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Abstract

In this paper, we shall study the spectral properties of the non-selfadjoint operator in the
space L2

ρ (R+) generated by the Sturm-Liouville differential equation

−y
′′
+q(x)y = ω

2
ρ (x)y, x ∈ R+

with the integral type boundary condition

∞∫
0

G(x)y(x)dx+ γy′ (0)−θy(0) = 0

and the non-standard weight function

ρ (x) =−1

where |γ|+ |θ | 6= 0. There are an enormous number of papers considering the positive
values of ρ (x) for both continuous and discontinuous cases. The structure of the weight
function affects the analytical properties and representations of the solutions of the equation.
Differently from the classical literature, we used the hyperbolic type representations of the
fundamental solutions of the equation to obtain the spectrum of the operator. Moreover, the
conditions for the finiteness of the eigenvalues and spectral singularities were presented.
Hence, besides generalizing the recent results, Naimark’s and Pavlov’s conditions were
adopted for the negative weight function case.

1. Introduction

Differential equations, particularly the ones with integral boundary conditions, have been inevitable tools in modeling natural phenomena
such as thermodynamics, liquid flow, and demographics, see [1]. Modeling the vibration of a loaded string, equations of gas dynamics, and
the theory of shock waves are a few quite interesting examples of a vast research area in mathematical physics that makes use of boundary
value problems with a boundary condition involving spectral parameters in it [2]. Therefore in this paper we will focus on Sturm-Liouville
operator generated by well-known one dimensional Schrödinger equation

−y
′′
+q(x)y = ω

2
ρ (x)y, x ∈ R+ (1.1)

where ω is a spectral parameter and ρ is the weight function under the integral boundary condition.
The utility stemmed from the interconnection of studies on direct and inverse problems with the methods of solving many problems in
mathematical analysis, keeps this research area vigorous [3–7]. This productive and efficient subject area, originated by the pioneer work of
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Naimark dealing with the singular non-self-adjoint problem for ρ(x) = 1, finds itself specialized sub-areas governing different but connected
techniques, for example, cases considering positive weight [8–13], non-continuous weight [14–17], sign-changing weight [18–20] as well as
discrete cases [21–28]. Especially, the spectral singularities of the non-selfadjoint problem under the integral boundary condition has been
investigated in [9, 10].
At first, Gasymov’s approach in considering the sign-changing weight function for the inverse problem of the Sturm-Liouville type operator
yielded different results from the previous literature [18]. Besides the fact that the appearance of these weight functions enriched the study
area with applications in physics, the analytical difficulties arising from the negative sign made the problem even more attractive.
In the Sturm-Liouville problem, hyperbolic-type solutions obtained depending on the negative weight function cause some analytical
difficulties, as well as the necessity of re-evaluation of conventional techniques. In this paper, the spectral properties of the non-selfadjoint
singular Sturm-Liouville type operator, under the integral boundary condition and the non-standard weight function ρ (x) =−1 shall be
analyzed. We engage with this problem owing to the deficiency in the studies investigating the requirements of the analytical solutions of
Sturm-Liouville equation in distinct regions.
Let us also remark that, while the transformation chosen for the eigenparameter determines the analytical properties of the Jost solutions in
discrete problems; the structure of the weight function affects the Jost solution in differential case. Hence, based on this idea, this paper may
also lay the groundwork for new research topics in both inverse and direct problems. This paper has also a crucial importance since this is
the first study which considers the negative value of a weight function for singular non-selfadjoint operators under the integral boundary
condition. Therefore, we adopt the recent results to the negative weight function case and obtain new results which might give rise to the new
research topics.
This article is structured as follows: Section 2 presents the general solution to (1.1) subject to the integral boundary condition in terms of the
fundamental solutions to the boundary value problem (1.1) with negative weight function. Later in the same section, we obtain resolvent set
in terms of these solutions. In Section 3, more general theorems for eigenvalues and spectral singularities concerning some additional and
more strict conditions on the potential function are provided.

Notation. Let ω be a complex parameter. In this paper, for the complex left half-plane, we set the notation Cle f t := {ω ∈ C : Reω < 0}. As
usual topological relatives, we use Cle f t for its completion, and ∂Cle f t for its boundary set. We denote number of elements in a set A with
#A and the linear Lebesgue measure of a Lebesgue measurable set A with µ(A).

2. Solutions of the problem

In this part, we present some preliminary results for the negative weight function case which can be deduced similar to the theorems and
techniques in [4–6, 8, 9].
Let T be the operator in L2

ρ (R+) generated by the differential equation

−y
′′
+q(x)y = ω

2
ρ (x)y, x ∈ R+ (2.1)

with the integral boundary condition

∞∫
0

G(x)y(x)dx+ γy′ (0)−θy(0) = 0 (2.2)

and the non-standard weight function

ρ (x) =−1, x ∈ R+ (2.3)

where γ,θ are complex numbers with |γ|+ |θ | 6= 0, and ω is spectral parameter. Note that q and G are complex valued functions, such that
G ∈ L1

ρ (R+)∩L2
ρ (R+), and q satisfies the following condition:

∞∫
0

s |q(s)|ds < ∞. (2.4)

Let us denote by S (x,ω) and C (x,ω), the solutions of (2.1) subject to the initial conditions

S (0,ω) = 0,

C (0,ω) = 1,

∂

∂x
S(x,ω)

∣∣∣∣
x=0

= 1,

∂

∂x
C(x,ω)

∣∣∣∣
x=0

= 0.

Consider the case q(x)≡ 0. Then, (2.1) takes the form

y
′′
= ω

2y, x ∈ R+.

Thus, S (x,ω) and C (x,ω) can be represented by the hyperbolic type functions

S (x,ω) =
sinhωx

ω
,

C (x,ω) = coshωx.
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Using the results of [4] and constant coefficients method, one can easily show that the fundamental solutions S (x,ω) and C (x,ω) have the
Volterra type integral representations as

S (x,ω) =
sinhωx

ω
+

x∫
0

sinhω (x− t)
ω

q(t)S (t,ω)dt,

and

C (x,ω) = coshωx+
x∫

0

sinhω (x− t)
ω

q(t)S (t,ω)dt.

Moreover, both functions S (·,ω) and C (·,ω) are entire in ω . They are also analytic on Cle f t . Existence and uniqueness results of the
solutions S (x,ω) and C (x,ω) can also be proven analogous to [4]. Also, Wronskian of the solutions S (x,ω) and C (x,ω) can be written as

W [S (x,ω) ,C (x,ω)] =−1, ω ∈ C.

Now, let us denote the Jost solution of the operator T by e(x,ω) which is the solution of (2.1) satisfying the asymptotic condition

lim
x→∞

e(x,ω)e−ωx = 1, ω ∈ Cle f t . (2.5)

Under the condition (2.4), this solution can be found as

e(x,ω) = eωx +

∞∫
x

K (x,s)eωsds, (2.6)

where the kernel K is uniquely determined by the potential function q such that K (x, .) ∈ L1 (0,∞) and it is continuously differentiable with
respect to its arguments.
On the same manner with [4], we deduce that the Jost solution e(·,ω) is analytic in Cle f t and continuous on Cle f t from the validity of the
inequality

|K (x,s)| ≤ c
∞∫

x+s
2

|q(τ)|dτ, x≤ s < ∞, (2.7)

for any constant c > 0 independent of the variables x and s.
Denote by g(x,ω), another solution of (2.1) satisfying the asymptotic conditions

lim
x→∞

g(x,ω)eωx = 1, ω ∈ Cle f t ,

lim
x→∞

gx (x,ω)eωx =−ω, ω ∈ Cle f t .
(2.8)

By the help of the asymptotic identities (2.5) and (2.8), the Wronskian of e and g can be found as

W [e(x,ω) ,g(x,ω)] =−2ω, ω ∈ Cle f t , (2.9)

which concludes that e and g form the fundamental system of solutions for (2.1) on ∂Cle f t .
For the complex parameter ω , define the functions

N (ω) =

∞∫
0

G(s)e(s,ω)ds+ γex (0,ω)−θe(0,ω) ,

M (ω) =

∞∫
0

G(s)g(s,ω)ds+ γgx (0,ω)−θg(0,ω) ,

and for t ∈ R+,

u(t,ω) =
−1
2ω

g(t,ω)

∞∫
t

G(s)e(s,ω)ds− e(t,ω)

∞∫
t

G(s)g(s,ω)ds+M (ω)e(t,ω)

 .

Clearly, resolvent operator of T can be obtained as

Rω (T )φ =

∞∫
0

G (x, t;ω)φ (t)dt, φ ∈ L2
ρ (R+) .

Here we set the notation G (x, t;ω) for the Green’s function of T defined as

G (x, t;ω) = G (1) (x, t;ω)+G (2) (x, t;ω) ,
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with the functions

G (1) (x, t;ω) :=
−e(x,ω)u(t,ω)

N (ω)
,

G (2) (x, t;ω) :=−

{
e(x,ω)u(t,ω)

2ω
, 0≤ t < x,

e(t,ω)u(x,ω)
2ω

, x≤ t < ∞.

Hence, the resolvent set Rω (T ) is given by

Rω (T ) =
{

η : η = ω
2,Reω < 0,N (ω) 6= 0

}
.

3. Spectrum of T

In this section in order to deal with the quantitative structure of the spectrum of T , we will investigate the sets of zeros of the function N on
left half plane and on its boundary, respectively. Let us denote these sets by

Z1 :=
{

ω : ω ∈ Cle f t , N (ω) = 0
}
,

Z2 :=
{

ω : ω ∈ ∂Cle f t , N(ω) = 0
}
.

Recall that the multiplicity of a zero in the region Cle f t is called the multiplicity of the corresponding eigenvalue and spectral singularity of
the operator [7, 8]. According to this definition, Z3 denotes the set of all the accumulation points of Z1 and Z4 denotes the set of all zeros of
N in Cle f t with infinite multiplicity.
Notice that the set of eigenvalues of T is related to the set of zeros Z1

σd (T ) =
{

--z : --z = ω
2,ω ∈ Z1

}
, (3.1)

and the set of spectral singularities T is related to the set of zeros Z2

σss (T ) =
{

--z : --z = ω
2,ω ∈ Z2

}
\{0} . (3.2)

Within the same circle of ideas in the proofs of the theorems from [4,8,9], by the classical definition of spectrum of a differential operator we
obtain that the set σc (T ) defined as

σc (T ) = {--z : --z = iτ,τ ≥ 0}

is the continuous spectrum of T .

Lemma 3.1. Suppose G ∈ L1
ρ (R+)∩L2

ρ (R+) and (2.4) holds, then

(i) Z1 is bounded, #Z1 is at most countable, and Z3 is a subset of a bounded interval of ∂Cle f t ,
(ii) Z2 is a compact set with µ(Z2) = 0.

Proof. Using the inequality (2.6) and the expression of N (ω), it can be easily seen that N (ω) is analytic with respect to ω in Cle f t and
continuous on the imaginary axis. Also, it yields the asymptotic

N (ω) = γω +θ +o(1) , ω ∈ Cle f t , |ω| → ∞, (3.3)

for |γ|+ |θ | 6= 0. The boundedness of the sets Z1 and Z2 follows from (3.3). Hence, the proof of part (a) results from analicity of N (ω) in
Cle f t and continuity on the imaginary axis. For the part (b), we shall consider the boundary uniqueness theorems of analytic functions [29].
Using these theorems, we get that Z2 is a closed set and µ (Z2) = 0.

The following theorem can be stated easily using (3.1), (3.2) and Lemma 3.1 :

Theorem 3.2. Suppose G ∈ L1
ρ (R+)∩L2

ρ (R+) and (2.4) holds. Then,

(i) σd (T ) is bounded, #σd (T ) is at most countable, and the set of its limit points is contained in a bounded interval of ∂Cle f t .
(ii) σss (T ) is a bounded set with zero measure.

From now on, we will consider the spectral properties of T under more strict conditions on the potential. Firstly we consider the Naimark’s
condition

∞∫
0

eετ (|q(τ)|+ |G(τ)|)dτ < ∞, (3.4)

for any ε > 0, which enables us to use analytic continuation properties of the Jost function for the proof.

Theorem 3.3. Suppose the condition (3.4) holds true. Then T possesses finitely many eigenvalues and spectral singularities and each one
has finite multiplicity.
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Proof. (2.7) and (3.4) make it clear that

|K (x,s)| ≤ Ae−
ε(x+s)

2 , (3.5)

for arbitrary positive constant A. Considering the expression of N (ω) and (3.5), it is clear that N (ω) continues analytically from Cle f t to the
right half-plane {ω : Reω < ε

4}. As a consequence, the limit points of the zeros of N (ω) in Cle f t cannot lie in the imaginary axis. From the
results of Lemma 3.1, we can see that the sets Z1 and Z2 are bounded and both have a finite number of elements. Also taking into account the
analicity of N (ω) for {ω : Reω < ε

4}, we deduce that the zeros of N (ω) in Cle f t are of finite number and they are of finite multiplicity,
which concludes the assertion of theorem.

However, there is more strict condition for the potential called Pavlov’s condition which pushes us to use new methods to prove the finiteness
of the sets σd (T ) and σss (T ). Let the following integral condition holds true:

∞∫
0

exp(ετ
δ )(|q(τ)|+ |G(τ)|)dτ < ∞,

1
2
≤ δ < 1 (3.6)

for any ε > 0. Clearly, N (ω) is analytic in the complex left-half plane Cle f t and continuous on the imaginary axis. Nevertheless, analytic
continuation property does not hold from the left-half plane to the right-half plane. We will also benefit from the subsequent relations
between the sets Z1, Z2, Z3 and Z4 in order to verify the following theorem which can be inferred directly from the boundary uniqueness
theorems of analytic functions [29]:

Z1∩Z4 = /0, Z3 ⊂ Z4 ⊂ Z2, (3.7)

and

µ (Z3) = µ (Z4) = 0.

Theorem 3.4. If the condition for the potential (3.6) holds to be true, then Z4 = /0.

Proof. Using Lemma 3.1., we obtain that∣∣∣∣∣∣
−T∫
−∞

ln |N (ω)|
1+ω2 dω

∣∣∣∣∣∣< ∞,

∣∣∣∣∣∣
∞∫

T

ln |N (ω)|
1+ω2 dω

∣∣∣∣∣∣< ∞, (3.8)

for sufficiently large values of T > 0. Moreover, N (ω) is analytic in Cle f t , all its derivatives are continuous up to the imaginary axis and∣∣∣N(r) (ω)
∣∣∣≤Cr, ω ∈ Cle f t , r = 1,2, ..., |ω|< 2T, (3.9)

where

Cr := c
∞∫

0

sr |K (0,s)|ds. (3.10)

If we make use of (3.8), (3.9) and Pavlov’s theorem, we get
ω∫

0

ln t(s)dµ(Z4,s)>−∞, (3.11)

where t(s) := inf
r

Crsr

r! for s≥ 0, and µ(Z4,s) is the linear Lebesgue measure of the s−neighborhood of Z4 [8, 9]. We can also estimate Cr

from above

Cr = c
∞∫

0

sr |K (0,s)|ds≤ c
∞∫

0

sre−
ε

4 s ds≤ Bbrrrr!, (3.12)

for constants B and b depending on c and δ . When estimate (3.12) is substituted in the definition of t implies that

t(s) = inf
r

Crsr

r!
≤ B inf

r
{brsrrr} ≤ Be−s−1e−1b−1

. (3.13)

It follows from (3.12) and (3.13) that
ω∫

0

s−
δ

1−δ dµ(Z4,s)< ∞. (3.14)

Then the inequality δ

1−δ
≥ 1, together with (3.14) ensures that, for arbitrary s, µ(Z4,s) = 0 or Z4 = /0.

Theorem 3.5. Suppose that the condition (3.6) holds true. Then T possesses finitely many eigenvalues and spectral singularities and each
one is of finite multiplicity..

Proof. It would clearly have been necessary to show that N (ω) acquires finitely many zeros with finite multiplicities in Cle f t . When we
applied the previous theorem, the relation (3.7) just amounts to saying that Z3 = /0. That is to say, the bounded sets Z1 and Z2 cannot possess
accumulation points. Therefore, the zeros of N (ω) in Cle f t are finitely many. The fact Z4 = /0 concludes that these zeros are of finite
multiplicity.
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4. Conclusion

In this paper, we investigated the spectrum of the operator constructed by the help of differential Sturm-Liouville type operator and negative
valued weight function. The specific feature of this study is that we obtain the spectrum using the hyperbolic type fundamental solutions. We
also impose an integral boundary condition and this also effects the structure of the Naimark’s and Pavlov’s conditions. There are so many
papers considering the trigonometric type fundamental solutions. Also, this paper is the differential analog of the hyperbolic type problems
in discrete operators. Therefore, we bring a novel viewpoint to the recent papers and this paper may lay the goundwork for future studies.
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