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Abstract 

miRNAs, a subclass of non-coding small RNAs, are about 18-22 nucleotides long. It has been revealed that miRNAs are responsible 

many diseases such as cancer. Therefore, great efforts have been made recently by researchers to explore possible relationships 

between miRNAs and diseases. Experimental studies to identify new disease-associated miRNAs are very expensive and at the same 

time a long process. Therefore, to determine the relationships between miRNA and disease many computational methods have been 

developed. In this paper, a new method for the identification of miRNA-disease associations based on space projection and label 

propagation (SPLPMDA) is proposed. The forecast the precision of SPLPMDA was demonstrated using 5-fold cross-validation and 

LOOCV techniques. Values of 0.9333 in 5-fold cross validation and 0.9441 in LOOCV were obtained. Moreover, case studies on 

breast neoplasms and lymphoma were performed to further confirm the predictive reliability of SPLPMDA. 
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1. Introduction 

 

The first microRNA (miRNA) was defined in Caenorhabditis elegans (C. elegans) by Lee et al. at Victor Ambros’ laboratory in 1993. 

They named this first miRNA discovered as lin-4. Reinhart et al. discovered a miRNA with a length of 22 nucleotides in C. elegans in 

2000 and called let-7 (Lee, Feinbaum, & Ambros, 1993; Saydam, Değirmenci, & Güneş, 2011). Studies have revealed that miRNAs 

are a subclass of non-protein coding RNAs and are approximately 18-22 nucleotides long (Chandra et al., 2017). Although about 2000 

human miRNAs have been identified, information about their biological functions is limited so far. Conducted research has revealed 

the importance miRNAs in development, proliferation, apoptosis, differentiation, signal transduction, viral infection, aging, and 

metabolism (Bartel, 2009; X. Chen, Zhou, & Zhao, 2018; Lan et al., 2018; Tang, Zhou, Zheng, Zhang, & Sha, 2019). The existence of 

important links of miRNAs with many complex human diseases has been proven by scientists with improving of the molecular biology 

and biotechnology (X. Chen et al., 2016; Kim, 2015). miRNAs can be oncogene or tumor suppressor in many cancer types such as 

breast cancer, lymphoma, lung cancer, prostate cancer, colon cancer (X. Chen, Xie, Zhao, & You, 2019; Gao, Jia, Shi, Zhou, & Cui, 

2019). As an example, miRNA-21 expression level is constantly up-regulated in tissue-specific cancer types such as breast cancer, 

lymphoma, lung cancer, and colon cancer. In experiments, it was observed that in lung cancer and lymphoma, the let-7 miRNA family 

is downregulated, while miRNA-17, miRNA-18a, miRNA-19a, miRNA-19b-1, miRNA-20a and miRNA-92a-1 are overexpressed 

(Osada & Takahashi, 2011; Selcuklu, Donoghue, & Spillane, 2009; Tan et al., 2018). Also it is proven that both miRNA-143 and 

miRNA-145 are consistently downregulated in breast cancer patient by conducted research studies (Espinosa & Slack, 2006). 

Determination of disease-associated miRNAs is of great importance in the diagnosis, treatment, and prevention of diseases, as well as 

for personalized drug therapy (X. Chen et al., 2019; Yan, Zheng, Jia, Hou, & Xiao, 2019). By determining the relationships between 

miRNAs and diseases, many diseases such as cancer can be diagnosed at an early stage. However, experimental studies to identify new 

disease-associated miRNAs are very expensive and at the same time a long process. For this reason, many computational methods have 

been developed to determine these possible relationships between miRNAs and diseases (Pech, Lee, Hao, Po, & Zhou, 2019). Machine 

learning-based approaches and similarity-based approaches are generally preferred to find potential relationships between miRNAs 

and diseases. The assumption that similar miRNAs (diseases) likely affect the same diseases (miRNAs) is commonly used in similarity-

based approaches. 

Researchers have developed many computational methods to predict disease-associated miRNAs, lncRNAs, circRNAs, microbes, and 

environmental factor. For example, Toprak et al. (Toprak & Eryilmaz Dogan, 2021; Toprak & Eryilmaz, 2021) used two different 

methods for miRNA-disease associations prediction: KBMF and “weighted k-nearest known neighbors and network consistency 

projection”. The ILDMSF method for prediction of lncRNA-disease associations was developed by Chen et al. (Q. Chen et al., 2021). 

Vural et al. (Vural & Kaya, 2018) used the KATZ method for prediction lncRNA-environmental factor associations. Qu et al. (Qu, 

Zhao, & Yin, 2019) suggested a computational technique for estimating microbe-disease associations. 

Several comprehensive databases have been created to store experimentally validated results of miRNA-disease associations with 

advances in technology and bioinformatics: HMDD (Y. Li et al., 2014) is a database of miRNA target interactions as well as containing 

comprehensive information about many human diseases such as genetics and epigenetics. miRBase (Kozomara & Griffiths-Jones, 

2013) database contains miRNA sequences and is also an open-source database. dbDEMC (Z. Yang et al., 2010) provides information 

in different cancer types about the miRNAs’ expression levels. miR2Disease (Jiang et al., 2009) provides human miRNA-disease 

association information. deepBase (J.-H. Yang, Shao, Zhou, Chen, & Qu, 2009) comprehensively describes the role of miRNAs in 

biological processes of organisms. miRGen (Alexiou et al., 2009) is a database containing human miRNAs’ and mouse miRNAs’ 

genomic information. 

In this paper, a new method, identification of miRNA-disease relationships based on space projection and label propagation 

(SPLPMDA), which integrates space projection and label propagation, has been proposed to find possible links between miRNAs and 

diseases. From HMDD web page, experimentally validated miRNA and disease association data, functional similarities of miRNAs, 

and semantic similarities of diseases were used. In addition, Gaussian interaction profile kernel similarities of the of miRNAs and 

diseases were calculated. Then, space projection method was implemented to miRNA space and disease space. Lastly, miRNA-disease 

association prediction results were obtained by applying the label propagation method. 

2. Materials and Methods 

 

2.1. Known associations between miRNA and disease 

The experimentally validated miRNA-disease association data, include 495 miRNAs and 383 diseases, we used in this study were 

obtained from the HMDD database. A matrix of 495x383 dimensions, called the adjacency matrix, consisting of 495 rows and 383 

columns, is created from the obtained data. When constructing the adjacency matrix, the experimentally proven relationship of miRNA 

and diseases is considered (i.e. if there is a proven relationship between miRNA 𝑚(𝑖) and disease 𝑑(𝑗), adjacency matrix 𝐴(𝑚(𝑖), 𝑑(𝑗)) 

is set to 1, if there is no proven relationship between miRNA 𝑚(𝑖) and disease 𝑑(𝑗), adjacency matrix 𝐴(𝑚(𝑖), 𝑑(𝑗)) is set to 0. 
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2.2. miRNAs Functional Similarity (FS) and Diseases Semantic Similarity (SS) 

In 2010, a method was proposed by Wang and colleagues to calculate miRNA and disease similarity scores (D. Wang, Wang, Lu, 

Song, & Cui, 2010). Calculated miRNAs functional similarity scores can be obtained from the 

http://www.cuilab.cn/files/images/cuilab/misim.zip web page. The 𝐹𝑆 matrix with dimensions 495 × 495 is created from the 

downloaded data. 

The 𝑆𝑆 matrix was calculated using the Medical Subject Headings (MeSH) definitions from the National Library of Medicine 

(http://www.nlm.nih.gov/) web page. Afterwards, the tree structure of each disease is defined by creating a Directed Acyclic Graph 

(DAG) structure of each disease. “Breast Neoplasms” and “Lymphoma” DAG structures are shown in Figure 1. For example, 

𝐷𝐴𝐺(𝐴) = (𝐴, 𝑇𝐴, 𝐸𝐴) structure of disease A, where 𝑇𝐴 represents both node A itself and all sub-nodes of node A, and 𝐸𝐴 represents 

the corresponding links. Here, equation 1 calculates the coefficient of disease t in DAG(A) to disease A, and equation 2 computes the 

disease A’s semantic value (DV). 

{
𝐷𝐴(𝐴) = 1,                                                                                     

𝐷𝐴(𝑡) = 𝑚𝑎𝑥{0.5 ∗ 𝐷𝐴(𝑡′)|𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑡}, 𝑖𝑓 𝑡 ≠ 𝐴,
  (1) 

𝐷𝑉(𝐴) = ∑ 𝐷𝐴(𝑡).𝑡∈𝑇𝐴
      (2) 

In order to calculate the disease A’s and disease B’s semantic similarity value with equation 3, first the DAG structure of each disease 

is created, and its semantic values are calculated. This process is performed for all diseases and a semantic similarity matrix (𝑆𝑆383×383) 

is created. 

𝑆𝑆(𝐴, 𝐵) =
∑ (𝐷𝐴(𝑡)+𝐷𝐵(𝑡))𝑡∈𝑇𝐴∩𝑇𝐵

𝐷𝑉(𝐴)+𝐷𝑉(𝐵)
     (3) 

 

 

Figure 1. Breast neoplasms’ and lymphoma’s DAG structure 
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2.3. Gaussian interaction profile (GIP) kernel similarity 

In 2011, Twan van Laarhoven et al. proposed the GIP kernel and used to find out drug-target relationships. “This method is based on 

the assumption that drugs (targets) that exhibit a similar interaction with targets (drugs) of a drug-target interaction network are likely 

to exhibit similar interactions” (van Laarhoven, Nabuurs, & Marchiori, 2011). The GIP method is widely used to find out disease-

related miRNA, lncRNA, circRNA, and microbes. 

Here, ith sequence of known human miRNA-disease matrix A is binary vector, represented by 𝐼𝑃(𝑚𝑖). The GIP kernel similarity matrix 

for miRNAs represented by GM is calculated by the following equation: 

𝐺𝑀(𝑚𝑖 , 𝑚𝑗) = exp (−𝛾𝑚‖𝐼𝑃(𝑚𝑖) − 𝐼𝑃(𝑚𝑗)‖
2

)    (4) 

The GIP kernel similarity matrix for diseases represented by GD is calculated by the same way: 

𝐺𝑀(𝑑𝑖 , 𝑑𝑗) = exp (−𝛾𝑑‖𝐼𝑃(𝑑𝑖) − 𝐼𝑃(𝑑𝑗)‖
2

)    (5) 

The 𝛾𝑚 and 𝛾𝑑 parameters seen in equations 4 and 5 that control the kernel bandwidth can be calculated as follows: 

𝛾𝑚 =
𝛿𝑚

1

𝑛𝑚
∑ ‖𝐼𝑃(𝑚𝑖)‖2𝑛𝑚

𝑖=1

       (6) 

𝛾𝑑 =
𝛿𝑑

1

𝑛𝑑
∑ ‖𝐼𝑃(𝑑𝑖)‖2𝑛𝑑

𝑖=1

        (7) 

The new bandwidth parameters are represented by 𝛿𝑚 and 𝛿𝑑, and all miRNA numbers and all disease numbers are represented by 𝑛𝑚 

and 𝑛𝑑. Twan van Laarhoven et al set the 𝑚 and 𝑑 parameters to 1 for simplicity. 

2.4. Integration of similarities 

From the known human miRNA-disease association matrix, the GIP kernel similarities of miRNAs and diseases are calculated. Then, 

miRNA functional similarity matrix and miRNA GIP kernel similarity matrix are integrated using equation 8. The resulting new 

miRNA similarity matrix is denoted by SM. 

𝑆𝑀(𝑚𝑖, 𝑚𝑗) = {
𝐺𝑀(𝑚𝑖 , 𝑚𝑗),                            𝑖𝑓 𝐹𝑆(𝑚𝑖 , 𝑚𝑗) = 0,

𝐹𝑆(𝑚𝑖 , 𝑚𝑗),                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  (8) 

In the same manner, using equation 9, semantic similarities of diseases and GIP kernel similarities of diseases were integrated. The 

resulting new disease similarity matrix is represented by SD. 

𝑆𝐷(𝑑𝑖 , 𝑑𝑗) = {
𝐺𝐷(𝑑𝑖 , 𝑑𝑗),                                   𝑖𝑓 𝑆𝑆(𝑑𝑖 , 𝑑𝑗) = 0,

𝐹𝑆(𝑑𝑖 , 𝑑𝑗),                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  (9) 

2.5. Network Space Projection and Label Propagation 

We suggested new computational model that includes network space projection and label propagation to forecast possible associations 

between miRNAs and diseases. The method we have proposed consists of three parts. Firstly, integration of similarities. Secondly, 

network space projection for miRNA and disease. Lastly, for obtaining the prediction results, applying the label propagation on miRNA 

and disease space projection network. In this study, in matrix A, experimentally unconfirmed miRNA-disease associations were 

recorded as 0, but this does not mean that these experimentally unconfirmed relationships are actually unrelated. Thus, all relations that 

are 0 in matrix A are made 10−30. 

Network consistency projection consists of two parts, space consistency projection of miRNA and disease. Network consistency 

projection uses heterogeneous networks such as network of known associations between miRNA and disease, integrated similarity 

networks of miRNAs and diseases. The framework of SPLPMDA method is shown in Figure 2. 
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Figure 2. Flowchart 

Firstly, the miRNA space projection (𝑀𝑆𝑃) is determined by the following formula: 

𝑀𝑆𝑃(𝑖, 𝑗) =
𝑆𝑀(𝑖,:)×𝐴(:,𝑗)

|𝐴(:,𝑗)|
       (10) 

Then, disease space projection (𝐷𝑆𝑃) is computed using equation 11:  

𝐷𝑆𝑃(𝑖, 𝑗) =
𝐴(𝑖,:)×𝑆𝐷(:,𝑗)

|𝐴(𝑖,:)|
       (11) 

Here, the label propagation technique was applied to compute the possibility of disease-associated miRNAs. “Label propagation is a 

semi-supervised learning method that iteratively propagates labelled information to unlabeled nodes throughout the network”  (Yin, 

Liu, Gao, Kong, & Zheng, 2022; Yu et al., 2019). In the label propagation process, miRNAs (diseases) associated with a disease 

(miRNA) are regarded labeled samples, while other miRNAs (diseases) are considered unlabeled samples. The iteration formula on 

the miRNA space projection network can be represented by equation 12. With the same manner, the iteration equation on the disease 

space projection network can be written equation 13. 

𝐹𝑀(𝑡 + 1) = 𝛼 × 𝑆𝑀 × 𝐹𝑀(𝑡) + (1 − 𝛼) × (
𝑀𝑆𝑃+𝐴

2
)    (12) 

𝐹𝐷(𝑡 + 1) = 𝛼 × 𝑆𝐷 × 𝐹𝐷(𝑡) + (1 − 𝛼) × (
𝐷𝑆𝑃+𝐴

2
)

𝑇

   (13) 

where, parameter 𝛼 is between 0 and 1, and controls the rate. 𝑆𝑀 is the integrated miRNAs network and 𝑆𝐷 is the integrated diseases 

network. 𝐹𝑀 and 𝐹𝐷 are the forecast outcomes of miRNA domain and disease domain, respectively. The prediction results from both 

domains are combined with equation 14 and represent with 𝐹. 

𝐹 = 𝛽 × 𝐹𝑀 + (1 − 𝛽) × 𝐹𝐷
𝑇      (14) 

where 𝛽 was set to 0.5. 
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3. Results 

 

3.1. Performance prediction 

In this chapter, the prediction performance of our model that we developed tested by five-fold (5-fold) cross validation and leave one-

out cross validation (LOOCV) techniques. The known relationships between miRNA and disease are divided into five subgroups in 

the 5-fold cross-validation technique. While 4 randomly selected groups are used as training data, the remaining group is used as test 

data. In the LOOCV technique, each of the known relationships between miRNA and disease was used as test data and the rest as 

training data. This procedure was repeated for all known 5430 miRNA-disease associations. Also, using the true positive rate (TPR) 

and the false positive rate (FPR), the Receiver Operating Characteristic (ROC) curve was plotted to show the predictive accuracy of 

the model. Then, performance evaluation is performed with the value obtained by calculating the area under the ROC curve (AUC). 

The AUC value ranges from 0 to 1, and the closer the calculated result is to 1, the better the performance. 

In SPLPMDA, the AUC value calculated with the 5-fold cross-validation technique was 0.9333, and the AUC value calculated with 

the LOOCV technique was 0.9441. ROC curves of the 5-fold cross validation and LOOCV techniques are demonstrated with Figures 

3 and 4, respectively. Also, prediction performance is further proven by comparing the prediction result of SPLPMDA with 6 other 

methods: NDAMDA (X. Chen, Wang, & Huang, 2018), MCMDA(J.-Q. Li, Rong, Chen, Yan, & You, 2017), NSEMDA (C. C. Wang, 

Chen, Yin, & Qu, 2019), BNPMDA (X. Chen, D. Xie, et al., 2018), MDHGI (X. Chen, Yin, Qu, & Huang, 2018), and WBSMDA (X. 

Chen et al., 2016). 

 

 
Figure 3. 5-fold CV 

 
Figure 4. LOOCV 

In the 5-fold cross validation technique, the AUC values obtained by NDAMDA, MCMDA, NSEMDA, BNPMDA, MDHGI, and 

WBSMDA were 0.8935, 0.8767, 0.8878, 0.8980, 0.8794, and 0.8185. Figure 5 shows the comparative AUC values. Moreover, in the 

LOOCV technique, the AUC values obtained by NDAMDA, MCMDA, NSEMDA, BNPMDA, MDHGI, and WBSMDA were 0.8920, 

0.8749, 0.8899, 0.9028, 0.8945, and 0.8031. Figure 6 shows the comparative AUC values. 

 
Figure 5. AUC values of SPLPMDA and others six methods 

in 5-fold CV 

 
Figure 6. AUC values of SPLPMDA and others six methods 

in LOOCV 

When the AUC values obtained in both 5-fold cross validation and LOOCV techniques are examined, it is seen that SPLPMDA gives 

better results compared to the other six methods. 
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3.2. Case studies 

Here, we performed both a case study on breast cancer and a case study on lymphoma to validate the performance of SPLPMDA and 

predict miRNA-disease association. Two experimental databases namely HMDD v2.0 (Y. Li et al., 2014) and dbDEMC (Z. Yang et 

al., 2010) were selected to validate the candidate miRNAs predicted in the case studies. After applying SPLPMDA, candidate miRNAs 

for breast neoplasms and lymphoma were listed by scores. The top 30 candidate miRNAs listed by score for breast cancer and 

lymphoma were validated by the two different databases mentioned above. 

Breast Neoplasms, which occurs in men as well as women, is very widespread malignant tumor in women and causes about 40000 

mortalities per year in the United States (DeSantis et al., 2016). Studies have demonstrated that numerous miRNAs have an important 

mission in the diagnosis and development of breast cancer. For instance, in experimental studies with breast cancer patients, miR-21 

and miR-155 were up-regulated, while miR-10b, miR-125b, and miR-145 were down-regulated. That’s why, A case study was 

conducted on breast neoplasms as many miRNAs are thought to act as tumor suppressor genes or oncogenes (Feber et al., 2008; Iorio 

et al., 2005). In this case study, information was removed from all known miRNAs associated with breast neoplasm. Then, SPLPMDA 

was applied to predict potential miRNAs related to breast cancer and the top 30 candidate miRNAs proposed by SPLPMDA were 

listed. As can be seen from Table 1, 29 of the top 30 predicted candidate miRNAs were associated with breast neoplasms. 

Lymphoma is the uncontrolled growth of lymphocytes, the body’s defense cells, by becoming cancerous (Alizadeh et al., 2000), 

originates from the lymphatic hematopoietic system, which is the cause of many types of cancer (DeSantis, Ma, Goding Sauer, 

Newman, & Jemal, 2017). Recent research has shown associations between many miRNAs and lymphoma. For instance, in malignant 

lymphoma, tumors are suppressed by miR-150 (Watanabe et al., 2011). In addition to targeting proto-oncogenes in cutaneous T-cell 

lymphoma and mycosis fungoides, also miR-223 regulates cell growth (McGirt et al., 2014). Moreover, miR-200 targeting cyclin E2 

is extensively suppressed in conjunctival MALT lymphoma (Cai et al., 2012). Before applying the SPLPMDA, we removed the 

information of all known miRNAs associated with lymphoma. When we apply SPLPMDA for potential miRNA-lymphoma association 

estimation, the top 30 candidate miRNAs in order of score are shown in table 2. 

4. Discussion 

 

It has been explained in many studies that non-protein-coding miRNAs cause many human diseases and miRNAs have been shown to 

affect many biological processes (Bartel, 2009; Xing Chen et al., 2018; Lan et al., 2018; Tang et al., 2019). For this reason, it is very 

important to know the relationships between miRNAs and diseases. However, finding new relationships with conventional 

experimental methods is time consuming and costly. In this research, we used space projection and label propagation to discover 

possible relationships between miRNAs and diseases. To evaluate the SPLPMDA’s forecast performance 5-fold cross validation and 

LOOCV techniques were used, and 0.9333 AUC value and 0.9441 AUC value were gotten, respectively. When we compared 

SPLPMDA with NDAMDA, MCMDA, NSEMDA, BNPMDA, MDHGI, and WBSMDA, we obtained better prediction performance 

in both 5-fold cross-validation and LOOCV. In addition, the predictive performance of SPLPMDA was also evaluated by two case 

studies on breast cancer and lymphoma diseases. When the first 30 candidate miRNAs obtained as a result of the case study on breast 

cancer and ranked according to their scores are examined in detail, it is seen that 29 miRNAs are associated with breast cancer. As a 

result of the case study on lymphoma, candidate miRNAs were also ranked according to their scores. When the first 30 miRNAs were 

investigated in detail, it was seen that 29 miRNAs were associated with lymphoma. Candidate miRNAs from case studies on breast 

cancer and lymphoma were validated with HMDD and dbDEMC databases. Consequently, SPLPMDA is a powerful technique for 

identifying possible miRNA-disease associations without costly laboratory testing. 

 

Table 1. Prediction of the top 30 predicted miRNAs 

associated with breast neoplasms  

Table 2. Prediction of the top 30 predicted miRNAs 

associated with lymphoma 

hsa-mir-1245a HMDD  hsa-mir-21 HMDD; dbDEMC 

hsa-mir-1245b HMDD  hsa-mir-155 HMDD; dbDEMC 

hsa-mir-1323 HMDD  hsa-mir-17 HMDD 

hsa-mir-1469 HMDD  hsa-mir-20a HMDD; dbDEMC 

hsa-mir-181 unconfirmed 
 hsa-mir-146a HMDD; dbDEMC 

hsa-mir-2355 HMDD  hsa-mir-19b HMDD 

hsa-mir-3130 HMDD  hsa-mir-18a HMDD 

hsa-mir-3186 HMDD  hsa-mir-92a HMDD 

hsa-mir-4257 HMDD  hsa-mir-19a HMDD 

hsa-mir-4306 HMDD  hsa-mir-16 HMDD 

hsa-mir-718 HMDD; dbDEMC  hsa-mir-15a HMDD 

hsa-mir-320e HMDD  hsa-mir-126 HMDD 
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Table 1 (cont.). Prediction of the top 30 predicted 

miRNAs associated with breast neoplasms  

Table 2 (cont.).  Prediction of the top 30 predicted 

miRNAs associated with lymphoma 

hsa-mir-450a HMDD  hsa-mir-125b dbDEMC 

hsa-mir-450b HMDD  hsa-mir-34a dbDEMC 

hsa-mir-1915 HMDD  hsa-mir-145 dbDEMC 

hsa-mir-1258 HMDD  hsa-mir-200b HMDD 

hsa-mir-200 HMDD  hsa-mir-181a HMDD; dbDEMC 

hsa-mir-505 HMDD; dbDEMC  hsa-mir-29c HMDD 

hsa-mir-632 HMDD  hsa-mir-221 HMDD; dbDEMC 

hsa-mir-1471 HMDD  hsa-mir-200a HMDD 

hsa-mir-922 HMDD  hsa-mir-29a dbDEMC 

hsa-mir-510 HMDD  hsa-mir-29b HMDD; dbDEMC 

hsa-mir-661 HMDD  hsa-mir-150 HMDD; dbDEMC 

hsa-mir-202 HMDD; dbDEMC  hsa-mir-24 unconfirmed 

hsa-mir-298 HMDD  hsa-mir-200c HMDD 

hsa-mir-411 HMDD  hsa-mir-210 HMDD 

hsa-mir-516b HMDD  hsa-mir-101 HMDD; dbDEMC 

hsa-mir-526a HMDD  hsa-mir-203 HMDD 

hsa-mir-301b HMDD  hsa-mir-125a HMDD; dbDEMC 

hsa-mir-515 HMDD  hsa-mir-223 dbDEMC 
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