 109567 109287

Mean 114447 111707 115301 – 104509 106217 106212

Gazioğlu E., Journal of Soft Computing and Artificial Intelligence 03(02): 58-64, 2022

63

Figure 2 Results for the first dataset of each group of problem size

Gazioğlu E., Journal of Soft Computing and Artificial Intelligence 03(02): 58-64, 2022

64

References

[1] P. C. Gilmore and R. E. Gomory, “The Theory and

Computation of Knapsack Functions”, Operations

Research, c. 14, sy 6, ss. 1045-1074, Ara. 1966, doi:

10.1287/opre.14.6.1045.

[2] Y. Li, Y. Tao, and F. Wang, “A compromised large-

scale neighborhood search heuristic for capacitated

air cargo loading planning”, European Journal of

Operational Research, c. 199, sy 2, ss. 553-560, Ara.

2009, doi: 10.1016/j.ejor.2008.11.033.

[3] G. B, “Allocation of Databases and Processors in a

Distributed Computing System”, Management of

Distributed Data Processing, ss. 215-231, 1982.

[4] M. Engwall and A. Jerbrant, “The resource allocation

syndrome: the prime challenge of multi-project

management?”, International Journal of Project

Management, c. 21, sy 6, ss. 403-409, Ağu. 2003, doi:

10.1016/S0263-7863(02)00113-8.

[5] M. Abdel-Basset, R. Mohamed, K. M. Sallam, R. K.

Chakrabortty, and M. J. Ryan, “BSMA: A novel

metaheuristic algorithm for multi-dimensional

knapsack problems: Method and comprehensive

analysis”, Computers & Industrial Engineering, c.

159, s. 107469, Eyl. 2021, doi:

10.1016/j.cie.2021.107469.

[6] V. Cacchiani, M. Iori, A. Locatelli, and S. Martello,

“Knapsack problems — An overview of recent

advances. Part II: Multiple, multidimensional, and

quadratic knapsack problems”, Computers &

Operations Research, c. 143, s. 105693, Tem. 2022,

doi: 10.1016/j.cor.2021.105693.

[7] S. Gupta, R. Su, and S. Singh, “Diversified sine–

cosine algorithm based on differential evolution for

multidimensional knapsack problem”, Applied Soft

Computing, c. 130, s. 109682, Kas. 2022, doi:

10.1016/j.asoc.2022.109682.

[8] A. Rezoug, M. Bader-el-den, and D. Boughaci,

“Application of Supervised Machine Learning

Methods on the Multidimensional Knapsack

Problem”, Neural Process Lett, c. 54, sy 2, ss. 871-

890, Nis. 2022, doi: 10.1007/s11063-021-10662-z.

[9] F. Wang, Y. Li, A. Zhou, and K. Tang, “An

Estimation of Distribution Algorithm for Mixed-

Variable Newsvendor Problems”, IEEE Transactions

on Evolutionary Computation, c. 24, sy 3, ss. 479-

493, Haz. 2020, doi: 10.1109/TEVC.2019.2932624.

[10] L. Ma, K. Hu, Y. Zhu, and H. Chen, “Cooperative

artificial bee colony algorithm for multi-objective

RFID network planning”, Journal of Network and

Computer Applications, c. 42, ss. 143-162, Haz. 2014,

doi: 10.1016/j.jnca.2014.02.012.

[11] B. Zhang, Q.-K. Pan, X.-L. Zhang, and P.-Y. Duan,

“An effective hybrid harmony search-based

algorithm for solving multidimensional knapsack

problems”, Applied Soft Computing, c. 29, ss. 288-

297, Nis. 2015, doi: 10.1016/j.asoc.2015.01.022.

[12] M. Dorigo and T. Stützle, “Ant Colony Optimization:

Overview and Recent Advances”, içinde Handbook

of Metaheuristics, M. Gendreau and J.-Y. Potvin, Ed.

Cham: Springer International Publishing, 2019, ss.

311-351. doi: 10.1007/978-3-319-91086-4_10.

[13] S. Mirjalili and A. Lewis, “The Whale Optimization

Algorithm”, Advances in Engineering Software, c. 95,

ss. 51-67, May. 2016, doi:

10.1016/j.advengsoft.2016.01.008.

[14] Y. Zhou, L. Li, and M. Ma, “A Complex-valued

Encoding Bat Algorithm for Solving 0–1 Knapsack

Problem”, Neural Process Lett, c. 44, sy 2, ss. 407-

430, Eki. 2016, doi: 10.1007/s11063-015-9465-y.

[15] E. Gazioğlu and A. S. Etaner-Uyar, “Experimental

analysis of a statistical multiploid genetic algorithm

for dynamic environments”, Engineering Science and

Technology, an International Journal, c. 35, s.

101173, Kas. 2022, doi:

10.1016/j.jestch.2022.101173.

[16] Y. Feng and G.-G. Wang, “A binary moth search

algorithm based on self-learning for

multidimensional knapsack problems”, Future

Generation Computer Systems, c. 126, ss. 48-64, Oca.

2022, doi: 10.1016/j.future.2021.07.033.

[17] G.-G. Wang, “Moth search algorithm: a bio-inspired

metaheuristic algorithm for global optimization

problems”, Memetic Comp., c. 10, sy 2, ss. 151-164,

Haz. 2018, doi: 10.1007/s12293-016-0212-3.

[18] M. Abdel-Basset, D. El-Shahat, H. Faris, and S.

Mirjalili, “A binary multi-verse optimizer for 0-1

multidimensional knapsack problems with

application in interactive multimedia systems”,

Computers & Industrial Engineering, c. 132, ss. 187-

206, Haz. 2019, doi: 10.1016/j.cie.2019.04.025.

[19] Z. Beheshti, S. M. Shamsuddin, and S. Hasan,

“Memetic binary particle swarm optimization for

discrete optimization problems”, Information

Sciences, c. 299, ss. 58-84, Nis. 2015, doi:

10.1016/j.ins.2014.12.016.

[20] R. Poli, J. Kennedy, and T. Blackwell, “Particle

swarm optimization”, Swarm Intell, c. 1, sy 1, ss. 33-

57, Haz. 2007, doi: 10.1007/s11721-007-0002-0.

[21] M. Pelikan, “Bayesian Optimization Algorithm”,

içinde Hierarchical Bayesian Optimization

Algorithm: Toward a new Generation of Evolutionary

Algorithms, M. Pelikan, Ed. Berlin, Heidelberg:

Springer, 2005, ss. 31-48. doi: 10.1007/978-3-540-

32373-0_3.

[22] J. E. Beasley, “OR-LIB

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/”,

2005.

