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Abstract
A useful technique for analyzing incomplete tables is to model the missing data mechanisms
of the variables using log-linear models. In this paper, we use log-linear parametrization
and propose estimation methods for arbitrary three-way and n-dimensional incomplete
tables. All possible cases in which data on one or more of the variables may be missing
are considered. We provide simple closed form estimates of expected cell counts and pa-
rameters for the various missing data models. We also obtain explicit boundary estimates
under nonignorable nonresponse models. Finally, a real-life dataset is analyzed to illus-
trate our results for modelling and estimation in multidimensional incomplete tables.

Mathematics Subject Classification (2020). 62H17, 62D10, 62H12
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1. Introduction
Contingency tables are frequently used for the display and analysis of categorical data.

Missing data in such tables pose a common problem in various epidemiological studies, clin-
ical trials and social science studies. The results of analyses that improperly treat missing
data can be biased and imprecise obscuring the underlying phenomena. So, the analy-
sis of contingency tables with missing data, also called incomplete tables, is of practical
interest. The two types of counts in such tables are (i) fully observed counts and (ii) par-
tially classified margins (nonresponses). A systematic study of missing data involves three
types of missingness mechanisms proposed in the literature (see [14]): missing completely
at random (MCAR), missing at random (MAR) and not missing at random (NMAR).
If the probability (of an observation being missing) is independent of both observed and
unobserved data, then a mechanism is said to be MCAR. It is called MAR if conditional
on the observed data, the probability is independent of unobserved data, and NMAR if
the probability depends only on unobserved data. For likelihood inference, nonresponses
are classified as either ignorable (when the missing data mechanism is MAR or MCAR)
or nonignorable (when the missing data mechanism is NMAR).
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According to [14], an incomplete table may be analyzed using mainly the following
techniques: complete case analysis (using only the fully observed counts), weighting, im-
putation and modelling. Various types of models for analyzing such incomplete tables
are available in the literature, for example, the pattern-mixture model (see [10, 13, 17]),
and the selection model (see [3, 9, 14]). Log-linear models have generally been used to
study missing data mechanisms in incomplete tables (see [3–7, 20]). Some of the estima-
tion methods used are weighted least squares, maximum likelihood (ML) and Bayesian
techniques.

Baker et al. [4] used log-linear models for analyzing a two-way incomplete table with
data missing in both variables, and obtained closed-form estimates of missing counts.
In this paper, we adopt the hierarchical log-linear parametrization for arbitrary three-
dimensional and n-dimensional incomplete tables in general (see [12]). We focus on log-
linear models with main effects and two-way interactions among variables and their missing
indicators. This is because higher order interactions are difficult to interpret and models
with such parameters may become non-identifiable. We consider all possible cases when
data on one or more of the variables are missing.

We derive explicit, closed-form formulae for estimates of expected cell counts under
various missing data models in the above tables. The formulae involve only observed cell
counts or their sums, which simplifies the fitting of the models. Closed-form estimates are
important since they provide a compact, simplified algebraic expression unlike iterative
algorithms. The convergence of an iterative algorithm is an increasing function of the in-
put size, that is, sample size. So, larger the sample size (total cell count in the incomplete
table), the longer it takes to obtain the estimates. However, evaluating closed-form ex-
pressions is independent of the sample size and requires constant time. Hence, closed-form
estimates are usually faster to compute than iterative solutions thereby reducing compu-
tational burden. This is especially true when lots of iterations are required to compute the
estimates of the cell probabilities if some of them are zero under nonignorable (NMAR)
missing data models.

Incomplete tables with data missing in at least one variable are common in the social
sciences and medical fields. For example, in the analysis of survey data, the gender of each
respondent is usually known. Suppose we are interested in the association between two
partially missing variables (say, income and education level), stratified by gender. This
is an example of a three-way incomplete table with data on two variables missing. While
the EM algorithm (see [8]) is available for such settings, it does not automatically produce
asymptotic covariance matrices for the parameter estimates so that estimation of standard
errors of the estimates becomes difficult. The rate of convergence of the EM algorithm
also depends on the proportion of missing information for each parameter. So Meng and
Rubin [16] proposed a componentwise EM procedure, which is computationally expensive
for covariance estimation. In this paper, we explicitly model the missing data mechanism
of each variable which leads to a full likelihood specification and use ML estimation to
obtain the parameter estimates. Unlike the EM algorithm, covariance estimates of the
parameters can be calculated in the usual way by inverting the Fisher information while
any of the common fit statistics can be used to compare the fits of different models.
Besides estimating missing cell counts, we obtain closed-form estimates of joint, marginal
and conditional probabilities of the variables and their missingness under various models.
Also, estimates of the marginal odds ratios and their asymptotic variances are provided
for each model.

The problem of boundary solutions occurs in nonignorable models while using ML
estimation. Such solutions occur when the MLE’s of nonresponse cell probabilities are all
zeros for certain levels of a variable, that is, they lie on the boundary of the parameter
space. Some references to this problem for various incomplete tables include [4,11,12,18].
In this paper, we provide explicit closed-form MLE’s of expected cell counts and other
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parameters if boundary solutions occur under nonignorable models for some three-way
incomplete tables.

The remaining part of the paper is organized as follows. In Section 2, we provide log-
linear parametrizations and discuss estimation methods for three-way incomplete tables
with data missing in one variable, two variables and all variables. We also discuss boundary
solutions and their occurrence under NMAR models in each of the above tables. Section
3 extends the methodology and results in Section 2 to arbitrary n-dimensional incomplete
tables. A real-life dataset is analyzed in Section 4 to illustrate the results in Section 3.
Section 5 provides some concluding remarks.

2. Log-linear parametrization for 3-dimensional incomplete tables
For studying missing data mechanisms in an I×J ×2×2 incomplete table, [4] considered

nine identifiable log-linear models. In this section, we use such hierarchical log-linear
models (see [12]) for three-way contingency tables where data on at least one of the
variables may be missing. Partially classified (supplementary) margins of a table are
assumed to be positive.

2.1. Missing in one of the variables
Without loss of generality (WLOG), let data on Y1 be missing. Denote the missing

indicator for Y1 by R, where R = 1 if Y1 is observed and R = 2 otherwise. Then we have
an I × J × K × 2 table corresponding to Y1, Y2, Y3 and R with cell counts y = {yijkx},
where 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K and x = 1, 2. Denote the vector of observed
counts by yobs = ({yijk1}, {y+jk2}), where {yijk1} are the fully observed counts, {y+jk2}
are the supplementary margins and ‘+’ means summation over levels of the corresponding
variable. Let π = {πijkx} be the vector of cell probabilities, µ = {µijkx} be the vector of
expected counts and N =

∑
i,j,k,x yijkx be the total cell count. For I = J = K = 2, the

2 × 2 × 2 × 2 incomplete table is shown below. (Table 1).

Table 1. 2 × 2 × 2 × 2 Incomplete Table

Y3 = 1 Y3 = 2
R = 1 Y1 = 1 Y2 = 1 y1111 y1121

Y2 = 2 y1211 y1221
Y1 = 2 Y2 = 1 y2111 y2121

Y2 = 2 y2211 y2221
R = 2 Missing Y2 = 1 y+112 y+122

Y2 = 2 y+212 y+222

The log-linear model (with no three-way interactions) for this case is given by
log µijkx = λ + λY1(i) + λY2(j) + λY3(k) + λR(x) + λY1Y2(i, j) + λY1Y3(i, k) + λY2Y3(j, k)

+λY1R(i, x) + λY2R(j, x) + λY3R(k, x). (2.1)
Each log-linear parameter in (2.1) satisfies the constraint that the sum over each of
its arguments is 0, for example,

∑
i λY1Y3(i, k) =

∑
k λY1Y3(i, k) = 0. Define aijk =

P (R=2|Y1=i,Y2=j,Y3=k)
P (R=1|Y1=i,Y2=j,Y3=k) = πijk2

πijk1
= µijk2

µijk1
, which describes the missing data mechanism of Y1.

It is the odds of Y1 being missing. Then µijk2 = aijkµijk1. Also,
∑

i,j,k µijk1(1 + aijk) = N
and the joint probability πijk+ = µijk1(1 + aijk)/N , from which the marginals may be de-
rived. Note that under (2.1), aijk = exp[−2{λR(1) + λY1R(i, 1) + λY2R(j, 1) + λY3R(k, 1)}].
Denote aijk by αi.. or α.j. or α..k or α... if it depends on only i or j or k or none of these,
respectively. From [12], we have the following definition.
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Definition 2.1. The missing mechanism of Y1 under (2.1) is NMAR if aijk = αi.., MAR
if aijk = α.j. or α..k and MCAR if aijk = α....

Under Poisson sampling for observed cell counts, the log-likelihood of µ is
l(µ; yobs) =

∑
i,j,k

yijk1 log µijk1 +
∑
j,k

y+jk2 log µ+jk2 −
∑

i,j,k,x

µijkx + ∆, (2.2)

where ∆ is some constant. The various missing data models and the MLE’s under them
are given as follows :
1. αi.. (NMAR for Y1).
We have µ̂ijk1 = yijk1 and α̂i.. satisfies

∑
i µ̂ijk1α̂i.. = y+jk2 ∀ 1 ≤ j ≤ J, 1 ≤ k ≤ K.

2. α.j. (MAR for Y1).
We have µ̂ijk1 = yijk1y+jk+y+j+1

y+jk1y+j++
and α̂.j. = y+j+2

y+j+1
.

3. α..k (MAR for Y1).
We have µ̂ijk1 = yijk1y+jk+y++k1

y+jk1y++k+
and α̂..k = y++k2

y++k1
.

4. α... (MCAR for Y1).
We have µ̂ijk1 = yijk1y+jk+y+++1

y+jk1y++++
and α̂... = y+++2

y+++1
.

From [12], boundary solutions occur if α̂i.. ≤ 0 for at least one and at most (I − 1)
values of Y1. If any α̂i.. < 0, then boundary estimates are obtained by setting α̂i.. = 0 in
(2.2). For example, if Y1 is binary with levels 1 and 2, and α̂1.. = 0 under Model 1, then
the MLE’s are

α̂2.. = y+++2
y2++1

, µ̂1jk1 = y1jk1, µ̂2jk1 = (y2jk1 + y+jk2)y2++1
y+++2

.

A perfect fit model is one for which the estimated expected counts are equal to the ob-
served counts. Consider now the hypotheses H0: the proposed model (among Models 1-4
mentioned above) fits the data, and H1: the perfect fit model fits the data. Let L0 and L1
denote the maximized log-likelihood functions under the proposed and perfect fit models
respectively. Then the likelihood ratio statistic for testing H0 against H1 is given by
G2 = −2(L0 − L1)

= −2

∑
i,j,k

yijk1 ln
(

µ̂ijk1
yijk1

)
+
∑
j,k

y+jk2 ln
(∑

i µ̂ijk1âijk

y+jk2

)
−
∑
i,j,k

µ̂ijk1(1 + âijk) + N

 .

(2.3)

Note that G2 follows χ2
ν asymptotically, where ν = (I +1)JK (number of observed counts)

− number of free estimable parameters under the proposed model. If Y1 is binary and
boundary solutions occur under Model 1, then the boundary MLE’s are obtained for the
level of Y1 corresponding to which G2 is minimum.

2.2. Missing in two of the variables
WLOG, suppose data on Y1 and Y2 are missing. For i = 1, 2, denote the missing in-

dicator for Yi by Ri such that Ri = 1 if Yi is observed and Ri = 2 otherwise. Then we
have an I × J × K × 2 × 2 table corresponding to Y1, Y2, Y3, R1 and R2 with cell counts
y = {yijkxs}, where 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K and x, s = 1, 2. Denote the vector of
observed counts by yobs = ({yijk11}, {y+jk21}, {yi+k12}, {y++k22}). Also, let π = {πijkxs}
be the vector of cell probabilities, µ = {µijkxs} be the vector of expected counts and N be
the total cell count. For I = J = K = 2, the 2 × 2 × 2 × 2 × 2 incomplete table is shown
below (Table 2).
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Table 2. 2 × 2 × 2 × 2 × 2 Incomplete Table

Y3 = 1 Y3 = 2
R1 = 1 Y1 = 1 R2 = 1 Y2 = 1 y11111 y11211

Y2 = 2 y12111 y12211
R2 = 2 Missing y1+112 y1+212

Y1 = 2 R2 = 1 Y2 = 1 y21111 y21211
Y2 = 2 y22111 y22211

R2 = 2 Missing y2+112 y2+212
R1 = 2 Missing R2 = 1 Y2 = 1 y+1121 y+1221

Y2 = 2 y+2121 y+2221
R2 = 2 Missing y++122 y++222

The log-linear model (without three-way or higher order interactions) is given by
log µijkxs = λ + λY1(i) + λY2(j) + λY3(k) + λR1(x) + λR2(s) + λY1Y2(i, j) + λY1Y3(i, k)

+λY2Y3(j, k) + λY1R1(i, x) + λY2R1(j, x) + λY3R1(k, x)
+λY1R2(i, s) + λY2R2(j, s) + λY3R2(k, s) + λR1R2(x, s). (2.4)

Each log-linear parameter in (2.4) satisfies the constraint that the sum over each of its
arguments is 0. Define the following quantities

aijk = P (R1 = 2, R2 = 1 | Y1 = i, Y2 = j, Y3 = k)
P (R1 = 1, R2 = 1 | Y1 = i, Y2 = j, Y3 = k)

= πijk21
πijk11

= µijk21
µijk11

,

bijk = P (R1 = 1, R2 = 2 | Y1 = i, Y2 = j, Y3 = k)
P (R1 = 1, R2 = 1 | Y1 = i, Y2 = j, Y3 = k)

= πijk12
πijk11

= µijk12
µijk11

.

Then the missing data mechanisms of Y1 and Y2 are described by aijk and bijk, respectively.
Note that aijk is the conditional odds of Y1 being missing given Y2 is observed, while bijk

is the conditional odds of Y2 being missing given Y1 is observed. The odds ratio between
R1 and R2 is

θ = P (R1 = 1, R2 = 1 | Y1 = i, Y2 = j, Y3 = k)P (R1 = 2, R2 = 2 | Y1 = i, Y2 = j, Y3 = k)
P (R1 = 1, R2 = 2 | Y1 = i, Y2 = j, Y3 = k)P (R1 = 2, R2 = 1 | Y1 = i, Y2 = j, Y3 = k)

= πijk11πijk22
πijk12πijk21

= µijk11µijk22
µijk12µijk21

.

If θ = 1, then the missingness patterns of Y1 and Y2, that is, R1 and R2 are indepen-
dent. Also, µijk21 = aijkµijk11, µijk12 = bijkµijk11, µijk22 = µijk11aijkbijkθ and N =∑

i,j,k µijk11(1 + aijk + bijk + aijkbijkθ). The joint probability is πijk++ = µijk11(1 + aijk +
bijk +aijkbijkθ)/N , from which the marginals can be obtained. The conditional probability
of Y1 being missing given that Y2 is observed is

ϕ1|2(i, j, k) = P (R1 = 2 | R2 = 1, Y1 = i, Y2 = j, Y3 = k) = aijk

1 + aijk
.

Similarly, the conditional probability of Y2 being missing given that Y1 is observed is

ϕ2|1(i, j, k) = P (R2 = 2 | R1 = 1, Y1 = i, Y2 = j, Y3 = k) = bijk

1 + bijk
.

Under (2.4), we have aijk = exp[−2{λR1(1) + λY1R1(i, 1) + λY2R1(j, 1) + λY3R1(k, 1) +
λR1R2(1, 1)}], bijk = exp[−2{λR2(1)+λY1R2(i, 1)+λY2R2(j, 1)+λY3R2(k, 1)+λR1R2(1, 1)}]
and
θ = exp[4λR1R2(1, 1)]. If each of aijk and bijk depends on only one of i, j, k or none of
these, then let aijk ∈ {αi.., α.j., α..k, α...} and bijk ∈ {βi.., β.j., β..k, β...}. The next definition
is due to [12].
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Definition 2.2. The missing mechanism of Y1 under (2.4) is NMAR if aijk = αi.., MAR if
aijk = α.j. or α..k and MCAR if aijk = α..., respectively. Similarly, the missing mechanism
of Y2 is NMAR if bijk = β.j., MAR if bijk = βi.. or β..k and MCAR if bijk = β....

Under Poisson sampling, the log-likelihood kernel of µ is

l(µ; yobs) =
∑
i,j,k

yijk11 log µijk11 +
∑
j,k

y+jk21 log µ+jk21 +
∑
i,k

yi+k12 log µi+k12

+
∑

k

y++k22 log µ++k22 −
∑

i,j,k,x,s

µijkxs. (2.5)

There are 16 identifiable models in this case. The various models and the MLE’s under
them are given in the Appendix. From [12], boundary solutions occur under at least one
of the following cases.

1. α̂i.. ≤ 0 for at least one and at most (I − 1) values of Y1,
2. β̂.j. ≤ 0 for at least one and at most (J − 1) values of Y2.

They occur in models for which the missing mechanism of at least one of the variables
is NMAR. If any α̂i.. < 0 or any β̂.j. < 0, then boundary estimates can still be obtained
by setting α̂i.. = 0 or β̂.j. = 0 in (2.5) for relevant models. Now suppose Y1 and Y2 are
binary variables, each with levels 1 and 2. Then we have a 2 × 2 × K × 2 × 2 incomplete
contingency table. The boundary MLE’s obtained when α̂1.. = 0 or β̂.2. = 0 (say) under
various NMAR models are shown below.
(a) (αi.., β...) (NMAR for Y1, MCAR for Y2) :
If α̂1.. = 0, then the MLE’s are

α̂2.. = y+++21y+++1+
y+++11y2++1+

, β̂... = y+++12
y+++11

, θ̂ = y+++11y+++22
y+++12y+++21

,

µ̂1jk11 = y1jk11y1++1+y+++11
y1++11y+++1+

, µ̂2jk11 = y+++11y2++1+(y2jk11 + y+jk21)
y+++1+(y2++11 + y+++21)

.

(b) (αi.., βi..) (NMAR for Y1, MAR for Y2) :
If α̂1.. = 0, then the MLE’s are

α̂2.. = y+++21
y2++11

, β̂i.. = yi++12
yi++11

, θ̂ = y2++11y+++22
y2++12y+++21

,

µ̂1jk11 = y1jk11, µ̂2jk11 = y2++11(y2jk11 + y+jk21)
y2++11 + y+++21

.

(c) (αi.., β.j.) (NMAR for both Y1 and Y2) :
(i) If α̂1.. = 0, then the MLE’s are

α̂2.. = y+++21
y2++11

, θ̂ = y2++11y+++22
y2++12y+++21

, µ̂1jk11 = y1jk11, µ̂2jk11 = y2++11(y2jk11 + y+jk21)
y2++11 + y+++21

.

Also, β̂.j. satisfies
∑

j µ̂ijk11β̂.j. = yi+k12.
(ii) If β̂.2. = 0, then the MLE’s are

β̂.1. = y+++12
y+1+11

, θ̂ = y+1+11y+++22
y+1+12y+++21

, µ̂i1k11 = y+1+11(yi1k11 + yi+k12)
y+1+11 + y+++21

, µ̂i2k11 = yi2k11.

Also, α̂i.. satisfies
∑

i µ̂ijk11α̂i.. = y+jk21.
(d) (α..., β.j.) (NMAR for Y2, MCAR for Y1) :
If β̂.2. = 0, then the MLE’s are

β̂.1. = y+++12y++++1
y+++11y+1++1

, α̂... = y+++12
y+++11

, θ̂ = y+++11y+++22
y+++12y+++21

,

µ̂i1k11 = y+++11y+1++1(yi1k11 + yi+k12)
y++++1(y+1+11 + y+++12)

, µ̂i2k11 = yi2k11y+2++1y+++11
y+2+11y++++1

.
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(e) (α.j., β.j.) (NMAR for Y2, MAR for Y1) :
If β̂.2. = 0, then the MLE’s are

β̂.1. = y+++12
y+1+11

, α̂.j. = y+jk21
y+jk11

, θ̂ = y+1+11y+++22
y+1+12y+++21

,

µ̂i1k11 = y+1+11(yi1k11 + yi+k12)
y+1+11 + y+++21

, µ̂i2k11 = yi2k11.

The above method for obtaining closed-form boundary MLE’s can be generalized to non-
binary variables also. Next consider testing the hypotheses H0: the proposed model
(among Models 1-16 in the Appendix) fits the data against H1: the perfect fit model
fits the data. Let L0 and L1 denote the maximized log-likelihood functions under the
proposed and perfect fit models respectively. Then the likelihood ratio statistic for testing
H0 against H1 is given by

G2 = −2(L0 − L1)

= −2

∑
i,j,k

yijk11 ln
(

µ̂ijk11
yijk11

)
+
∑
j,k

y+jk21 ln
(∑

i µ̂ijk11âijk

y+jk21

)

+
∑
i,k

yi+k12 ln
(∑

j µ̂ijk11b̂ijk

yi+k12

)
+
∑

k

y++k22 ln
(∑

i,j µ̂ijk11âijk b̂ijkθ̂

y++k22

)

−
∑
i,j,k

µ̂ijk11(1 + âijk + b̂ijk + âijk b̂ijkθ̂) + N

 . (2.6)

Note that G2 follows χ2
ν asymptotically, where ν = (I + 1)(J + 1)K− number of free

estimable parameters under the proposed model. If Y1 and Y2 are binary variables and
boundary solutions occur, then the boundary MLE’s are obtained for the level of Y1 or Y2
(depending on whether α̂i.. < 0 or β̂.j. < 0) corresponding to which G2 is minimum.

Marginal odds ratios. When Y3 = k is fixed, consider the Y1Y2-marginal odds
ratios. Let OR..k = (π̂ijk..π̂i′j′k..)/(π̂ij′k..π̂i′jk..) denote an estimated odds ratio on the
Y1Y2-margin, where 1 ≤ i < i′ ≤ I, 1 ≤ j < j′ ≤ J and 1 ≤ k ≤ K. Also, let OR11k =
(yijk11yi′j′k11)/(yij′k11yi′jk11) be the estimated odds ratio when R1 = R2 = 1. From the
closed-form MLE’s for the models (see Appendix), it can be shown that OR..k = OR11k

under Models 2, 4, 9, 12, 13, 14 and 16 a priori, and under Models 1, 3, 5, 6, 8, 11 and
15 for non-boundary (interior) estimates. We can derive closed-form expressions for the
asymptotic variance of estimated marginal odds ratio in case of non-boundary MLE’s. We
assume that the data follows Poisson distribution. The asymptotic variance of a statistic
f({yijk11}, {yi+k12}, {y+jk21}, y++k22) for fixed k (see [1]) is

V ar(f) =
∑
i,j

(
∂f

∂yijk11

)2

µ̂ijk11 +
∑

i

(
∂f

∂yi+k12

)2
µ̂i+k12 +

∑
j

(
∂f

∂y+jk21

)2

µ̂+jk21

+
(

∂f

∂y++k22

)2
µ̂++k22. (2.7)

When OR..k = OR11k = (yijk11yi′j′k11)/(yij′k11yi′jk11), we get from (2.7)

V ar(OR..k) = OR2
..k

[
µ̂ijk11
y2

ijk11
+

µ̂ij′k11
y2

ij′k11
+

µ̂i′jk11
y2

i′jk11
+

µ̂i′j′k11
y2

i′j′k11

]
. (2.8)

Using (2.8), the asymptotic variances of estimated marginal odds ratios for k fixed under
various models (see Appendix) are as follows.



810 S. Ghosh, P. Vellaisamy

1. Models 2, 3 and 4 :

V ar(OR..k) = OR2
..k

y++k11
y++k+1

[
y+jk+1
y+jk11

(
1

yijk11
+ 1

yi′jk11

)
+

y+j′k+1
y+j′k11

(
1

yij′k11
+ 1

yi′j′k11

)]
2. Models 5, 9 and 13 :

V ar(OR..k) = OR2
..k

y++k11
y++k1+

[
yi+k1+
yi+k11

(
1

yijk11
+ 1

yij′k11

)
+ yi′+k1+

yi′+k11

(
1

yi′jk11
+ 1

yi′j′k11

)]
3. Models 6, 8, 11, 12, 14, 15 and 16 :

V ar(OR..k) = OR2
..k

[
1

yijk11
+ 1

yij′k11
+ 1

yi′jk11
+ 1

yi′j′k11

]
It may be remarked that this variance approximation is based on a Taylor series lineariza-
tion method (sometimes called the delta method). Alternatively, the variances can be
computed from the inverse of the observed information matrix using the method in [2].
Note that if boundary solutions occur under NMAR models, then this method provides a
variance estimate given that the closed-form MLE’s of the expected cell counts in (2.8) lie
on the boundary of the parameter space. However, the bootstrap technique provides an
unconditional variance estimate in this case (see [3]).

2.3. Missing in all three variables
For i = 1, 2, 3, denote Ri to be the missing indicator of Yi, where Ri = 1 if Yi is observed

and Ri = 2 otherwise. Then we have an I × J × K × 2 × 2 × 2 table corresponding to
Y1, Y2, Y3, R1, R2 and R3 with cell counts y = {yijkxsz}, where 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤
k ≤ K and x, s, z = 1, 2. Also, yobs = ({yijk111}, {y+jk211}, {yi+k121}, {yij+112}, {y++k221},
{y+j+212}, {yi++122}, y+++222). Let π = {πijkxsz} be the vector of cell probabilities, N be
the total cell count and µ = {µijkxsz} be the vector of expected counts. For I = J = K = 2,
the 2 × 2 × 2 × 2 × 2 × 2 incomplete table is shown below (Table 3).

Table 3. 2 × 2 × 2 × 2 × 2 × 2 Incomplete Table

R3 = 1 R3 = 2
Y3 = 1 Y3 = 2 Missing

R1 = 1 Y1 = 1 R2 = 1 Y2 = 1 y11111 y112111 y11+112
Y2 = 2 y121111 y122111 y12+112

R2 = 2 Missing y1+1121 y1+2121 y1++122
Y1 = 2 R2 = 1 Y2 = 1 y211111 y212111 y21+112

Y2 = 2 y212111 y222111 y22+112
R2 = 2 Missing y2+1121 y2+2121 y2++122

R1 = 2 Missing R2 = 1 Y2 = 1 y+11211 y+12211 y+1+212
Y2 = 2 y+21211 y+22211 y+2+212

R2 = 2 Missing y++1221 y++2221 y+++222

The log-linear model in this case is

log µijkxsz = λ + λY1(i) + λY2(j) + λY3(k) + λR1(x) + λR2(s) + λR3(z) + λY1Y2(i, j)
+λY1Y3(i, k) + λY2Y3(j, k) + λY1R1(i, x) + λY2R1(j, x) + λY3R1(k, x)
+λY1R2(i, s) + λY2R2(j, s) + λY3R2(k, s) + λY1R3(i, z) + λY2R3(j, z)
+λY3R3(k, z) + λR1R2(x, s) + λR1R3(x, z) + λR2R3(s, z). (2.9)
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Each log-linear parameter in (2.9) satisfies the constraint that the sum over each of its
arguments is 0. Define the following quantities

aijk = P (R1 = 2, R2 = 1, R3 = 1 | Y1 = i, Y2 = j, Y3 = k)
P (R1 = 1, R2 = 1, R3 = 1 | Y1 = i, Y2 = j, Y3 = k)

= πijk211
πijk111

= µijk211
µijk111

,

bijk = P (R1 = 1, R2 = 2, R3 = 1 | Y1 = i, Y2 = j, Y3 = k)
P (R1 = 1, R2 = 1, R3 = 1 | Y1 = i, Y2 = j, Y3 = k)

= πijk121
πijk111

= µijk121
µijk111

,

cijk = P (R1 = 1, R2 = 1, R3 = 2 | Y1 = i, Y2 = j, Y3 = k)
P (R1 = 1, R2 = 1, R3 = 1 | Y1 = i, Y2 = j, Y3 = k)

= πijk112
πijk111

= µijk112
µijk111

.

Then aijk, bijk and cijk describe the missing data mechanisms of Y1, Y2 and Y3, respectively.
Here aijk is the conditional odds of Y1 being missing given both Y2 and Y3 are observed,
bijk is the conditional odds of Y2 being missing given both Y1 and Y3 are observed, and
cijk is the conditional odds of Y3 being missing given both Y1 and Y2 are observed. Let
the conditional odds ratio between R1 and R2 given Y3 is observed be

θ12 = P (R1 = 1, R2 = 1, R3 = 1|Y1 = i, Y2 = j, Y3 = k)
P (R1 = 1, R2 = 2, R3 = 1|Y1 = i, Y2 = j, Y3 = k)

×P (R1 = 2, R2 = 2, R3 = 1|Y1 = i, Y2 = j, Y3 = k)
P (R1 = 2, R2 = 1, R3 = 1|Y1 = i, Y2 = j, Y3 = k)

= πijk111πijk221
πijk121πijk211

= µijk111µijk221
µijk121µijk211

.

Similarly, define θ13 to be the conditional odds ratio between R1 and R3 given Y2 is
observed, and θ23 to be the conditional odds ratio between R2 and R3 given Y1 is observed.
Also, define

θ123 = P (R1 = 2, R2 = 2, R3 = 2 | Y1 = i, Y2 = j, Y3 = k)
P (R1 = 1, R2 = 1, R3 = 1 | Y1 = i, Y2 = j, Y3 = k)

= πijk222
πijk111

= µijk222
µijk111

.

Here, θ12, θ13 and θ23 describe the conditional associations between the missing mechanisms
of Y1 and Y2, Y1 and Y3, and Y2 and Y3 respectively. For i ̸= j ̸= k = 1, 2, 3, if θij = 1,
then the missing mechanisms of Yi and Yj are conditionally independent given that Yk is
observed. Note that θ123 denotes the joint odds of Y1, Y2 and Y3 simultaneously missing.
The joint probability is πijk+++ = µijk111(1 + aijk + bijk + cijk + aijkbijkθ12 + aijkcijkθ13 +
bijkcijkθ23 + θ123)/N , from which the marginals can be obtained. Under (2.9), we have
aijk = exp[−2{λR1(1)+λY1R1(i, 1)+λY2R1(j, 1)+λY3R1(k, 1)+λR1R2(1, 1)+λR1R3(1, 1)}],
bijk = exp[−2{λR2(1) + λY1R2(i, 1)+ λY2R2(j, 1)+ λY3R2(k, 1)+ λR1R2(1, 1)+ λR2R3(1, 1)}],
cijk = exp[−2{λR3(1) + λY1R3(i, 1)+ λY2R3(j, 1)+ λY3R3(k, 1)+ λR1R3(1, 1)+ λR2R3(1, 1)}],

θ12 = exp[4λR1R2(1, 1)], θ13 = exp[4λR1R3(1, 1)], θ23 = exp[4λR2R3(1, 1)],
θ123 = exp[−2{λR1(1) + λR2(1) + λR3(1) + λY1R1(i, 1) + λY2R1(j, 1) + λY3R1(k, 1)

+ λY1R2(i, 1) + λY2R2(j, 1) + λY3R2(k, 1) + λY1R3(i, 1) + λY2R3(j, 1) + λY3R3(k, 1)}].
Based on the assumption in the previous case regarding the missing mechanism of a

variable, aijk ∈ {α..., αi.., α.j., α..k}, bijk ∈ {β..., βi.., β.j., β..k} and cijk ∈ {γ..., γi.., γ.j., γ..k}
(say). For the definition below, see [12].

Definition 2.3. The missing mechanism of Y1 under (2.9) is NMAR if aijk = αi.., MAR
if aijk = α.j. or α..k and MCAR if aijk = α.... Similarly, the missing mechanism of Y2
is NMAR if bijk = β.j., MAR if bijk = βi.. or β..k and MCAR if bijk = β.... Finally, the
missing mechanism of Y3 is NMAR if cijk = γ..k, MAR if cijk = γi.. or γ.j. and MCAR if
cijk = γ....
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We have 64 possible identifiable models which are mixtures of the various missing mech-
anisms of the variables. Under Poisson sampling, the log-likelihood can be wriiten as a
function of aijk, bijk, cijk, θ12, θ13, θ23 and θ123 which is then maximized to obtain closed-
form MLE’s of µijkxsz under various missing data models. Note that from [12], boundary
solutions occur if at least one of the following holds.

1. α̂i.. ≤ 0 for at least one and at most (I − 1) values of Y1,
2. β̂.j. ≤ 0 for at least one and at most (J − 1) values of Y2,
3. γ̂..k ≤ 0 for at least one and at most (K − 1) values of Y3.

The boundary estimates are obtained by setting α̂i.. = 0 or β̂.j. = 0 or γ̂..k = 0 in the log-
likelihood for relevant models. The likelihood ratio statistic G2 for testing the goodness
of fit of a missing data model can be obtained as in the previous case. Here G2 follows χ2

ν

asymptotically, where ν = (I + 1)(J + 1)(K + 1)− number of free estimable parameters
under the proposed model.

Remark 2.4. For all the above cases, perfect fit solutions for fully observed counts occur
under the following types of models:

(i) non-boundary cases of NMAR only models for one or more variables,
(ii) non-boundary cases of a mixture of NMAR and MAR models for the variables,
(iii) MAR only models for two or more variables.

However, if the missing mechanism is MCAR for at least one of the variables, then perfect
fit solutions don’t occur.

WLOG, consider models in which the missing mechanism is NMAR for Y1. Then we
have the following observations.

Remark 2.5. The systems of equations
∑

i µ̂ijk1α̂i.. = y+jk2,
∑

i µ̂ijk11α̂i.. = y+jk21 and∑
i µ̂ijk111α̂i... = y+jk211 for I × J × K × 2, I × J × K × 2 × 2 and I × J × K × 2 × 2 × 2

tables respectively are overdetermined (underdetermined) if I < JK (I > JK).

Remark 2.6. Let the matrix of coefficients be A = (µ̂ijk1) or A = (µ̂ijk11) or A = (µ̂ijk111)
for I × J × K × 2 or I × J × K × 2 × 2 or I × J × K × 2 × 2 × 2 tables, respectively.
(a) Note that A is of order JK × I and hence square if I = JK and rectangular otherwise
from Remark 2.5. If A is square and non-singular, then unique MLE’s of αi.., β.j. and γ..k

exist.
(b) For overdetermined systems in Remark 2.5, if rank(A) = I (full rank), then the left
inverse of A exists and is given by A−1

left = (AT A)−1AT . Also, the unique solutions (MLE’s
of αi.., β.j. and γ..k) are obtained using the method of ordinary least squares (see [21]).
(c) For underdetermined systems in Remark 2.5, if rank(A) = JK (full rank), then the
right inverse of A exists and is given by A−1

right = AT (AAT )−1. Also, the unique solutions
(MLE’s of αi.., β.j. and γ..k) are obtained using the method of minimum norm least squares
(see [15]).

3. n-dimensional incomplete table
In this section, we extend the discussions and results in the previous sections to n-

dimensional incomplete tables.

3.1. Log-linear parametrization
Let Y1, . . . , Yn be n categorical variables with I1, . . . , In levels respectively. Assume

data on k of these variables are missing, while data on the remaining (n − k) variables are
always observed, where 1 ≤ k ≤ n. For 1 ≤ i ≤ k, denote Ri to be the missing indicator
for Yi, where Ri = 1 if data on Yi is observed and Ri = 2 otherwise. Accordingly, there
are a variety of incomplete tables, from the I1 × . . . × In × 2 table (where one variable is
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missing) to the I1 × . . . × In × 2n table (where all n variables are missing). There are
(n

k

)
ways in which data on k variables may be missing. WLOG, we assume data on Y1, . . . , Yk

are missing. Then we have an I1 × . . . × In × 2k table. The vector of observed counts is

yobs = ({yi1...in1...1}, {yi1+...+ik+1...in12...21...1}, . . . , {y+...+ikik+1...in2...211...1}, . . . ,

{y+...+ik−1ikik+1...in2...2111...1}, . . . , {yi1...ik−1+ik+1...in1...121...1}, y+...+2...2).

Note that there are a total of
∏n

k=1 Ik fully observed counts and (2k − 1) supplementary
margins. Let µi1...inr1...rk

= E(Yi1...inr1...rk
) denote the expected cell frequency. Then the

log-linear model is given by

log µi1...inr1...rk
= λ +

n∑
p=1

λYp(ip) +
n∑

p ̸=q=1

λYpYq (ip, iq) +
n∑

p=1

k∑
q=1

λYpRq (ip, rq) +
k∑

p ̸=q=1

λRpRq (rp, rq),

(3.1)
where 1 ≤ il ≤ Il, 1 ≤ l ≤ n, rj = 1, 2, 1 ≤ j ≤ k.

Three-way and higher order associations are assumed to be zero in (3.1) as they are
difficult to interpret. Also, closed-form MLE’s of parameters become difficult to obtain
along with issues of non-identifiability. Note that association terms among Yi’s and those
among Ri’s are not involved in studying the missing data mechanisms of Yi’s in (3.1).
Hence, there is no need to include three-way or higher order interactions among the out-
come variables such as Y1Y2Y3 or the missing indicators such as R1R2R3. It is assumed
that the MAR mechanism of a variable depends on any one of the other variables so
that interaction terms like YiYjRk for i ̸= j ̸= k are excluded from (3.1). The missingness
mechanism of a variable cannot be NMAR and MAR simultaneously, which excludes terms
with YiYjRi for i ̸= j in (3.1). Interactions such as YiRkRl for i ̸= k ̸= l are absent in
(3.1) since their interpretation is unclear. Also, they are redundant for the derivation of
closed-form estimates of the expected cell counts. The following constraints are required
for identifiability of (3.1) :∑

ip

λYp(ip) =
∑
ip

λYpYq (ip, iq) =
∑
iq

λYpYq (ip, iq) =
∑
ip

λYpRq (ip, rq) =
∑
rq

λYpRq (ip, rq)

=
∑
rp

λRpRq (rp, rq) =
∑
rq

λRpRq (rp, rq) = 0, p ̸= q.

Next, we introduce some parameters to study the missingness mechanisms of Y1, . . . , Yk.
Let k = {1, . . . , k} and {Rk\{p} = 1} = {Ri = 1 | i ̸= p}. Define

ϕp
i1...in

=
P ({Rk\{p} = 1}, Rp = 2 | Y1 = i1, . . . , Yn = in)
P ({Rk\{p} = 1}, Rp = 1 | Y1 = i1, . . . , Yn = in)

, 1 ≤ p ≤ k,

which is the conditional odds of Yp being missing given the other Yi’s are observed and
hence describes the missing data mechanism of Yp. There are k such odds. Next define

θij =
P (Ri = 1, Rj = 1, {Rk\{i,j} = 1}|Y1 = i1, . . . , Yn = in)
P (Ri = 1, Rj = 2, {Rk\{i,j} = 1}|Y1 = i1, . . . , Yn = in)

×
P (Ri = 2, Rj = 2, {Rk\{i,j} = 1}|Y1 = i1, . . . , Yn = in)
P (Ri = 2, Rj = 1, {Rk\{i,j} = 1}|Y1 = i1, . . . , Yn = in)

,

which is the conditional odds ratio between Ri and Rj . If θij = 1, then the missingness
patterns of Yi and Yj , that is, Ri and Rj are conditionally independent given that the
remaining variables are observed. There are

(k
2
)

such ratios. Let A ⊆ k̄ = {1, . . . , k}
such that |A| ≥ 3. There are (2k − (k + 1) −

(k
2
)
) such sets. Let RA = {Ri|i ∈ A}.

Then {RA = 1} = {Ri = 1|i ∈ A} and {Rk̄\A = 1} = {Ri = 1|i ̸∈ A}. Also, let
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2A = {ri = 2|i ∈ A}, 1A = {ri = 1|i ∈ A}, 1k̄\A = {ri = 1|i ̸∈ A}, 2k̄\A = {ri = 2|i ̸∈ A},
YA = {Yi|i ∈ A} and Yk̄\A = {Yi|i ̸∈ A}. Now define

θA =
P ({RA = 2}, {Rk̄\A = 1}|Y1 = i1, . . . , Yn = in)
P ({RA = 1}, {Rk̄\A = 1}|Y1 = i1, . . . , Yn = in)

=
πi1...in2A1k̄\A

πi1...in1A1k̄\A

=
µi1...in2A1k̄\A

µi1...in1A1k̄\A

,

which is the conditional odds of YA being missing given that Yk̄\A are observed. Then
for 1 ≤ p ≤ k and Rp = 2, {Rk̄\{p} = 1}, we have µi1...in1...2...1 = ϕp

i1...in
µi1...in1...1. Also,

µi1...in1...1ϕr
i1...in

ϕs
i1...in

θrs = µi1...in2{r,s}1k̄\{r,s}
for r ̸= s = 1, . . . , k and µi1...in1...1θA =

µi1...in2A1k̄\A
. Note that the joint probability

πi1...in+...+ = µi1...in1...1(1 +
k∑

p=1
ϕp

i1...in
+

k∑
r ̸=s=1

ϕr
i1...in

ϕs
i1...in

θrs + {θA|A ⊆ k̄, |A| ≥ 3})/N,

from which the marginals can be obtained. The total count N is obtained by summing
both sides of the above equation over i1, . . . , in. Under (3.1), the parameters are given as
follows.

ϕt
i1...in

= exp

−2

λRt(1) +
n∑

p=1
λYpRt(ip, 1) +

k∑
p ̸=t=1

λRpRt(1, 1)


 , 1 ≤ t ≤ k,

θij = exp
[
4λRiRj (1, 1)

]
, i ̸= j = 1, . . . , k,

θA = exp

−2


k∑

p=1
λRp(1) +

n∑
p=1

k∑
q=1

λYpRq (ip, 1)


 , A ⊆ k̄, |A| ≥ 3.

The following definition (see [12]) gives the various missing data mechanisms of a variable
under (3.1).

Definition 3.1. If ϕp
i1...in

under (3.1) depends on ip (denoted by ϕp
...ip...), then we have a

NMAR missingness mechanism for Yp. If it depends on iq for p ̸= q (denoted by ϕp
...iq ...),

then the missingness mechanism for Yp is MAR, while if it depends on none of i1, . . . , in

(denoted by ϕp
...), then the missingness mechanism for Yp is MCAR.

Since there are (n + 1) possible realizations of ϕp
i1...in

for each p = 1, . . . , k, we have a total
of (n + 1)k possible models which may be categorized as follows:

B1. MCAR model - the missingness mechanism of each of Y1, . . . , Yk is constant (1
case),

B2. NMAR model - the missingness mechanism of each of Y1, . . . , Yk depends only on
itself (1 case),

B3. MAR model - the missingness mechanism of each of Y1, . . . , Yk depends on any one
of the remaining (n − 1) variables ((n − 1)k cases),

B4. Mixture of MCAR and NMAR models - the missingness mechanism of each of
Y1, . . . , Yk may be MCAR or NMAR, but all variables cannot have the same mech-
anism ((2k − 2) cases),

B5. Mixture of MCAR and MAR models - the missingness mechanism of each of
Y1, . . . , Yk may be MCAR or MAR, but all variables cannot have the same mech-
anism ((nk − (n − 1)k − 1) cases),

B6. Mixture of NMAR and MAR models - the missingness mechanism of each of
Y1, . . . , Yk may be NMAR or MAR, but all variables cannot have the same mech-
anism ((nk − (n − 1)k − 1) cases),

B7. Mixture of NMAR, MAR and MCAR models - the missingness mechanism of each
of Y1, . . . , Yk may be NMAR or MAR or MCAR, but all variables cannot have the
same mechanism (((n + 1)k + (n − 1)k − 2(nk − 1) − 2k) cases).
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The log-likelihood kernel under Poisson sampling is

l(µ; yobs) =
∑

i1,...,in

yi1...in1...1 log µi1...in1...1 +
∑

i2,...,in

y+i2...in21...1 log µ+i2...in21...1

+
∑

i1,...,ik−1,ik+1,...,in

yi1...ik−1+ik+1...in1...121...1 log µi1...ik−1+ik+1...in1...121...1 + . . .

+
∑

ik+1,...,in

y+...+ik+1...in2...21...1 log µ+...+ik+1...in2...21...1 −
∑

i1,...,in,r1,...,rk

µi1...inr1...rk
.

(3.2)
Rewriting (3.2) in terms of the parameters ϕ’s and θ’s, we can obtain closed-form MLE’s of
the parameters and the expected cell counts under the models described above. Perfect fits
for fully observed counts are obtained for categories B2, B3 and B6 of models. From Ghosh
and Vellaisamy (2016), boundary solutions occur if the MLE of any of the parameters ϕ’s
< 0, which are then set to zero to obtain boundary estimates. Note that for at least one
p ∈ {1, . . . , k}, we have ϕ̂p

...ip... = 0 for at least one and at most (Ip − 1) values of Yp in
case of boundary solutions.

Consider the hypotheses H0: the proposed model (among models in categories B1 to
B7 mentioned above) fits the data, and H1: the perfect fit model fits the data. Let L0
and L1 denote the maximized log-likelihood functions under the proposed and perfect fit
models respectively. Then the likelihood ratio statistic for testing H0 against H1 is
G2 = −2(L0 − L1)

= −2

 ∑
i1,...,in

ln
(

µ̂i1...in1...1
yi1...in1...1

)
+

∑
i2,...,in

y+i2...in21...1 ln
(∑

i1 µ̂i1...in1...1ϕ̂1
i1...in

y+i2...in21...1

)

+ . . . +
∑

i1,...,ik−1,ik+1,...,in

yi1...ik−1+ik+1...in1...121...1 ln

 ∑
ik

µ̂i1...in1...1ϕ̂k
i1...in

yi1...ik−1+ik+1...in1...121...1


+ . . . +

∑
ik+1,...,in

y+...+ik+1...in2...21...1 ln
(

µ̂+...+ik+1...in1...1θ̂1...k

y+...+ik+1...in2...21...1

)

−
∑

i1,...in

µ̂i1...in1...1

1 +
k∑

p=1
ϕ̂p

i1...in
+

k∑
r ̸=s=1

ϕ̂r
i1...in

ϕ̂s
i1...in

θ̂rs + {θ̂A|A ⊆ k̄, |A| ≥ 3}

+ N

 .

(3.3)

Note that G2 ∼ χ2
ν asymptotically, where ν = (

∏n
p=k+1 Ip)

∏k
r ̸=p=1(1 + Ir)− number of

free estimable parameters under the proposed model.

4. Data analysis
In this section, we illustrate our results in Section 3 using a real-life example from [19].

Table 4 (a 2×2×2×2×2×2 table) below shows the Slovenian public opinion (SPO) survey
dataset classified by the variables Secession (Y1), Attendance (Y2) and Independence (Y3),
each having two levels Yes (1) and No (2). Here “Missing" denotes the “Don’t know"
category (missing margins) for each variable. Note that from (2.3), (2.6) and (3.3), we
observe that G2 becomes undefined if any of the fully observed counts is 0. So, the count 0
is replaced by 2 in the full table. WLOG, consider the subtable of Table 4 in which data on
Y1 is missing as shown below. To determine the missing data mechanism, we fit Models 1-4
(see Section 2.1) to the data in Table 5. The system of equations for Model 2 (NMAR for
Y1) yields α̂1.. = 0.0721 and α̂2.. = 0.0258 implying that boundary solutions do not occur.
We use the closed-form MLE’s in Section 2.1 to fit the above models. Let G2 denote the
likelihood ratio statistic for testing the goodness of fit of each of the Models 1-4 against
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Table 4. Data from the SPO survey

R3 = 1 R3 = 2
Y3 = 1 Y3 = 2 Missing

R1 = 1 Y1 = 1 R2 = 1 Y2 = 1 1191 8 21
Y2 = 2 8 2 4

R2 = 2 Missing 107 3 9
Y1 = 2 R2 = 1 Y2 = 1 158 68 29

Y2 = 2 7 14 3
R2 = 2 Missing 18 43 31

R1 = 2 Missing R2 = 1 Y2 = 1 90 2 109
Y2 = 2 1 2 25

R2 = 2 Missing 19 8 96

Table 5. Subtable Y1 of Table 4

Y3 = 1 Y3 = 2
R = 1 Y1 = 1 Y2 = 1 1191 8

Y2 = 2 8 2
Y1 = 2 Y2 = 1 158 68

Y2 = 2 7 14
R = 2 Missing Y2 = 1 90 2

Y2 = 2 1 2

the perfect fit model. The table below gives the G2 values, p-values and degrees of freedom
(d.f.) for the tests. We usually don’t consider perfect fit models (see the example in [4])

Table 6. Comparison of fit among models

Model Boundary solution G2 p-value d.f.
αi.. No 0 1 2
α.j. No 2.4622 0.2920 2
α..k No 2.0949 0.3508 2
α... No 2.8538 0.4147 3

for model selection so that αi.. is discarded. From Table 6, based on p-values, the plausible
models for the data in Table 5 are α..., α.j. and α..k. However, we deduce that the best fit
model is α..k (MAR for Y1) based on minimum G2 value = 2.0949. This implies that the
missingness in the variable ‘Secession’ depends on the observed variable ‘Independence’.
This dependence is expected because if one is unsure about voting for Slovenian’s secession
from Yugoslavia, then one is also most likely decided about Slovenian independence. Note
that ‘Secession’ differs from ‘Independence’ here since independence without secession was
also possible with the formation of a new internal state.
The table of expected cell counts using the closed-form estimates (see Section 2.1) is given
below (Table 7).
Next, consider WLOG the subtable of Table 4 in which data on Y1 and Y2 are missing

as shown below. To determine the missing data mechanism, we fit Models 1-16 (see
Appendix) to the data in Table 8. On solving the systems of equations in NMAR models
for Y1 or Y2, we obtain α̂1.. = 0.0721, α̂2.. = 0.0258, β̂.1. = 0.073 and β̂.2. = 2.375. Hence,
there are no boundary solutions. We use the closed-form MLE’s in the Appendix to fit
the above models . Let G2 denote the likelihood ratio statistic for testing the goodness
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Table 7. Expected cell counts for model α..k using closed-form estimates

Y3 = 1 Y3 = 2
R = 1 Y1 = 1 Y2 = 1 1191.00 7.87

Y2 = 2 8.00 2.16
Y1 = 2 Y2 = 1 158.00 66.88

Y2 = 2 7.00 15.09
R = 2 Y1 = 1 Y2 = 1 79.46 0.34

Y2 = 2 0.53 0.09
Y1 = 2 Y2 = 1 10.54 2.91

Y2 = 2 0.47 0.66

Table 8. Subtable Y1Y2 of Table 4

Y3 = 1 Y3 = 2
R1 = 1 Y1 = 1 R2 = 1 Y2 = 1 1191 8

Y2 = 2 8 2
R2 = 2 Missing 107 3

Y1 = 2 R2 = 1 Y2 = 1 158 68
Y2 = 2 7 14

R2 = 2 Missing 18 43
R1 = 2 Missing R2 = 1 Y2 = 1 90 2

Y2 = 2 1 2
R2 = 2 Missing 19 8

of fit of each of the Models 1-16 against the perfect fit model. The table below gives the
G2 values, p-values and degrees of freedom (d.f.) for the tests. From Table 9, based on

Table 9. Comparison of fit among models

Model Boundary solution G2 p-value d.f.
(α..., βi..) No 48.1188 < 0.0001 6
(α..., β.j.) No 20.6256 0.0021 6
(α..., β..k) No 4.5886 0.5975 6
(αi.., β...) No 75.5003 < 0.0001 6
(αi.., βi..) No 49.7073 < 0.0001 5
(αi.., β.j.) No 14.7381 0.0115 5
(αi.., β..k) No 2.8076 0.7296 5
(α.j., β...) No 75.1109 < 0.0001 6
(α.j., βi..) No 45.9217 < 0.0001 5
(α.j., β.j.) No 15.8222 0.0074 5
(α.j., β..k) No 4.2395 0.5155 5
(α..k, β...) No 82.55 < 0.0001 6
(α..k, β.i.) No 50.6861 < 0.0001 5
(α..k, β.j.) No 17.8333 0.0032 5
(α..k, β..k) No 5.4779 0.3604 5

p-values, the candidate models for the data in Table 8 are (α..., β..k), (αi.., β..k), (α.j., β..k)
and (α..k, β..k). However, we deduce that the best fit model is (αi.., β..k) (NMAR for Y1,
MAR for Y2) based on minimum G2 value = 2.8076. This implies that the missingness in
the variable ‘Secession’ depends on itself, while the missingness in ‘Attendance’ depends on
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the variable ‘Independence’. This is due to the fact that if one is unsure about ‘Secession’,
then data on ‘Secession’ will be missing. Also, if one is unsure about ‘Independence’,
then one may not attend the plebiscite. Hence, data on ‘Attendance’ will be missing. The
table of expected cell counts using the closed-form estimates (see Appendix) is given below
(Table 10).

Table 10. Expected cell counts under model (αi.., β..k) using closed-form esti-
mates

Y3 = 1 Y3 = 2
R1 = 1 Y1 = 1 R2 = 1 Y2 = 1 1191.00 8.00

Y2 = 2 8.00 2.00
R2 = 2 Y2 = 1 109.15 4.00

Y2 = 2 0.73 1.00
Y1 = 2 R2 = 1 Y2 = 1 158.00 68.00

Y2 = 2 7.00 14.00
R2 = 2 Y2 = 1 14.48 34.00

Y2 = 2 0.64 7.00
R1 = 2 Y1 = 1 R2 = 1 Y2 = 1 85.93 0.58

Y2 = 2 0.58 0.14
R2 = 2 Y2 = 1 21.84 0.80

Y2 = 2 0.15 0.20
Y1 = 2 R2 = 1 Y2 = 1 4.07 1.75

Y2 = 2 0.18 0.36
R2 = 2 Y2 = 1 1.03 2.43

Y2 = 2 0.05 0.50

Note that θ̂ = 2.7738 for the model (αi.., β..k), which implies that the missing mecha-
nisms of the variables ‘Secession’ and ‘Attendance’ are probably not independent. That
is, a realization is more likely to be missing for ‘Secession’ if it is missing for ‘Attendance’
or vice-versa. The estimated conditional probability of Y1 being missing given Y2 = 1 is
observed is ϕ̂1|2(1) = α̂1..

1+α̂1..
= 0.0673. Similarly, the estimated conditional probability of

Y1 being missing given Y2 = 2 is observed is ϕ̂1|2(2) = α̂2..
1+α̂2..

= 0.0251. So the estimated
probability of nonresponse for ‘Secession’ is greater when one replies ‘No’ to attending the
plebiscite. Also, the estimated conditional probability of Y2 being missing given Y1 = 1
is observed is ϕ̂2|1(1) = β̂..1

1+β̂..1
= 0.0839. Similarly, the estimated conditional probability

of Y2 being missing given Y1 = 2 is observed is ϕ̂2|1(2) = β̂..2
1+β̂..2

= 0.3333. Hence, the
estimated probability of nonresponse for ‘Attendance’ is greater when one replies ‘No’ to
Slovenia’s secession from Yugoslavia.

From the data in Table 8, we have OR..1 = OR111 = 6.5957 and OR..2 = OR112 = 0.8235
for the model (αi.., β..k). This implies that if none of the responses for the variables is miss-
ing, then the estimated odds ratio between ‘Secession’ and ‘Attendance’ is greater when
the response to ‘Independence’ is ‘Yes’ than when it is ‘No’. Also, V ar(OR..1) = 11.9646
and V ar(OR..2) = 0.4823, that is, for observed data, the estimated odds ratio between
‘Secession’ and ‘Attendance’ has greater precision when the response to ‘Independence’ is
‘No’ than when it is ‘Yes’.

To investigate the occurrence of boundary solutions, we consider subtables of Table 4 in
which at least one of Y1, Y2 and Y3 is missing. When we fit perfect fit NMAR models (for
fully observed counts) to the data in each subtable, we observe that boundary solutions
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do not occur in any of them as the MLE’s are α̂1.. = 0.0721, α̂2.. = 0.0258, β̂.1. = 0.073,
β̂.2. = 2.375, γ̂..1 = 0.0151 and γ̂..2 = 0.3851, which are positive. So, we modify some fully
observed counts in each subtable. Table 11 shows the MLE’s under some perfect fit (for
fully observed counts) NMAR models in the modified subtables.

Table 11. MLE’s in modified subtables of Table 4

Subtable Changes NMAR MLE’s Boundary
(models) solns.

(perfect fit)
Y1 158 → 1300, 68 → 28, Y1 α̂1.. = −0.0293, α̂2.. = 0.0961 π̂1++2 = 0

7 → 10
Y2Y3 8 → 80, 14 → 10 Y2 β̂.1. = −0.1937, β̂.2. = 4.2616 π̂+1+2+ = 0

8 → 80, 14 → 6 Y3 γ̂..1 = −0.0132, γ̂..2 = 0.4588 π̂++1+2 = 0
8 → 108, 8 → 108, Y2, Y3 β̂.1. = 0.2138, β̂.2. = −1.3706 π̂+1+2+ = 0,

2 → 4, 14 → 2 γ̂..1 = −0.0253, γ̂..2 = 0.4785 π̂++1+2 = 0
Y1Y2Y3 158 → 1100, 68 → 22, Y1 α̂1.. = −0.0346, α̂2.. = 0.1193 π̂1++2++ = 0

7 → 10
8 → 80 Y2 β̂.1. = −0.1258, β̂.2. = 3.2391 π̂+1++2+ = 0

8 → 55, 14 → 6 Y3 γ̂..1 = −0.0024, γ̂..2 = 0.4338 π̂++1++2 = 0
1191 → 3191, 8 → 48, Y1, Y3 α̂1.. = −0.0291, α̂2.. = 0.1828 π̂+1++2+ = 0,

8 → 28, 2 → 4 γ̂..1 = −0.0397, γ̂..2 = 3.1164 π̂++1++2 = 0

From Table 11, we observe that on fitting perfect fit NMAR models to the modified
subtables, boundary solutions occur in each of them since at least one of α̂i.., β̂.j. and
γ̂..k is negative. In the last column of Table 11, the boundary solutions under the above
models are obtained using the EM algorithm (see the ‘ecm.cat’ function of the ‘cat’ pack-
age in R software). The forms of boundary solutions under the various models are the
same as those mentioned in Section 2. For further discussion on boundary solutions in two
and higher dimensional incomplete tables, one could refer to [11] and [12]. The packages
‘MASS’ and ‘cat’ in R software are used to perform the data analysis in this paper.

5. Conclusions
In this paper, we have studied missing data mechanisms for variables in I × J × K × 2,

I × J × K × 2 × 2 and I × J × K × 2 × 2 × 2 incomplete contingency tables. For this
purpose, we have considered hierarchical log-linear models which yield closed-form MLE’s
of parameters and expected cell counts under various missing data models. Closed-form
estimates are also obtained for joint and marginal probabilities, marginal odds ratios,
their asymptotic variances and conditional probabilities of missing variables under the
models. Note that the methods and results in this paper are applicable for I × J × 2
and I × J × 2 × 2 tables also. Extensions of the models and estimation methods are pre-
sented for arbitrary n-dimensional incomplete tables. We have also provided closed-form
boundary MLE’s under various NMAR models in some incomplete tables. Finally, a real-
life data analysis example validates our modelling approach and other results in this paper.
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Appendix A.
The closed-form estimates of missing counts and other parameters under various missing

data models for an I × J × K × 2 × 2 table are as follows.
1. (α..., β...) (MCAR for both Y1 and Y2).
The MLE’s are

α̂... = y+++21
y+++11

, β̂... = y+++12
y+++11

, θ̂ = y+++11y+++22
y+++12y+++21

,

while the iterates of µ̂ijk11 are

µ̂
(0)
ijk11 = yijk11, µ̂

(t+1)
ijk11 =

y+++11

(
yijk11 + yi+k12

µ̂
(t)
i+k12

.µ̂
(t)
ijk11 + y+jk21

µ̂
(t)
+jk21

.µ̂
(t)
ijk11

)
y++++1 + y+++12

.

2. (α..., βi..) (MCAR for Y1, MAR for Y2).
The MLE’s are

α̂... = y+++21
y+++11

, β̂i.. = yi++12
µ̂i++11

, θ̂ = y+++11y+++22
y+++12y+++21

, µ̂ijk11 = yijk11y+++11y+jk+1
y++++1y+jk11

.

3. (α..., β.j.) (MCAR for Y1, NMAR for Y2).
The MLE’s are

α̂... = y+++21
y+++11

, θ̂ = y+++11y+++22
y+++12y+++21

, µ̂ijk11 = yijk11y+++11y+jk+1
y++++1y+jk11

.

Also, β̂.j. satisfies
∑

j µ̂ijk11β̂.j. = yi+k12.
4. (α..., β..k) (MCAR for Y1, MAR for Y2).
The MLE’s are

α̂... = y+++21
y+++11

, β̂..k = y++k12
µ̂++k11

, θ̂ = y+++11y+++22
y+++12y+++21

, µ̂ijk11 = yijk11y+++11y+jk+1
y++++1y+jk11

.

5. (αi.., β...) (NMAR for Y1, MCAR for Y2).
The MLE’s are

β̂... = y+++12
y+++11

, θ̂ = y+++11y+++22
y+++12y+++21

, µ̂ijk11 = yijk11y+++11yi+k1+
y+++1+yi+k11

.

Also, α̂i.. satisfies
∑

i µ̂ijk11α̂i.. = y+jk21.
6. (αi.., βi..) (NMAR for Y1, MAR for Y2).
The MLE’s are

µ̂ijk11 = yijk11, β̂i.. = yi++12
yi++11

, θ̂ = y+++22∑
i yi++12α̂i..

,

where α̂i.. satisfies
∑

i µ̂ijk11α̂i.. = y+jk21.
7. (αi.., β.j.) (NMAR for both Y1 and Y2).
The MLE’s are

µ̂ijk11 = yijk11, θ̂ = y+++22∑
i,j yij+11α̂i..β̂.j.

,

where α̂i.. and β̂.j. satisfy
∑

i µ̂ijk11α̂i.. = y+jk21 and
∑

j µ̂ijk11β̂.j. = yi+k12 respectively.
8. (αi.., β..k) (NMAR for Y1, MAR for Y2).
The MLE’s are

µ̂ijk11 = yijk11, β̂..k = y++k12
y++k11

, θ̂ = y+++22∑
i,k yi+k11α̂i..β̂..k

,

where α̂i.. satisfies
∑

i µ̂ijk11α̂i.. = y+jk21.
9. (α.j., β...) (MAR for Y1, MCAR for Y2).
The MLE’s are

α̂.j. = y+j+21
µ̂+j+11

, β̂... = y+++12
y+++11

, θ̂ = y+++11y+++22
y+++12y+++21

, µ̂ijk11 = yijk11y+++11yi+k1+
y+++1+yi+k11

.
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10. (α.j., βi..) (MAR for both Y1 and Y2).
The MLE’s are

µ̂ijk11 = yijk11, α̂.j. = y+j+21
y+j+11

, β̂i.. = yi++12
yi++11

, θ̂ = y+++22∑
i,j yij+11α̂.j.β̂i..

.

11. (α.j., β.j.) (MAR for Y1, NMAR for Y2).
The MLE’s are

µ̂ijk11 = yijk11, α̂.j. = y+j+21
y+j+11

, θ̂ = y+++22∑
j y+j+21β̂.j.

,

where β̂.j. satisfies
∑

j µ̂ijk11β̂.j. = yi+k12.
12. (α.j., β..k) (MAR for both Y1 and Y2).
The MLE’s are

µ̂ijk11 = yijk11, α̂.j. = y+j+21
y+j+11

, β̂..k = y++k12
y++k11

, θ̂ = y+++22∑
j,k y+jk11α̂.j.β̂..k

.

13. (α..k, β...) (MAR for Y1, MCAR for Y2).
The MLE’s are

α̂..k = y++k21
µ̂++k11

, β̂... = y+++12
y+++11

, θ̂ = y+++11y+++22
y+++12y+++21

, µ̂ijk11 = yijk11y+++11yi+k1+
y+++1+yi+k11

.

14. (α..k, βi..) (MAR for both Y1 and Y2).
The MLE’s are

µ̂ijk11 = yijk11, α̂..k = y++k21
y++k11

, β̂i.. = yi++12
yi++11

, θ̂ = y+++22∑
i,k yi+k11α̂..kβ̂i..

.

15. (α..k, β.j.) (MAR for Y1, NMAR for Y2).
The MLE’s are

µ̂ijk11 = yijk11, α̂..k = y++k21
y++k11

, θ̂ = y+++22∑
j,k y+jk11α̂..kβ̂.j.

,

where β̂.j. satisfies
∑

j µ̂ijk11β̂.j. = yi+k12.
16. (α..k, β..k) (MAR for both Y1 and Y2).
The MLE’s are

µ̂ijk11 = yijk11, α̂..k = y++k21
y++k11

, β̂..k = y++k12
y++k11

, θ̂ = y+++22∑
k y++k12α̂..k

.

Note that closed-form MLE’s of mjk11 exist for all models except for Model 1. In this
case, µ̂ijk11 may be obtained using the EM algorithm (see [8]).


