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Abstract

A useful technique for analyzing incomplete tables is to model the missing data mechanisms
of the variables using log-linear models. In this paper, we use log-linear parametrization
and propose estimation methods for arbitrary three-way and n-dimensional incomplete
tables. All possible cases in which data on one or more of the variables may be missing
are considered. We provide simple closed form estimates of expected cell counts and pa-
rameters for the various missing data models. We also obtain explicit boundary estimates
under nonignorable nonresponse models. Finally, a real-life dataset is analyzed to illus-
trate our results for modelling and estimation in multidimensional incomplete tables.
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1. Introduction

Contingency tables are frequently used for the display and analysis of categorical data.
Missing data in such tables pose a common problem in various epidemiological studies, clin-
ical trials and social science studies. The results of analyses that improperly treat missing
data can be biased and imprecise obscuring the underlying phenomena. So, the analy-
sis of contingency tables with missing data, also called incomplete tables, is of practical
interest. The two types of counts in such tables are (i) fully observed counts and (ii) par-
tially classified margins (nonresponses). A systematic study of missing data involves three
types of missingness mechanisms proposed in the literature (see [14]): missing completely
at random (MCAR), missing at random (MAR) and not missing at random (NMAR).
If the probability (of an observation being missing) is independent of both observed and
unobserved data, then a mechanism is said to be MCAR. It is called MAR if conditional
on the observed data, the probability is independent of unobserved data, and NMAR if
the probability depends only on unobserved data. For likelihood inference, nonresponses
are classified as either ignorable (when the missing data mechanism is MAR or MCAR)
or nonignorable (when the missing data mechanism is NMAR).
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According to [14], an incomplete table may be analyzed using mainly the following
techniques: complete case analysis (using only the fully observed counts), weighting, im-
putation and modelling. Various types of models for analyzing such incomplete tables
are available in the literature, for example, the pattern-mixture model (see [10,13,17]),
and the selection model (see [3,9,14]). Log-linear models have generally been used to
study missing data mechanisms in incomplete tables (see [3-7,20]). Some of the estima-
tion methods used are weighted least squares, maximum likelihood (ML) and Bayesian
techniques.

Baker et al. [4] used log-linear models for analyzing a two-way incomplete table with
data missing in both variables, and obtained closed-form estimates of missing counts.
In this paper, we adopt the hierarchical log-linear parametrization for arbitrary three-
dimensional and n-dimensional incomplete tables in general (see [12]). We focus on log-
linear models with main effects and two-way interactions among variables and their missing
indicators. This is because higher order interactions are difficult to interpret and models
with such parameters may become non-identifiable. We consider all possible cases when
data on one or more of the variables are missing.

We derive explicit, closed-form formulae for estimates of expected cell counts under
various missing data models in the above tables. The formulae involve only observed cell
counts or their sums, which simplifies the fitting of the models. Closed-form estimates are
important since they provide a compact, simplified algebraic expression unlike iterative
algorithms. The convergence of an iterative algorithm is an increasing function of the in-
put size, that is, sample size. So, larger the sample size (total cell count in the incomplete
table), the longer it takes to obtain the estimates. However, evaluating closed-form ex-
pressions is independent of the sample size and requires constant time. Hence, closed-form
estimates are usually faster to compute than iterative solutions thereby reducing compu-
tational burden. This is especially true when lots of iterations are required to compute the
estimates of the cell probabilities if some of them are zero under nonignorable (NMAR)
missing data models.

Incomplete tables with data missing in at least one variable are common in the social
sciences and medical fields. For example, in the analysis of survey data, the gender of each
respondent is usually known. Suppose we are interested in the association between two
partially missing variables (say, income and education level), stratified by gender. This
is an example of a three-way incomplete table with data on two variables missing. While
the EM algorithm (see [8]) is available for such settings, it does not automatically produce
asymptotic covariance matrices for the parameter estimates so that estimation of standard
errors of the estimates becomes difficult. The rate of convergence of the EM algorithm
also depends on the proportion of missing information for each parameter. So Meng and
Rubin [16] proposed a componentwise EM procedure, which is computationally expensive
for covariance estimation. In this paper, we explicitly model the missing data mechanism
of each variable which leads to a full likelihood specification and use ML estimation to
obtain the parameter estimates. Unlike the EM algorithm, covariance estimates of the
parameters can be calculated in the usual way by inverting the Fisher information while
any of the common fit statistics can be used to compare the fits of different models.
Besides estimating missing cell counts, we obtain closed-form estimates of joint, marginal
and conditional probabilities of the variables and their missingness under various models.
Also, estimates of the marginal odds ratios and their asymptotic variances are provided
for each model.

The problem of boundary solutions occurs in nonignorable models while using ML
estimation. Such solutions occur when the MLE’s of nonresponse cell probabilities are all
zeros for certain levels of a variable, that is, they lie on the boundary of the parameter
space. Some references to this problem for various incomplete tables include [4,11,12,18].
In this paper, we provide explicit closed-form MLE’s of expected cell counts and other
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parameters if boundary solutions occur under nonignorable models for some three-way
incomplete tables.

The remaining part of the paper is organized as follows. In Section 2, we provide log-
linear parametrizations and discuss estimation methods for three-way incomplete tables
with data missing in one variable, two variables and all variables. We also discuss boundary
solutions and their occurrence under NMAR models in each of the above tables. Section
3 extends the methodology and results in Section 2 to arbitrary n-dimensional incomplete
tables. A real-life dataset is analyzed in Section 4 to illustrate the results in Section 3.
Section 5 provides some concluding remarks.

2. Log-linear parametrization for 3-dimensional incomplete tables

For studying missing data mechanisms in an I x J X2 X 2 incomplete table, [4] considered
nine identifiable log-linear models. In this section, we use such hierarchical log-linear
models (see [12]) for three-way contingency tables where data on at least one of the
variables may be missing. Partially classified (supplementary) margins of a table are
assumed to be positive.

2.1. Missing in one of the variables

Without loss of generality (WLOG), let data on Y; be missing. Denote the missing
indicator for Y7 by R, where R =1 if Y] is observed and R = 2 otherwise. Then we have
an I x J x K x 2 table corresponding to Y7, Y2, Y3 and R with cell counts y = {yijiz},
where 1 < i< I, 1<j<J,1<k<K and x = 1,2. Denote the vector of observed
counts by yobs = ({¥ijk1}, {y+jr2}), where {y;jr1} are the fully observed counts, {2}
are the supplementary margins and ‘+’ means summation over levels of the corresponding
variable. Let m = {m;;r,} be the vector of cell probabilities, u = {j;jxz} be the vector of
expected counts and N = >, ;1 . yijk. be the total cell count. For I = J = K = 2, the
2 x 2 x 2 x 2 incomplete table is shown below. (Table 1).

Table 1. 2 x 2 x 2 x 2 Incomplete Table

Ys=1 Y3=2
R=1|Y1=1|Yo=1]| y1111 1121
Yo=21| yi211 w1221
Y1I=2 |Yo=1| yor11 w2121
Yo =21 yo211 Y2001
R=2|Missing | Yo=1| yy112  yt122
Yo=2| yio12  yt22

The log-linear model (with no three-way interactions) for this case is given by
log Hijke = A+ Ay (Z) + Ay, (]) + /\Ys (k) + )‘R(‘T) + Avivs (Z,j) + )‘Y1Y3 (i7 k) + )‘Y2Y3 (]7 k)
+Avir(, ) + Avyr(4, ) + Avyr(k, x). (2.1)
Each log-linear parameter in (2.1) satisfies the constraint that the sum over each of
its arguments is 0, for example, >, A\viv3(4,k) = > p Avivs(i,k) = 0. Define a;, =
iggjmz;%z;%zg = :Zif = Z Z .2, which describes the missing data mechanism of Y3.
It is the odds of Y7 being missing. Then pjjro = aijrptije1- Also, 3o, 5k pijr1 (1 4+ ain) = N
and the joint probability ;x4 = pijr1 (1 + aijx) /N, from which the marginals may be de-
rived. Note that under (2.1), a;jr = exp[—2{Ar(1) + Av;r(%,1) + Avyr(4, 1) + Avzr(K, 1)}
Denote a;j by a;.. or aj. or a j or « . if it depends on only 7 or j or k or none of these,
respectively. From [12], we have the following definition.
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Definition 2.1. The missing mechanism of Y7 under (2.1) is NMAR if a;j, = o;.., MAR
if a;j = o j. or a ), and MCAR if a5, = a....
Under Poisson sampling for observed cell counts, the log-likelihood of p is
L1 Yobs) = Y Yijk1 10g pijit + > Ysjn2 108 ok — > Hijka + A, (2.2)
i7j7k .]7k i7j7k7x
where A is some constant. The various missing data models and the MLE’s under them
are given as follows :
1. a;.. (NMAR for V7).
We have fijjk1 = yijr1 and & satisfies }; flijp1@i. = y4jp2 V1 <j < J 1<k <K.
2. aj (MAR for Y7).

We have i, — Yijk1Y+ik+Y+5+1 and &, = y+j+2.
Hijk1 Y4 ik1Y4j++ T Y

3. a. (MAR for V7).

We have fi; = ZEibsVitkl and ¢ j = Letk2,
Hijk1 Yokl Y++k+ -k Ytk

4. o (MCAR for Y7).

We have i, — Yijk1lY+ik+Y+++1 and & = y+++2_
Hijk1 Y jR1Y++++ T Yttt

From [12], boundary solutions occur if &;. < 0 for at least one and at most (I — 1)
values of Yi. If any &;.. < 0, then boundary estimates are obtained by setting &; = 0 in
(2.2). For example, if Y7 is binary with levels 1 and 2, and &;.. = 0 under Model 1, then
the MLE’s are
Y2 . o Y2k T Yk2) Y2441
= y M1jk1 = Y1jkls M25k1 = .

Y24++1 Y42

Q..

A perfect fit model is one for which the estimated expected counts are equal to the ob-
served counts. Consider now the hypotheses Hy: the proposed model (among Models 1-4
mentioned above) fits the data, and Hy: the perfect fit model fits the data. Let Ly and Lq
denote the maximized log-likelihood functions under the proposed and perfect fit models
respectively. Then the likelihood ratio statistic for testing Hg against H; is given by

G? = —2(Lo — L)

ijk1 22 Fijk Qi . R
> yijiiIn (5” ) + ) Uik 1n< i highk1 B4 > = fuijei(L+ agr) + N | .

ik ijk1 ik Yjk2 ik

=2

(2.3)

Note that G? follows x?2 asymptotically, where v = (I+1)JK (number of observed counts)
— number of free estimable parameters under the proposed model. If Y7 is binary and
boundary solutions occur under Model 1, then the boundary MLE’s are obtained for the
level of Y7 corresponding to which G? is minimum.

2.2. Missing in two of the variables

WLOG, suppose data on Y; and Y, are missing. For ¢ = 1,2, denote the missing in-
dicator for Y; by R; such that R; = 1 if Y; is observed and R; = 2 otherwise. Then we
have an I x J x K x 2 x 2 table corresponding to Y1, Ya, Y3, R; and Rs with cell counts
Y = {Yijkas}, where 1 <i <1, 1<j<J, 1<k<K andz,s=1,2. Denote the vector of
observed counts by Yobs = ({¥ij11}, {1¥+jk21}s {Witk12}, {Y+4r22}). Also, let m = {7jpas}
be the vector of cell probabilities, 1 = {pijrzs} be the vector of expected counts and N be
the total cell count. For I = J = K = 2, the 2 X 2 X 2 X 2 X 2 incomplete table is shown
below (Table 2).
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Table 2. 2 x 2 x 2 x 2 x 2 Incomplete Table

Y3=1 Y3=2
YiI=1|Ry=1 Yo=1 ]| yi1111 Y1211

Yo=2 | yi2111 w1221
Ry =2 Missing | y1+112  ¥Y14212
Yi=2|Ry=1 Yo=1/| yo1111 %2121

Yo =2 | yoo111  ¥22011
Ry =2 Missing | y2+112  Y24212
Ry =2|Missing | Ro=1 Yo=1 | ys1121 Y+1221

Yo =2 | yyo121 Yy2021
Ry =2 Missing | y4++122  Y++4222

I
—

Ry

The log-linear model (without three-way or higher order interactions) is given by
10g plijkas = A+ Avi (1) + Ay (4) + Avs (k) + Ar, (%) + AR, (8) + Aviva (4,7) + Avivs (4, F)
TAYeys (J; k) + Avir, (i, 2) + Avar, (4 %) + Avsr, (K, 2)
+>‘Y11L32 (iv S) + )‘Y2R2 (]a 5) + )‘Yst (kv 5) + )‘R1R2 (l’, 3)' (2'4)

Each log-linear parameter in (2.4) satisfies the constraint that the sum over each of its
arguments is 0. Define the following quantities

aip = P(R1:27R2:1‘Y1:’L:,Y2:]:,YE),:I€):ﬂ'ijkgl:Mijkm’
PRi=1,R=1[Y1=4,Y2=3Ys=k) myr1 Mk
bk = P(Rl:1732:2|Y1:Z:7Y2=J}Y3=k):Wijku:mjmg
P(Ri=1Re=1|Y1=0,Ya=4Ys=k) myr1 fujkn

Then the missing data mechanisms of Y7 and Y3 are described by a; i, and b; i, respectively.
Note that a;;i is the conditional odds of Y7 being missing given Y3 is observed, while b,
is the conditional odds of Y5 being missing given Y7 is observed. The odds ratio between
Ry and Rs is
P(Ri=1,R=1|Y1=4Y,=j,Ys=k)P(R1=2,R=2|Y1=4Y=j,Y3=k)
P(Ri=1,Ro=2|Y1=4Y2=},Ys=k)P(Ri=2,Ro=1|Y1=4Y2=j,Y3=k)
Tijk11Tijk22  Hijk11Mijk22

Tijk12Tijk21 Mijk12Mijk21 '

0 =

If # = 1, then the missingness patterns of Y7 and Y5, that is, R; and Ry are indepen-
dent. Also, pijro1 = Qijkiije11s Bijki2 = bijkMijk11ls Hijk22 = Hijk110ijkbijrt) and N =
> i gk Higk11 (1 + @ik + bijr + aijibijrt). The joint probability is mijk 4 = pijk11 (1 + agx +
bijk+aijibijr?) /N, from which the marginals can be obtained. The conditional probability
of Y7 being missing given that Y5 is observed is

. . . aiik
¢1|2(7‘7]7k) = P(Rl =2 ‘ Ry = 17}/1 :Z7Y2 :]7}/3 = k) =—
L+ aiji
Similarly, the conditional probability of Y5 being missing given that Y7 is observed is
o . : bijk
¢2\1(2>]>k):P(R2:2’Rl:lvnszvYQ:]’Yé:k): o :
1+ biji

Under (2.4), we have a;ji = exp[—2{Ar, (1) + Avir, (i, 1) + A\vyr, (4, 1) + Avzr, (K, 1) +
ARlRQ(lv 1)}]7 bijk‘ = eXp[—Q{/\R2(1) +)‘le2 (iv 1) +)\Y2R2 (]a 1) +)‘Y3Rz (kv 1) + )‘Rle(lv 1)}]
and

0 = exp[4AR, r,(1,1)]. If each of a;j; and b;;, depends on only one of 4, j, k or none of
these, then let a;, € {vi., 0, a k,a.. } and by € {Bi.., B.j., Bk, B..}. The next definition
is due to [12].
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Definition 2.2. The missing mechanism of Y7 under (2.4) is NMAR if a;j;, = .., MAR if
a;jr, = o j. or o and MCAR if a;5, = o, respectively. Similarly, the missing mechanism

Under Poisson sampling, the log-likelihood kernel of 4 is

(115 ¥obs) = Z Yijk11 108 pijr11 + Z Yy jko1 log pyjror + Z Yirk12 10g piy k12
i7j7k j?k /L‘7k
+D Yk log iy koe — D Hijkas: (2.5)
k i,5,k,x,s

There are 16 identifiable models in this case. The various models and the MLE’s under
them are given in the Appendix. From [12], boundary solutions occur under at least one
of the following cases.

1. &;. <0 for at least one and at most (I — 1) values of Y7,
2. . <0 for at least one and at most (J — 1) values of Y5.

They occur in models for which the missing mechanism of at least one of the variables
is NMAR. If any &;.. < 0 or any Bj < 0, then boundary estimates can still be obtained
by setting &; = 0 or ﬁ] = 0 in (2.5) for relevant models. Now suppose Y7 and Y5 are
binary variables, each with levels 1 and 2. Then we have a 2 X 2 x K X 2 X 2 incomplete
contingency table. The boundary MLE’s obtained when &;.. = 0 or B,z. = 0 (say) under
various NMAR models are shown below.

(a) (a4, B..) (NMAR for Y7, MCAR for Y3) :

If &1.. = 0, then the MLE’s are

by = Y4+4++21Y++4+1+ B _ Yi4+12 6 — Y+++11Y+++22
. 9 e T 9 - Y
Y+++11Y24++1+ Y+++11 Y+++12Y+++21
Y1je11Y1++1+Y++411 o y+++11y2++1+(y23k11 + y+]k21)
A1k = y H2jk11 = .
Y1++11Y+++1+ Yt 1+ (Y2441 + Yt421)

(b) (e.., Bi.) (NMAR for Y1, MAR for Y3) :
If &1.. = 0, then the MLE’s are

A _ Y421 a0 Yib412 5 Y24 411Y 44422
Qo = —, 62 - ) 0 = 3
Y24++11 Yi++11 Y24++12Y+++21
N _ Yot +11(Y2jk11 + Ygjk21)
A1kl = Yiikll, f2jk11 = .
Y24++11 T Y4421
(c) (.., ;) (NMAR for both Y; and Y3) :
(i) If & = 0, then the MLE’s are
Gy o YAl 5 Y2edlleia2 o Yor+11(Y2jk11 + Y1 jk21)
Qg = y U= y M15k11 = Y1jkll, M2]1<;11 = .
Y24++11 y2++12y+++21 Y2++11 + Y+++421

Also, (3. satisfies > flijr11B.j. = Yiskiz:

(ii) If B2. = 0, then the MLE’s are
5 Yt++12 5 Y41411Y++422 o _ Y1011 (Yitk11 + Yigr12) . N
Bi1.=""——", 0= flj1p11 = y Mi2k11 = Yi2k11-

Y+1+11 Y+1+12Y+++421 Y+1+11 + Y4421

Also, &;.. satisfies > ; fijjr1104.. = Yyjk21-

(d) (e, B;) (NMAR for Ya, MCAR for Y1) :

If 84, =0, then the MLE’s are

B L= Y44++12Y+ 4441 4 = Y+++12 6 — Y4++-+11Y+++422

.1 - ) e T ) - )
Y+4++11Y+14+1 Y411 Y++-+12Y+++21

N _ Y+ 11Y+14+1 (Yitk11 + Yirk12) . _ Yi2k11Y+2++1Y+++11

Hilk1l = y Hi2k1l = :

Z/++++1(y+1+11 + y+++12) Y+24+11Y++++1
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(e) (aj.,B4.) (NMAR for Ya, MAR for Y1) :
If B_g, = 0, then the MLE’s are

Bl _ Yrttr2 d. = Y+5k21 6 — Y+1+11Y44422

L. - ) Je I - ’
Y+1+11 Yijk11 Y+1+12Y+++421

N  Yren Wik + Yirki2) _

Hitk11 = y Hi2k11 = Yi2k11-

Y+14+11 T Y+++21

The above method for obtaining closed-form boundary MLE’s can be generalized to non-
binary variables also. Next consider testing the hypotheses Hy: the proposed model
(among Models 1-16 in the Appendix) fits the data against Hj: the perfect fit model
fits the data. Let Ly and L; denote the maximized log-likelihood functions under the
proposed and perfect fit models respectively. Then the likelihood ratio statistic for testing
Hy against H; is given by

G? = —2(Ly— L)

Hijk11 > i fijrk11 G5k
=2 [Z Yijk11 In (y” ! ) +Zy+3k21 In (”11”)

ik ijk11 ik Y+jk21
> frijranbin 2 Hijk11Gijbijr0
> YiggzIn | R ) 4> Ty oo In
ik Yi+k12 P Y++k22

— Z ﬂz’jkll(l + &ijk + Bijk + &ijkl;ijké) + N (26)

i7j7k

Note that G? follows x2 asymptotically, where v = (I + 1)(J + 1)K — number of free
estimable parameters under the proposed model. If Y7 and Y5 are binary variables and
boundary solutions occur, then the boundary MLE’s are obtained for the level of Y7 or Ys
(depending on whether &; < 0 or ,5’] < 0) corresponding to which G? is minimum.
Marginal odds ratios. When Y; = k is fixed, consider the YjYs-marginal odds
ratios. Let OR i = (k. 7irjk..)/(Rijrk. Tirjr..) denote an estimated odds ratio on the
Y1Yo-margin, where 1 < i</ <I,1<j<j <Jand 1<k < K. Also, let ORy1} =
(yijkllyi’j’kll)/(yz‘j’kllyi/jkn) be the estimated odds ratio when R; = Ry = 1. From the
closed-form MLE’s for the models (see Appendix), it can be shown that OR_; = ORq1x
under Models 2, 4, 9, 12, 13, 14 and 16 a priori, and under Models 1, 3, 5, 6, 8, 11 and
15 for non-boundary (interior) estimates. We can derive closed-form expressions for the
asymptotic variance of estimated marginal odds ratio in case of non-boundary MLE’s. We
assume that the data follows Poisson distribution. The asymptotic variance of a statistic

fWyijrin b AWivri2}s {ys g2t by Y1 4r22) for fixed k (see [1]) is

2 2
of
Var(f) = | fijr11 + ( )Hk+ fitjk
) sz: <8yz‘jk11> Rl Z it k12 e Z 8y+gk21 ke
of 2
+ () At 1 k22 2.7
Oyiirz) T (2.7)
When OR = ORi = (Yije11Yirjei1)/ (Yije11Yirjein), we get from (2.7)
Var(OR.) = ORY, [“gjk” 4 DL ) DGR ) “;’j"c”] . (2.8)
Yijk11r Yk Yioge1n o Yogen

Using (2.8), the asymptotic variances of estimated marginal odds ratios for k fixed under
various models (see Appendix) are as follows.
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1. Models 2, 3 and 4 :

Var(OR.;) = OR?, Yitk1l
Y++k+1

2. Models 5, 9 and 13 :

7 1 1
+ Yij'k4+1 +
Y+5'k11 \ Yij’'k11 Yirj'k11

i’ 1 1
+ Yi' +k1+ +
Yir+k1l \Yi'jk11  Yirj'k11

1 1 1 1
Var(OR_}) = OR?, [ + + + ]
Yijk11

Yt jk+1 1 n 1
Y+ik11 \ Yijk11 Yirjk11
Var(OR. ;) = OR2, k1

Yitkl+ 1 n 1
Y41+ | Yirk1l \Yijk1l  Yij'kll

3. Models 6, 8, 11, 12, 14, 15 and 16 :

Yij'k1l  Yirjk1l  Yirg’kl11

It may be remarked that this variance approximation is based on a Taylor series lineariza-
tion method (sometimes called the delta method). Alternatively, the variances can be
computed from the inverse of the observed information matrix using the method in [2].
Note that if boundary solutions occur under NMAR models, then this method provides a
variance estimate given that the closed-form MLE’s of the expected cell counts in (2.8) lie
on the boundary of the parameter space. However, the bootstrap technique provides an
unconditional variance estimate in this case (see [3]).

2.3. Missing in all three variables

For i = 1,2, 3, denote R; to be the missing indicator of Y;, where R; = 1 if Y; is observed
and R; = 2 otherwise. Then we have an I x J X K x 2 x 2 x 2 table corresponding to
Y1, Ya, Y3, Ry, Ry and R3 with cell counts y = {yjjkasz}, where1 <i <1, 1 <j<J, 1<
k< Kandz,s, z=1,2.Also, yobs = ({¥ijk111}, {U+jr211}s {Witr121 s {wijr12}s {vssr201 ),
{yjr212}, {Wir 122}, Y4 +4222). Let m = {mijras.} be the vector of cell probabilities, N be
the total cell count and p = {uijkmz} be the vector of expected counts. For I = J = K = 2,
the 2 X 2 x 2 x 2 x 2 X 2 incomplete table is shown below (Table 3).

Table 3. 2 x 2 x 2 X 2 x 2 x 2 Incomplete Table

R3=1 R3=2

Ys=1 Y3 =2 | Missing

Ri=1Yi=1|Ry=1 Yo=1/| yi1111  ¥Y112111 | Y114112
Yo =2 | yio1111 Y122111 | Y124112

Ry =2 Missing | y141121  Y142121 | Y14+4+122

Yi=2 |Ry=1 Yo=1 | yor1111 ¥212111 | ¥214112

Yo =2 | yo12111  Y222111 | Y224112

Ry =2 Missing | y241121  Yo42121 | Y244122

Ry =2 |Missing | Ro =1 Yo=1 | yp11211  Y+12211 | Y+14212
Yo =2 | ypo1211  Y422211 | Y+24212

Ry =2 Missing | 441221 Y++42221 | Y+4222

The log-linear model in this case is

A+ Ay, (1) + Ava () + Avs (K) + AR, (2) + ARy (5) + ARy (2) + Aviva (4, )
+FAv,vs (4, k) + Avovs (U, k) + Ak, (4, ) + Avar, (4, ) + Avyr, (K, @)
+Avi R, (i,8) + AY; Ry (J,s) + AY3 R, (k,s) + AY: Ry (i,2) + AYs Ry (J, 2)
+Avirs (K, 2) + AR Ry (T, 8) + AR Ry (T, 2) + ARy Rs (5, 2).

log Hijkxsz

(2.9)
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Each log-linear parameter in (2.9) satisfies the constraint that the sum over each of its
arguments is 0. Define the following quantities

aijy = P(Ri=2R=1R3=1|Y, = l:ayz = j:v Y3 =k) _ mijronn _ Higha1t
P(Ri=1,R=1,R3=1|Y1=40,Yo=3Ys=k) Tjrii1  Mijkii1
bk = PRy =1,Ry=2,R3=1|Y1 = LYo =, Y5 = k) _ Tijkion _ Higk121
PRi=1,R=1R3=1|Y1=4,Yo=35Y3=k) Tyri1 Mkl
Cis = P(Ri=1,Ry=1,R3=2|Y1=0,Ya =5, Y3 =Fk) _ Tijrniz _ fijr112

PRi=1,Ry=1,R3=1|Y1=4,Yo=4Ys=k) Tjpin1  Mijki11
Then a;j, biji and ¢;j;, describe the missing data mechanisms of Y7, Y2 and Y3, respectively.
Here a;j is the conditional odds of Y7 being missing given both Y2 and Y3 are observed,
bi;i is the conditional odds of Y2 being missing given both Y7 and Y3 are observed, and
¢iji is the conditional odds of Y3 being missing given both Y7 and Y5 are observed. Let
the conditional odds ratio between R; and Ry given Y3 is observed be

P(Ri=1,Ry=1,R3=1Y1 =14,Yo =4, Y3 =k)

P(Ri=1,Rs=2,R3=1|Y1 =4,Yo =5, Y3 =k)

><P(Rl =2,Ry=2,R3 =111 =i,Yo =3, Y3 =k)
P(Ri=2,Ry=1,R3 =11 =14,Yoa =4, Y35 =k)

Tijk111T3k221  Mijk111Hijk221

T5k121T55k211 B Nijlel,Uiijll.

b2 =

Similarly, define 613 to be the conditional odds ratio between R; and R3 given Y5 is
observed, and 63 to be the conditional odds ratio between Ro and Rs given Y; is observed.
Also, define

P(Ri=2,Ry=2,R3=2|Y1=4,Yo=35,Y3 =k)
P(Ri=1,Re=1,R3=1|Y1=4,Yo=35,Y3 =k)
Tijk222  ijk222
Tijk111 B Nz’jkzlll‘

0123

Here, 612, 013 and 023 describe the conditional associations between the missing mechanisms
of Y1 and Y3, Y7 and Y3, and Y3 and Y3 respectively. For ¢ # j # k =1,2,3, if 0;; = 1,
then the missing mechanisms of Y; and Y; are conditionally independent given that Y}, is
observed. Note that 6123 denotes the joint odds of Y7, Y5 and Y3 simultaneously missing.
The joint probability is x4+t = tajr111(1 + aijr + biji + Cijr + ijrbijrbi2 + aijrcijrbiz +
bijiCijrb23 + 0123) /N, from which the marginals can be obtained. Under (2.9), we have

Aijk = exp[—Q{)\Rl (1) + >‘Y1R1 (iv 1) + )‘Y2R1 (]7 1) + /\Y3R1 (k7 1) + /\R1R2 (17 1) + )‘R1R3(17 1)}]7
bijk = exp[=2{ARr, (1) + Avi Ry (4, 1) + Avyry (4, 1) + Ava Ry (K; 1) + ARy Ry (1, 1) + ARy 5 (1, 1)},
Cijk = exp[_Q{)‘Rs (1) + )‘YlR3 (i? 1) + )‘Y2R3 (]a 1) + >‘Y3R3 (k’ 1) + )‘Rle (13 1) + )‘RzR3 (17 1)}]7

(

(912 = eXp[4)\RlR2(1, 1)], 913 = exp[4ARlR3 1, 1)], (923 = eXp[4)\R2R3(1, 1)],
bhos = eXp[72{)\R1 (1) + )‘Rz(l) + )‘Rs(l) + )\YlRl (iv 1) + )‘Y2R1 (], 1) + )‘Y3R1 (k’ 1)
+ Avir, (Z‘a 1) + AYaRy (Ja 1) + /\Y3R2(k’ 1) + /\Y1R3 (i, 1) + )‘YgRa (]7 1) + )‘Y3R3 (kv 1)”
Based on the assumption in the previous case regarding the missing mechanism of a
variable, a;x € {o., i, o, o}, bk € {B.., Bi., B, Bk} and ciji € {7V %ie, Vo Vo
(say). For the definition below, see [12].

Definition 2.3. The missing mechanism of Y7 under (2.9) is NMAR if a;j, = o;.., MAR
if a;j1 = aj. or o and MCAR if a;5, = a... Similarly, the missing mechanism of Y3
is NMAR if b;;, = 8., MAR if by, = ;.. or B and MCAR if b;;, = (... Finally, the
missing mechanism of Y3 is NMAR if ¢;j, = v.x, MAR if ¢;j5 = ;.. or 7,;, and MCAR if
Cijk = 7...-
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We have 64 possible identifiable models which are mixtures of the various missing mech-
anisms of the variables. Under Poisson sampling, the log-likelihood can be wriiten as a
function of a;jk, bijk, cijk, 012, 013, 023 and 0123 which is then maximized to obtain closed-
form MLE’s of jt;jiqs. under various missing data models. Note that from [12], boundary
solutions occur if at least one of the following holds.

1. &;. <0 for at least one and at most (I — 1) values of Y7,
2. 5. <0 for at least one and at most (J — 1) values of Y5,
3. 4.k <0 for at least one and at most (K — 1) values of Y3.

The boundary estimates are obtained by setting &; = 0 or ﬁj =0 or 4. = 0 in the log-
likelihood for relevant models. The likelihood ratio statistic G? for testing the goodness
of fit of a missing data model can be obtained as in the previous case. Here G2 follows x?2
asymptotically, where v = (I + 1)(J + 1)(K 4 1)— number of free estimable parameters
under the proposed model.

Remark 2.4. For all the above cases, perfect fit solutions for fully observed counts occur
under the following types of models:

(i) non-boundary cases of NMAR only models for one or more variables,
(ii) non-boundary cases of a mixture of NMAR and MAR models for the variables,
(iii) MAR only models for two or more variables.

However, if the missing mechanism is MCAR for at least one of the variables, then perfect
fit solutions don’t occur.

WLOG, consider models in which the missing mechanism is NMAR for Y;. Then we
have the following observations.

Remark 2.5. The systems of equations ), fl;jx1&:.. = Yyjk2, 2; fijk1106.. = Y4jk21 and
D i fijk111Gh... = Yqjr2t for IX I X K x2, I X Jx K x2x2and I x Jx K x2x2x2
tables respectively are overdetermined (underdetermined) if I < JK (I > JK).

Remark 2.6. Let the matrix of coefficients be A = (fi;jx1) or A = (fiijr11) or A = (flijk111)
for IxXJx K x2orIxJxKx2x2orlIxJxK x2x2x 2 tables, respectively.
(a) Note that A is of order JK x I and hence square if I = JK and rectangular otherwise
from Remark 2.5. If A is square and non-singular, then unique MLE’s of o, 8. and v
exist.

(b) For overdetermined systems in Remark 2.5, if rank(A) = I (full rank), then the left
inverse of A exists and is given by Ay = (ATA)~1AT. Also, the unique solutions (MLE’s
of v, Bj. and 7. i) are obtained using the method of ordinary least squares (see [21]).
(c) For underdetermined systems in Remark 2.5, if rank(A) = JK (full rank), then the
right inverse of A exists and is given by Ar_iéht = AT(AAT)~L1. Also, the unique solutions
(MLE’s of o, (5. and . ;) are obtained using the method of minimum norm least squares
(see [15]).

3. n-dimensional incomplete table

In this section, we extend the discussions and results in the previous sections to n-
dimensional incomplete tables.

3.1. Log-linear parametrization

Let Y7,...,Y, be n categorical variables with I1,..., I, levels respectively. Assume
data on k of these variables are missing, while data on the remaining (n — k) variables are
always observed, where 1 < k < n. For 1 <i < k, denote R; to be the missing indicator
for Y;, where R; = 1 if data on Y; is observed and R; = 2 otherwise. Accordingly, there
are a variety of incomplete tables, from the I; x ... x I,, x 2 table (where one variable is
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missing) to the Iy x ... x I,, x 2" table (where all n variables are missing). There are (}})
ways in which data on k variables may be missing. WLOG, we assume data on Y7,..., Y}
are missing. Then we have an I1 x ... X I, X 2k table. The vector of observed counts is

Yobs = ({Yirointdbs {Wir b tip1oind2 2015 ooy AW bigin 1 in2. 2111 5 - - -
{y+...+ik_1ikik+1...in2...2111...1}) ety {yh...’i}g_1+ik+1...inl...121...1}7 y++22)

Note that there are a total of [[f_; I fully observed counts and (2* — 1) supplementary
margins. Let i, inry.rp = E(Yiy inri..r,) denote the expected cell frequency. Then the
log-linear model is given by

n n n k k
log thiy ipry.re = )\JrZ)\yp(ip)Jr Z Ay, y, (ip,iq) +ZZ/\prq(ip,rq) + Z AR, R, (Tp,Tq),
p=1 p#q=1 p=1g=1 p#q=1
(3.1)
where 1 <4 <Ij;, 1<i<n,r; =12 1<j<k.

Three-way and higher order associations are assumed to be zero in (3.1) as they are
difficult to interpret. Also, closed-form MLE’s of parameters become difficult to obtain
along with issues of non-identifiability. Note that association terms among Y;’s and those
among R;’s are not involved in studying the missing data mechanisms of Y;’s in (3.1).
Hence, there is no need to include three-way or higher order interactions among the out-
come variables such as Y7Y5Y3 or the missing indicators such as RiRoR3. It is assumed
that the MAR mechanism of a variable depends on any one of the other variables so
that interaction terms like Y;Y; Ry, for i # j # k are excluded from (3.1). The missingness
mechanism of a variable cannot be NMAR and MAR simultaneously, which excludes terms
with Y;Y;R; for i # j in (3.1). Interactions such as Y;RyR; for i # k # | are absent in
(3.1) since their interpretation is unclear. Also, they are redundant for the derivation of
closed-form estimates of the expected cell counts. The following constraints are required
for identifiability of (3.1) :

Z )\Yp (Zp> = Z )\Yqu (ip7 Zq) = Z AYqu (ip7 Z‘]> = Z )\Yqu (ip7 Tq) = Z )\Yqu (ip7 r‘l)
ip Tq

ip 1q ip

= ZARPRq(TP’T‘Z) = Z /\Rqu<rp7Tq) =0, p 7’é q.

Tp Tq
Next, we introduce some parameters to study the missingness mechanisms of Y1,..., Y.
Let k={1,...,k} and {RE\{p} =1} ={R; =11 # p}. Define
P({R: =1}R,=2|Y1=41,..., Y, =1
P (B gy = 11 By RS ‘1 n ‘n)7 L<p<kh

which is the conditional odds of Y, being missing given the other Y;’s are observed and
hence describes the missing data mechanism of Y,. There are k such odds. Next define

A P(R;=1,R; =1{Rp, , = HY1 =i1,.... Y0 = i)

K P(Ri=1,R; =2{Rp(, ;, = V1 =i1,....,Y, = in)
XP(Ri =2,R; =2{Rp ;= Vi =i1,.... Y0 =)
P(Ri=2,Rj =1{Rp;, n =1}Y1=1i1,.... Y0 =in)’

which is the conditional odds ratio between R; and R;. If 6;; = 1, then the missingness
patterns of Y; and Yj, that is, R; and R; are conditionally independent given that the

remaining variables are observed. There are (g) such ratios. Let A C k = {1,...,k}

such that |A| > 3. There are (2 — (k + 1) — (%)) such sets. Let Ry = {R|i € A}.
Then {Ra = 1} = {R; = 1]i € A} and {Rp 4, = 1} = {R; = 1[i ¢ A}. Also, let
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2a={ri=2(i€ A}, la={ri=1li € A}, 1p\a = {ri = 1[i &€ A}, 2 4 = {ri = 2[i & A},
Ya ={Yili € A} and Yj, 4 = {Yili € A}. Now define

CPURa=2t{Rp o=V =i1,.... Y0 =in)  Tipin2alp s Hirein2alp

A7 P({Ra =1}, {(Rpa=BY1 =01, . Yo =in)  Tirinlalp,  Hiteinlalys
which is the conditional odds of Y4 being missing given that Y,;,\ 4 are observed. Then
for 1 < p <k and Ry = 2,{Ryy,y = 1}, we have 4, i 1..2.1 = O, Miy.in1...1- Also,
Mi i1 Dhy iy Dy i Ors = Hirecin2pn 15 gy 100 7 7 8 = Lok and gy 5,1..004 =
iy cin2 1 4 Note that the joint probability

k

k
Ty evsin oot = Miy.inl..1(1 4 Z Cb?l...z‘n + Z Dirin Oir.in Ors T {04]A C K, [A] > 3}) /N,
p=1 r#s=1
from which the marginals can be obtained. The total count IV is obtained by summing
both sides of the above equation over i1,...,i,. Under (3.1), the parameters are given as
follows.

n k
§1zn = ¢eXp [_2 {/\Rt(l) + Z )\YpRt(iI” 1) + Z )\RpRt(]‘7 1)}] , 1<t<k,

p=1 pFt=1

0ij = exp [4>\RiRJ~(171)], i#£j=1,...k,

k n k
64 = exp [—2 {Z Ar,(1) + D> Ay, g, (ip, 1)}
p=1

p=1g¢=1

, ACE,|A| >3,

The following definition (see [12]) gives the various missing data mechanisms of a variable
under (3.1).

Definition 3.1. If ¢! . under (3.1) depends on i, (denoted by ¢” i ), then we have a

B]ely T P MRS AL Op (MRRRVIVAAL MY Y.
NMAR missingness mechanism for Y,. If it depends on i, for p # ¢ (denoted by ¢” qu),
then the missingness mechanism for Y}, is MAR, while if it depends on none of 41,. ..,y
(denoted by ¢ ), then the missingness mechanism for Y, is MCAR.

Since there are (n+ 1) possible realizations of qﬁflm.n for each p =1,...,k, we have a total

(2
of (n 4 1)* possible models which may be categorized as follows:

B1. MCAR model - the missingness mechanism of each of Y7,... Yy is constant (1
case),

B2. NMAR model - the missingness mechanism of each of Y7, ..., Y}, depends only on
itself (1 case),

B3. MAR model - the missingness mechanism of each of Y7, ...,Y; depends on any one
of the remaining (n — 1) variables ((n — 1)* cases),

B4. Mixture of MCAR and NMAR models - the missingness mechanism of each of
Y1,...,Y; may be MCAR or NMAR, but all variables cannot have the same mech-
anism ((2F — 2) cases),

B5. Mixture of MCAR and MAR models - the missingness mechanism of each of
Y1,...,Y; may be MCAR or MAR, but all variables cannot have the same mech-
anism ((n* — (n — 1) — 1) cases),

B6. Mixture of NMAR and MAR models - the missingness mechanism of each of
Y1,..., Y, may be NMAR or MAR, but all variables cannot have the same mech-
anism ((n* — (n — 1) — 1) cases),

B7. Mixture of NMAR, MAR and MCAR models - the missingness mechanism of each
of Y1,...,Y, may be NMAR or MAR or MCAR, but all variables cannot have the
same mechanism (((n + 1)* + (n — 1)¥ — 2(n¥ — 1) — 2¥) cases).
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The log-likelihood kernel under Poisson sampling is

L1 Yobs) = Z Yi.inl..1 108 iy i1 + Z Yebig...in21...1 108 fhtis . in21..1

i1 yenesin 02 ,eeesin
+ Z Yir g1 i 1oind 1211 108 My iy iy g 11211 -
Ul yeeeylh—150k41510n
D Y2211 108 iy 2210 — S Hiyeigriere
ik-‘rl?"'vi’n Ul yeensln, T 1o,k

(3.2)

Rewriting (3.2) in terms of the parameters ¢’s and 0’s, we can obtain closed-form MLE’s of
the parameters and the expected cell counts under the models described above. Perfect fits
for fully observed counts are obtained for categories B2, B3 and B6 of models. From Ghosh
and Vellaisamy (2016), boundary solutions occur if the MLE of any of the parameters ¢’s
< 0, which are then set to zero to obtain boundary estimates. Note that for at least one
p e {l,...,k}, we have ¢’ , = 0 for at least one and at most (I, — 1) values of Y, in
case of boundary solutlons.

Consider the hypotheses Hy: the proposed model (among models in categories Bl to
B7 mentioned above) fits the data, and Hp: the perfect fit model fits the data. Let Ly
and L denote the maximized log-likelihood functions under the proposed and perfect fit
models respectively. Then the likelihood ratio statistic for testing Hy against H; is

G? = —2(Lo — L)

s . A14 '
Z . (M“ - 1> + Z Ytio..in21...1 In (Z“ 'Ulzl""Z"'l'”ld) 11...1n>

i150nsln Yir.inl.1 i2,min Yetig...in21...1

+...+ Z Yiq.oip—1+igy1.inl...121...1 In (

U5yl —150k 415900

Yiq.ig_14igy1.inl.. 1211

i1 inl. 101 .k
e lpy1in2...21001

St Lyermin

i
+ ...+ Z y+...+ik+1...in2...21...1ln< v
k

- Z Mu dp .1 1+Z¢11 zn+ Z 21 in fl zn9r5+{‘9A’ACk ‘A‘>3} + N
i1y r#£s=1
(3.3)

Note that G? ~ x2 asymptotically, where v = (Ip=r+1 Ip) H§¢p:1(1 + I,)— number of
free estimable parameters under the proposed model.

4. Data analysis

In this section, we illustrate our results in Section 3 using a real-life example from [19].
Table 4 (a 2x2x2x2x2x2 table) below shows the Slovenian public opinion (SPO) survey
dataset classified by the variables Secession (Y1), Attendance (Y2) and Independence (Y3),
each having two levels Yes (1) and No (2). Here “Missing" denotes the “Don’t know"
category (missing margins) for each variable. Note that from (2.3), (2.6) and (3.3), we
observe that G? becomes undefined if any of the fully observed counts is 0. So, the count 0
is replaced by 2 in the full table. WLOG, consider the subtable of Table 4 in which data on
Y1 is missing as shown below. To determine the missing data mechanism, we fit Models 1-4
(see Section 2.1) to the data in Table 5. The system of equations for Model 2 (NMAR for
Y1) yields &1 = 0.0721 and &z = 0.0258 implying that boundary solutions do not occur.
We use the closed-form MLE’s in Section 2.1 to fit the above models. Let G? denote the
likelihood ratio statistic for testing the goodness of fit of each of the Models 1-4 against
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Table 4. Data from the SPO survey

Ry =1 Ry =2
Ys=1 Y3 =2 | Missing
Ri=1]|Y1=1|R=1 Yo=1] 1191 8 21
Yo =2 8 2 4
Ry =2 Missing | 107 3 9
YI=2|Ry=1 Yo=1 158 68 29
Yo =2 7 14 3
Ry =2 Missing 18 43 31
Ry =2 | Missing | Roe =1 Yo=1 90 2 109
Yo =2 1 2 25
Ry =2 Missing 19 8 96

Table 5. Subtable Y7 of Table 4

Y5=1 Y3=2
R=1Y1=1|Y,=1| 1191 8
Yo =2 8 2
Yi=2|Yo=1] 158 68

Yo =2 7 14

R=2| Missing | Yo=1 90 2
Yo =2 1 2

the perfect fit model. The table below gives the G? values, p-values and degrees of freedom
(d.f.) for the tests. We usually don’t consider perfect fit models (see the example in [4])

Table 6. Comparison of fit among models

Model | Boundary solution | G? | p-value | d.f.
o No 0 1 2
aj. No 2.4622 | 0.2920 2
g No 2.0949 | 0.3508 2
o No 2.8538 | 0.4147 3

for model selection so that «; . is discarded. From Table 6, based on p-values, the plausible
models for the data in Table 5 are a.., o j. and «_j. However, we deduce that the best fit
model is a_j, (MAR for Y7) based on minimum G2 value = 2.0949. This implies that the
missingness in the variable ‘Secession’ depends on the observed variable ‘Independence’.
This dependence is expected because if one is unsure about voting for Slovenian’s secession
from Yugoslavia, then one is also most likely decided about Slovenian independence. Note
that ‘Secession’ differs from ‘Independence’ here since independence without secession was
also possible with the formation of a new internal state.

The table of expected cell counts using the closed-form estimates (see Section 2.1) is given
below (Table 7).

Next, consider WLOG the subtable of Table 4 in which data on Y7 and Ys are missing
as shown below. To determine the missing data mechanism, we fit Models 1-16 (see
Appendix) to the data in Table 8. On solving the systems of equatlons in NMAR models
for Y7 or Ys, we obtain &1 = 0.0721, &o.. = 0.0258, ,6 1. = 0.073 and 62 = 2.375. Hence,
there are no boundary solutions. We use the closed-form MLE’s in the Appendix to fit
the above models . Let G? denote the likelihood ratio statistic for testing the goodness
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Table 7. Expected cell counts for model a_ ; using closed-form estimates

Ys=1 Y3=2
R=1|Y1=1|Y,=1]|1191.00 7.87
Yo=2| 8.00 2.16

Y1I=2|Y,=1]| 158.00 66.88

Yo=2| 7.00 15.09
R=2|Y1=1|Ya=1| 79.46 0.34
Yo=2| 0.53 0.09
Yi=2|Yy=1]| 10.54 2.91

Yo=2| 047 0.66

Table 8. Subtable Y7Y5 of Table 4

Ys=1 Y3=2
Ri=1|Y1=1|R=1 Yy=1] 1191 8
Yo =2 8 2
Ry =2 Missing | 107 3
YI=2|Ry=1 Yo=1 158 68
Yo =2 7 14
Ry =2 Missing 18 43
Ry =2 | Missing | Roe =1 Yy=1 90 2
Yo =2 1 2
Ry =2 Missing 19 8

Table 9. Comparison of fit among models

of fit of each of the Models 1-16 against the perfect fit model. The table below gives the
G? values, p-values and degrees of freedom (d.f.) for the tests. From Table 9, based on

Model | Boundary solution G? p-value | d.f.
(e, Bi.) No 48.1188 | < 0.0001 | 6
(a..,B.4.) No 20.6256 | 0.0021 | 6
(.., B.k) No 4.5886 | 0.5975 6
(i, B.) No 75.5003 | < 0.0001 | 6
(.., Bi.) No 49.7073 | < 0.0001 | 5
(.., B.5.) No 14.7381 | 0.0115 | 5
(0., B k) No 2.8076 | 0.7296 5
(., 0.) No 75.1109 | < 0.0001 | 6
(ej,Bi.) No 45.9217 | < 0.0001 | 5
(., B.5.) No 15.8222 | 0.0074 | 5
(aj,Bk) No 4.2395 | 0.5155 | 5
(k. f..) No 82.55 | < 0.0001| 6
(., B.i) No 50.6861 | < 0.0001 | 5
(a.k,B4.) No 17.8333 | 0.0032 | 5
(. ks Bk) No 5.4779 | 0.3604 | 5

p-values, the candidate models for the data in Table 8 are (a.., 8 k), (®i., B.k), (aj,B.k)
and (a_k, 5.x). However, we deduce that the best fit model is (a;., 5. 1) (NMAR for Y7,
MAR for Y3) based on minimum G2 value = 2.8076. This implies that the missingness in
the variable ‘Secession’ depends on itself, while the missingness in ‘Attendance’ depends on



818 S. Ghosh, P. Vellaisamy

the variable ‘Independence’. This is due to the fact that if one is unsure about ‘Secession’,
then data on ‘Secession’ will be missing. Also, if one is unsure about ‘Independence’,
then one may not attend the plebiscite. Hence, data on ‘Attendance’ will be missing. The
table of expected cell counts using the closed-form estimates (see Appendix) is given below
(Table 10).

Table 10. Expected cell counts under model (o, 5. %) using closed-form esti-
mates

Y3=1 Y3=2
Ri=1Y1=1|Ry=1 Y,=1]1191.00 8.00
Yo=2| 8.00 2.00
Ry=2 Yo=1] 109.15 4.00
Yo=2| 0.73 1.00
YiI=2|Ry=1 Yp=1| 158.00 68.00
Yo=2| 7.00 14.00
Ry=2 Yo=1]| 1448  34.00
Yo=2| 0.64 7.00
Ri=2Y1=1Rx=1 Yo=1]| 8593 0.58
Yo=2| 0.58 0.14
Ry=2 Yo=1] 21.84 0.80
Yo=2| 0.15 0.20
YI=2|Ry=1 Yo=1| 4.07 1.75
Yo=2| 0.18 0.36
Ry=2 Y5=1 1.03 2.43
Yo=2| 0.05 0.50

Note that § = 2.7738 for the model (.., B.k), which implies that the missing mecha-
nisms of the variables ‘Secession’ and ‘Attendance’ are probably not independent. That
is, a realization is more likely to be missing for ‘Secession’ if it is missing for ‘Attendance’
or vice-versa. The estimated conditional probability of Y7 being missing given Y5 = 1 is

observed is (;3”2(1) = Ifév'i = 0.0673. Similarly, the estimated conditional probability of
Y7 being missing given Y, = 2 is observed is <ZA>1‘2(2) = 1?3“2 = 0.0251. So the estimated

probability of nonresponse for ‘Secession’ is greater when one replies ‘No’ to attending the
plebiscite. Also, the estimated conditional probability of Ys being missing given Y] = 1

is observed is g132|1(1) =7 f ﬁl = (0.0839. Similarly, the estimated conditional probability
.1

of Y5 being missing given Y7 = 2 is observed is <§Q|1(2) = 1fé22 = 0.3333. Hence, the
estimated probability of nonresponse for ‘Attendance’ is greater when one replies ‘No’ to
Slovenia’s secession from Yugoslavia.

From the data in Table 8, we have OR_1 = OR111 = 6.5957 and OR_2 = OR112 = 0.8235
for the model («;., 5. ). This implies that if none of the responses for the variables is miss-
ing, then the estimated odds ratio between ‘Secession’ and ‘Attendance’ is greater when
the response to ‘Independence’ is ‘Yes’ than when it is ‘No’. Also, Var(OR_1) = 11.9646
and Var(OR,_2) = 0.4823, that is, for observed data, the estimated odds ratio between
‘Secession’ and ‘Attendance’ has greater precision when the response to ‘Independence’ is
‘No’ than when it is ‘Yes’.

To investigate the occurrence of boundary solutions, we consider subtables of Table 4 in
which at least one of Y;, Y5 and Y3 is missing. When we fit perfect fit NMAR models (for
fully observed counts) to the data in each subtable, we observe that boundary solutions
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do not occur in any of them as the MLE’s are &1, = 0.0721, &9 = 0.0258, 3_1_ = 0.073,
B9 =2.375, 4.1 = 0.0151 and 4.5 = 0.3851, which are positive. So, we modify some fully
observed counts in each subtable. Table 11 shows the MLE’s under some perfect fit (for
fully observed counts) NMAR models in the modified subtables.

Table 11. MLE’s in modified subtables of Table 4

Subtable Changes NMAR MLE’s Boundary
(models) solns.
(perfect fit)
Y, 158 — 1300, 68 — 28, Y, Q1. =—0.0293,42.. = 0.0961 | 71442 =0
7—10
YoYs 8 — 80,14 — 10 Y, 81 =-0.1937,82 =4.2616 | 7ii1404 =0
8 —80,14 —» 6 Y3 4.1 =-0.0132,4.2=0.4588 | #411142=0
8 — 108,8 — 108, Y5, Y5 B =0.2138,35 = —1.3706 | 741194 =0,
2 — 4, 14 — 2 ’/}\/,,1 = _00253,’3’2 = 0.4785 7AT++1+2 =0
Y1YoY; | 158 — 1100, 68 — 22, Yy Q1. = —0.0346, 42, = 0.1193 | A144244+ =0
7—10
8 — 80 Ys B1 =—0.1258, 34 =3.2391 | 7414404 =0
8 = 55,14 -6 Y3 4.1 =-0.0024,4 2 =0.4338 | 41411442 =0
1191 — 3191,8 — 48, Y1,Y;5 &1 = —0.0291, 45 = 0.1828 | A1 442+ =0,
8 — 28, 24 ’3/_.1 = 700397, "3/__2 = 3.1164 7AT++1++2 =0

From Table 11, we observe that on fitting perfect fit NMAR models to the modified
subtables, boundary solutions occur in each of them since at least one of &;._, BJ and
4.k is negative. In the last column of Table 11, the boundary solutions under the above
models are obtained using the EM algorithm (see the ‘ecm.cat’ function of the ‘cat’ pack-
age in R software). The forms of boundary solutions under the various models are the
same as those mentioned in Section 2. For further discussion on boundary solutions in two
and higher dimensional incomplete tables, one could refer to [11] and [12]. The packages
‘MASS’ and ‘cat’ in R software are used to perform the data analysis in this paper.

5. Conclusions

In this paper, we have studied missing data mechanisms for variables in I x J x K X 2,
IxJIxKx2x2and I xJ x K x2x2x 2 incomplete contingency tables. For this
purpose, we have considered hierarchical log-linear models which yield closed-form MLE’s
of parameters and expected cell counts under various missing data models. Closed-form
estimates are also obtained for joint and marginal probabilities, marginal odds ratios,
their asymptotic variances and conditional probabilities of missing variables under the
models. Note that the methods and results in this paper are applicable for I x J x 2
and I x J x 2 x 2 tables also. Extensions of the models and estimation methods are pre-
sented for arbitrary n-dimensional incomplete tables. We have also provided closed-form
boundary MLE’s under various NMAR models in some incomplete tables. Finally, a real-
life data analysis example validates our modelling approach and other results in this paper.
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Appendix A.

The closed-form estimates of missing counts and other parameters under various missing
data models for an I x J x K x 2 x 2 table are as follows.
1. (., B..) (MCAR for both Y7 and Y3).
The MLE’s are
4 = y+++21, o 3/+++12’ 6 — y+++11y+++22’
Y411 Y411 Yr++12Y+4+21
while the iterates of fi;;r11 are

Yitkiz () Yijka1l (1)
T Hgrn T @ Bk
Hitk12 k21

Y+++11 (yijkll +
A1)

N ()
Hijik1r = Yigk11ly Hijp11 =

Ybtt+1 T Y12

2. (o, Bi.) (MCAR for Y;, MAR for Y5).
The MLE’s are
4 = Y+++21 5 Yirt12 0 — YraritYrrt22 o YigkllY 4114 jk41

s M. ~ ) s Mijkll —
Yr++11 Hi++11 Y+++12Y+4+21 Yr+4++1Y+jk11

3. (a..,B,.) (MCAR for Y7, NMAR for Y3).
The MLE’s are
6 = Y4421 6 — Y4+4++11Y+4+422 _ yijk11y+++11y+jk+1.

) » Mijk11
Y++11 Y+++12Y+++21 Y+++4+1Y+jk11

Also, B ;. satisfies 3_; flijk118,5. = Yitk12-
4. (a.,B.x) (MCAR for Y7, MAR for Y>).
The MLE’s are
a = drrn o Yadki2 g Y422 o Ykl Y 11kl

y M. ~ ) > Mijkll
Y+++11 Hi+4k11 Y+++12Y+++21 Y+4+4++1Y+jk11

5. (., B..) (NMAR for Y7, MCAR for Y3).
The MLE’s are
B _ y+++127 6 — y+++11y+++22’ k1 = yijkll?/-&--i——&-llyi—&—kl—i-.
Y+++11 Yrt++12Y+++21 Y+++1+Yi+k11
Also, &;.. satisfies D, flijx11.. = Y4jk21-
6. (a;.,0..) (NMAR for Y;, MAR for Y5).
The MLE’s are

N _ 5 Yit++12 0 — Y44+422
fijk11 = Yijk11, Bi. = y0==—""—,
Yit+11 i Yit+120s .

where &; . satisfies Y ; flijr1104.. = Yy jk21-
7. (., B.5.) (NMAR for both Y7 and Y3).

The MLE’s are
Yrt++22

i Y& B

where &;. and (. satisfy 2; flijk1184.. = Y4 ko1 and > fiijr1183.j. = Yisk12 Tespectively.
8. (e..,B.k) (NMAR for Y7, MAR for Y>).

The MLE’s are

Rijk11 = Yijk11, 0 =

. 5 Y++k12 5 Yr4+22
fijk1l = Yijk11, Bk =", 0= ~ A
Yt k1l >k Yirk11Gi Bk

where &; . satisfies ) ; flijr110u.. = Yy jko1-

9. (aj.,0..) (MAR for Y7, MCAR for Y>).

The MLE’s are

_ Y+j+21 B _ Yttt12 6 — Y+++11Y+4+422 o _ Yk Y+++11Yi+k1+

= y P... ) y Mijk1l =
H+j+11 Y+++11 Yt ++12Y+++21 Y+++14Yi+k11

Q ;.
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10. (O[,j,,ﬁi“) (MAR for both Yl and YQ)
The MLE’s are
fijk11 = Yijk11, OLj. = Ma Az’.. = y2++127 0= y+++2A2 .
Y+j+11 Yir+11 > i Yij+1105.Bi..
11. (e, B;.) (MAR for Y;, NMAR for Y3).
The MLE’s are

N A Y+j+21 4 Y+++22
Mijk11 = Yijk11, Q. = ]7, = —————,
Yj+11 > Y+i+218..
where B] satisfies > ﬂz‘jknB.j. = Yitkl2-
12. (e, B %) (MAR for both Y; and Y3).
The MLE’s are
N A Y+j+21 3 Y++k12 5 Y+++22
fijk11 = Yijk11, Q. = ——— B = R A -
Y+j+11 Ytk11 >k Yik11G.5. 8k

13. (a.k, B..) (MAR for Y7, MCAR for Y3).

The MLE’s are

Zi++k21’ A... _ y+++12’ 6 — y+++11y+++227 ﬂz‘jkn _ yijk11y+++11yi+k:1+‘
H++k11 Y+++11 Yt +12Y+4+21 Y+++1+Yi+k11

14. (o k, Bi..) (MAR for both Y7 and Y3).

The MLE’s are

Q=

Y++k21 B _ Yiry12 6 — Y+++22
I .. T 9 - ~ A °
Yitkll Yit+11 Dok Yirk114 g Bi.

15. (e .k, B4.) (MAR for Y1, NMAR for Y3).
The MLE’s are

fijk1l = Yijk1l, Qg =

Y++k21 6 — Y44+22
I - ~ P ’
Y4++k11 >k Y+ik11G k5.

fijk11 = Yijk11, Ok =

where [ ; satisfies >, flijk115.. = Yitk12-
16. (ak,ﬁk) (MAR for both Y7 and Yg).
The MLE’s are
Rijk11 = Yijk11, Ok = y++k21, 3k = y++k12, 0= y++—+22A
Y4++k11 Y++k11 Dok Y+ +k1200 K
Note that closed-form MLE’s of m11 exist for all models except for Model 1. In this
case, fi;jj;11 may be obtained using the EM algorithm (see [8]).




