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Abstract: In this paper we introduce symmetric bi-derivations in Krasner hyperrings and give its some basic properties.  
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Hiperhalkalarda Simetrik İkili Türevler 

 

Özet. Bu çalışmada Krasner hiperhalkalarda  simetrik ikili türevi tanımlayarak bazı temel özelliklerini incelemeye çalıştık. 

 

Anahtar Kelimeler: Krasner hiperhalka, simetrik ikili türev 

 

1. INTRODUCTION 

The theory of hyperstructures was introduced in 1934 by Marty at the 8th congress Scandinavian 

Mathematicians. Then several researchers have worked on this new field and developed it. Mittas 

introduced the notion of canonical hypergroups. Corsini studied the Canonical Hypergroups, Feebly 

Canonical Hypergroups, Quasi-Canonical Hypergroups. Krasner introduced the notion of hyperrings 

and hyperfields. G. G. Massouros introduced the theory of hypercompositional structures into the theory 

of automata. Asokkumar studied the idempotent elements of Krasner hyperrings. Babaei et al. studied 

𝑅-parts in hyperrings. The notion of derivations of rings plays a significant role in algebra. The study of 

derivations in rings got interested after Posner [14], who gave striking results on derivations of prime 

rings. Then the notion of derivations has been developed by many authors in various directions like 

Jordan derivation, generalized derivation in rings and near-rings. In 1980, Gy. Maksa [9] introduced the 

concept of a symmetric biderivation on a ring R (see also [10],where an example can be seen). It was 

shown in [10] that symmetric biderivations are related to general solution of some functional equations. 

Some results on a symmetric biderivation in prime and semiprime rings can be found in [16] and [17].  

From the motivation of derivations, Vougiouklis introduced a hyperoperation called theta 

hyperoperation and studied 𝐻𝜗-structures in [15]. Jan Chvalina et al. [8], introduced a hyperoperation * 

on a differential ring 𝑅 so that (𝑅,∗) is a hypergroup. In [2], the author  introduced derivations in Krasner 

hyperrings and give examples. Also he derived some basic properties of derivations.  

In this paper, we introduce symmetric bi-derivations in Krasner hyperrings and give its some basic 

properties. 
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2. PRELIMINARIES 

 

This section explains some basic definitions that have been used in the sequel. A hyperoperation * 

on a non-empty set 𝐻 is a mapping of 𝐻 × 𝐻 into the family of non-empty subsets of 𝐻 ( i. e. 𝑥 ∗

𝑦 ⊆ 𝐻 for every 𝑥, 𝑦 ∈ 𝐻 ). In the sense of Marty, a hypergroup (𝐻,∗) is a non-empty set 𝐻 

equipped with a hyperoperation * which satisfies the following axioms:   

 

(i) 𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧 for every 𝑥, 𝑦, 𝑧 ∈ 𝐻 ( the associative axiom ) 

(ii) 𝑥 ∗ 𝐻 = 𝐻 ∗ 𝑥 = 𝐻 for every 𝑥 ∈ 𝐻 ( the reproductive axiom ). 

The comprehensive review of the theory of hypergroups appears in [4].  

Definition 1 A non-empty subset 𝑅 with a hyperaddition + and a multiplication ∙ is called an 

additive hyperring or Krasner hyperring if it satisfies the following: 

(1) (𝑅, +) is a canonical hypergroup, i. e., 

(i) for every 𝑥, 𝑦, 𝑧 ∈ 𝑅, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧), 

(ii)for every 𝑥, 𝑦 ∈ 𝑅, 𝑥 + 𝑦 = 𝑦 + 𝑥, 

(iii)there exists 0 ∈ 𝑅 such that 0 + 𝑥 = 𝑥 for all 𝑥 ∈ 𝑅, 

(iv)for every 𝑥 ∈ 𝑅 there exists an unique-element denoted by −𝑥 ∈ 𝑅 such that 0 ∈ 𝑥 +

(−𝑥), 

(v)for every 𝑥, 𝑦, 𝑧 ∈ 𝑅, 𝑧 ∈ 𝑥 + 𝑦 implies 𝑦 ∈ −𝑥 + 𝑧 and 𝑥 ∈ 𝑧 − 𝑦. 

(2) (𝑅, . ) is a semigroup having 0 as a bilaterally absorbing elemet, i. e., 

(i)for every 𝑥, 𝑦, 𝑧 ∈ 𝑅, (𝑥. 𝑦). 𝑧 = 𝑥. (𝑦. 𝑧), 

(ii)𝑥. 0 = 0. 𝑥 = 0 for all 𝑥 ∈ 𝑅, 

(3) The multiplication ∙ is distributive  with respect to the hyperoperation +, i. e., for every 

𝑥, 𝑦, 𝑧 ∈ 𝑅, 𝑥. (𝑦 + 𝑧) = 𝑥. 𝑦 + 𝑥. 𝑧 and (𝑥 + 𝑦). 𝑧 = 𝑥. 𝑧 + 𝑦. 𝑧. 

 

A non-empty subset 𝐼 of a canonical hypergroup 𝑅 is called a canonical subhypergroup of 𝑅 if 𝐼 

itself is a canonical hypergroup under the same hyperoperation as that of 𝑅. Equivalently, a non-

empty subset 𝐼 of a canonical hypergroup 𝑅 is a canonical subhypergroup of 𝑅 if for every 𝑥, 𝑦 ∈ 𝐼, 

𝑥 − 𝑦 ⊆ 𝐼. Here after we denote 𝑥𝑦 instead of 𝑥. 𝑦. Moreover, for 𝐴, 𝐵 ⊆ 𝑅 and 𝑥 ∈ 𝑅, by 𝐴 + 𝐵 

we mean the set ⋃ (𝑎 + 𝑏)𝑎∈𝐴,𝑏∈𝐵  and 𝐴𝐵 = ⋃ (𝑎𝑏)𝑎∈𝐴,𝑏∈𝐵 , 𝐴 + 𝑥 = 𝐴 + {𝑥}, 𝑥 + 𝐵 = {𝑥} + 𝐵 

and also −𝐴 = {−𝑎: 𝑎 ∈ 𝐴}.  

 

The following elementary facts in a hyperring easily follow from axioms: (i) −(−𝑎) = 𝑎 for every 

𝑎 ∈ 𝑅; (ii) 0 is the unique element such that for every 𝑎 ∈ 𝑅, there is an element −𝑎 ∈ 𝑅 with the 

property 0 ∈ 𝑎 + (−𝑎) and −0 = 0; (iii) −(𝑎 + 𝑏) = −𝑎 − 𝑏 for all 𝑎, 𝑏 ∈ 𝑅; (iv) −(𝑎𝑏) =

(−𝑎)𝑏 = 𝑎(−𝑏) for all 𝑎, 𝑏 ∈ 𝑅.  

 

In a hyperring 𝑅, if there exists an element 1 ∈ 𝑅, such that 1𝑎 = 𝑎1 = 𝑎 for every 𝑎 ∈ 𝑅, then the 

element 1 is the called the identity element of the hyperring 𝑅. In fact, the element 1 is unique. 

Further, if 𝑎𝑏 = 𝑏𝑎 for every 𝑎, 𝑏 ∈ 𝑅 then the hyperring 𝑅 is called a commutative hyperring. 

Throughout this paper, by a hyperring we mean the Krasner hyperring. 

Example 1 The set 𝑅 = {0,1} with the following hyperoperations is a hyperring.  
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  {0}          {1} 
 

  {1}          {0,1} 

Definition 2 Let 𝑅 be a hyperring. A non-empty subset 𝑆 of 𝑅 is called a subhyperring of 𝑅 if 𝑥 −
𝑦 ⊆ 𝑆 and 𝑥𝑦 ∈ 𝑆 for all 𝑥, 𝑦 ∈ 𝑆. 

Definition 3 Let 𝑅 be a hyperring and 𝐼 be a non-empty subset of 𝑅. 𝐼 is called a left ( resp. right ) 

hyperideal of 𝑅 if (i) (𝐼, +) is a canonical subhypergroup of 𝑅, i. e., for every 𝑥, 𝑦 ∈ 𝐼, 𝑥 − 𝑦 ⊆ 𝐼 

and (ii) for every 𝑎 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑟𝑎 ⊆ 𝐼 ( resp. 𝑎𝑟 ⊆ 𝐼 ). A hyperideal of 𝑅 is one which is a left as 

well as a right hyperideal of 𝑅. 

Definition 4 A hyperring 𝑅 is said to be a prime hyperring if 𝑎𝑅𝑏 = 0 for 𝑎, 𝑏 ∈ 𝑅 implies either 

𝑎 = 0 or 𝑏 = 0. 

Definition 5 A hyperring 𝑅 is said to be a reduced hyperring if it has no nilpotent elements. That 

is, if 𝑥𝑛 = 0 for all 𝑥 ∈ 𝑅 and a natural number 𝑛, then 𝑥 = 0. 

Definition 6 A hyperring 𝑅 is said to be 2-torsion free if 0 ∈ 𝑥 + 𝑥 for 𝑥 ∈ 𝑅 implies 𝑥 = 0.  

3. SYMMETRIC BI-DERIVATION OF HYPERRINGS AND EXAMPLES  

  

In this section we define symmetric bi-derivation and strong symmetric bi-derivation of 

hyperrings and give examples. 

 

Definition 7 Let 𝑅 be a hyperring. A mapping 𝐷: 𝑅 × 𝑅 → 𝑅 is called symmetric if 𝐷(𝑥, 𝑦) =

𝐷(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑅. 

Definition 8 Let 𝑅 be a hyperring. A map 𝐷: 𝑅 × 𝑅 → 𝑅 is said to be a symmetric bi-derivation 

of 𝑅 if 𝐷 satisfies: (i) 𝐷(𝑥 + 𝑧, 𝑦) ⊆ 𝐷(𝑥, 𝑦) + 𝐷(𝑧, 𝑦) and (ii) 𝐷(𝑥𝑧, 𝑦) ∈ 𝐷(𝑥, 𝑦)𝑧 + 𝑥𝐷(𝑧, 𝑦) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑅. 

The hyperring 𝑅 equipped with a symmetric bi-derivation 𝐷 is called a 𝐷-differential hyperring. 

If the map 𝐷 is such that 𝐷(𝑥 + 𝑧, 𝑦) = 𝐷(𝑥, 𝑦) + 𝐷(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑅 and satisfies the 

condition (ii), then 𝐷 is called a strong symmetric bi-derivation of 𝑅. In this case, the hyperring is 

called strongly 𝐷-differential hyperring.  

Proposition 1 Let 𝑅 be a hyperring and 𝐷: 𝑅 × 𝑅 → 𝑅 be a symmetric bi-derivation of 𝑅. Then  

(i) 𝐷(𝑎, 0) = 0, ∀𝑎 ∈ 𝑅 

(ii) 𝐷(−𝑎, 𝑏) = −𝐷(𝑎, 𝑏), ∀𝑎, 𝑏 ∈ 𝑅 

(iii) if 1 is the identity element of 𝑅, then 𝐷(1, 𝑎) ∈ 𝐷(1, 𝑎) + 𝐷(1, 𝑎), ∀𝑎 ∈ 𝑅 

Proof (i) 𝐷(𝑎, 0) = 𝐷(𝑎, 0.0) ∈ 𝐷(𝑎, 0)0 + 0𝐷(𝑎, 0) = 0 + 0 = 0, and so 𝐷(𝑎, 0) = 0. 

(ii) ∀𝑎, 𝑏 ∈ 𝑅, 0 = 𝐷(𝑎, 0) = 𝐷(𝑎, 𝑏 − 𝑏) ⊆ 𝐷(𝑎, 𝑏) + 𝐷(𝑎, −𝑏). That is, 𝐷(𝑎, 𝑏) ∈ 0 −

𝐷(𝑎, −𝑏). Hence 𝐷(𝑎, 𝑏) = −𝐷(𝑎, −𝑏). Therefore, −𝐷(𝑎, 𝑏) = −(−𝐷(𝑎, −𝑏)) = 𝐷(𝑎, −𝑏). 

(iii) 𝐷(1, 𝑎) = 𝐷(1.1, 𝑎) ∈ 𝐷(1, 𝑎). 1 + 1. 𝐷(1, 𝑎) = 𝐷(1, 𝑎) + 𝐷(1, 𝑎). That is, 𝐷(1, 𝑎) ∈

𝐷(1, 𝑎) + 𝐷(1, 𝑎). 

Example 2 Consider the hyperring 𝑅 = {0, 𝑎, 𝑏} with the hyperaddition and the multiplication 

defined as follow. 

.    0              1 
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  {0}          {0} 
 

  {0}          {1} 
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  +    0              𝑎                𝑏 

0 
 

𝑎 
 

   𝑏 

  {0}          {𝑎}             {𝑏} 
 

  {𝑎}          {𝑎, 𝑏}           𝑅 
 

  {𝑏}            𝑅             {𝑎, 𝑏} 

 

  .    0              𝑎                𝑏 

0 
 

𝑎 
 

    𝑏 

   0              0                0 
 

    0              𝑏                𝑎 

 

   0               𝑎               𝑏 

 

Define a map 𝐷: 𝑅 × 𝑅 → 𝑅 by 𝐷(0,0) = 0, 𝐷(𝑎, 0) = 𝐷(0, 𝑎) = 0, 𝐷(𝑏, 0) = 𝐷(0, 𝑏) = 0, 

𝐷(𝑎, 𝑎) = 𝑎, 𝐷(𝑎, 𝑏) = 𝐷(𝑏, 𝑎) = 𝑏, 𝐷(𝑏, 𝑏) = 𝑎. Clearly, 𝐷 is a symmetric bi-derivation of 𝑅. 

Here 𝐷 is a strong symmetric bi-derivation of 𝑅. 

Example 3 Let 𝑅 be a commutative hyperring and 𝑀(𝑅) = {(
𝑎 0
𝑏 0

) : 𝑎, 𝑏 ∈ 𝑅} be a collection of 

2 × 2 matrices over 𝑅. A hyperaddition ⨁ is defined on 𝑀(𝑅) by (
𝑎 0
𝑏 0

) ⊕ (
𝑐 0
𝑑 0

) =

{(
𝑥 0
𝑦 0

) : 𝑥 ∈ 𝑎 + 𝑐, 𝑦 ∈ 𝑏 + 𝑑} for all (
𝑎 0
𝑏 0

) , (
𝑐 0
𝑑 0

) ∈ 𝑀(𝑅). Clearly, this hyperaddition is 

well-defined and (𝑀(𝑅),⊕) is a canonical hypergroup. The matrix (
0 0
0 0

) is the additive identity 

of 𝑀(𝑅). Also, for each matrix (
𝑎 0
𝑏 0

) ∈ 𝑀(𝑅), there exists a unique matrix (
−𝑎 0
−𝑏 0

) ∈ 𝑀(𝑅) 

such that (
0 0
0 0

) ∈ (
𝑎 0
𝑏 0

) ⨁ (
−𝑎 0
−𝑏 0

).  

Now, a multiplication ⊗ is defined on 𝑀(𝑅) by (
𝑎 0
𝑏 0

) ⊗ (
𝑐 0
𝑑 0

) = (
𝑎𝑐 0
𝑏𝑐 0

) for all 

(
𝑎 0
𝑏 0

) , (
𝑐 0
𝑑 0

) ∈ 𝑀(𝑅). Clearly, the multiplication ⊗ is well-defined and associative. 

Therefore, (𝑀(𝑅),⊗) is a semigroup. 

Let (
𝑎 0
𝑏 0

) , (
𝑥 0
𝑦 0

) , (
𝑝 0
𝑞 0

) ∈ 𝑀(𝑅). Then  

(
𝑎 0
𝑏 0

) ⊗ {(
𝑥 0
𝑦 0

) ⊕ (
𝑝 0
𝑞 0

)} = (
𝑎 0
𝑏 0

) ⊗ {(
𝑟 0
𝑠 0

) : 𝑟 ∈ 𝑥 + 𝑝, 𝑠 ∈ 𝑦 + 𝑞}

= {(
𝑎𝑟 0
𝑏𝑟 0

) : 𝑟 ∈ 𝑥 + 𝑝, 𝑠 ∈ 𝑦 + 𝑞} 

                                                                      

and  

{(
𝑎 0
𝑏 0

) ⊗ (
𝑥 0
𝑦 0

)} ⊕ {(
𝑎 0
𝑏 0

) ⊗ (
𝑝 0
𝑞 0

)} = (
𝑎𝑥 0
𝑏𝑥 0

) ⊕ (
𝑎𝑝 0
𝑏𝑝 0

)

=  {(
𝑙 0

𝑚 0
) : 𝑙 ∈ 𝑎𝑥 + 𝑎𝑝, 𝑚 ∈ 𝑏𝑥 + 𝑏𝑝} 

Hence, we get 

(
𝑎 0
𝑏 0

) ⊗ {(
𝑥 0
𝑦 0

) ⊕ (
𝑝 0
𝑞 0

)} = {(
𝑎 0
𝑏 0

) ⊗ (
𝑥 0
𝑦 0

)} ⊕ {(
𝑎 0
𝑏 0

) ⊗ (
𝑝 0
𝑞 0

)}.   

Similarly, we have  

{(
𝑥 0
𝑦 0

) ⊕ (
𝑝 0
𝑞 0

)} ⊗ (
𝑎 0
𝑏 0

) = {(
𝑥 0
𝑦 0

) ⊗ (
𝑎 0
𝑏 0

)} ⊕ {(
𝑝 0
𝑞 0

) ⊗ (
𝑎 0
𝑏 0

)}.  

Thus, 𝑀(𝑅) is a Krasner hyperring.  

Now define a function 𝐷 on 𝑀(𝑅) by 𝐷 ((
𝑎 0
𝑏 0

) , (
𝑐 0
𝑑 0

)) = (
0 0

𝑎𝑐 0
). Clearly, this map is 

well-defined and symmetric. Let us show that 𝐷 is a symmetric bi-derivation. For all 

(
𝑎 0
𝑏 0

) , (
𝑐 0
𝑑 0

) , (
𝑒 0
𝑓 0

) ∈ 𝑀(𝑅), 

𝐷 ((
𝑎 0
𝑏 0

) ⊕ (
𝑒 0
𝑓 0

) , (
𝑐 0
𝑑 0

)) = 𝐷 ({(
𝑟 0
𝑠 0

) : 𝑟 ∈ 𝑎 + 𝑒, 𝑠 ∈ 𝑏 + 𝑓} , (
𝑐 0
𝑑 0

)) 
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                                                             ={(
0 0
𝑟𝑐 0

) : 𝑟 ∈ 𝑎 + 𝑒} 

  and  

𝐷 ((
𝑎 0
𝑏 0

) , (
𝑐 0
𝑑 0

)) ⊕ 𝐷 ((
𝑒 0
𝑓 0

) , (
𝑐 0
𝑑 0

)) = (
0 0

𝑎𝑐 0
) ⨁ (

0 0
𝑒𝑐 0

) 

                                                             ={(
0 0
𝑙 0

) : 𝑙 ∈ 𝑎𝑐 + 𝑒𝑐} . 

Also, 

𝐷 ((
𝑎 0
𝑏 0

) ⊗ (
𝑒 0
𝑓 0

) , (
𝑐 0
𝑑 0

)) = 𝐷 ((
𝑎𝑒 0
𝑏𝑒 0

) , (
𝑐 0
𝑑 0

)) = (
0 0

(𝑎𝑒)𝑐 0
) 

and 

{𝐷 ((
𝑎 0
𝑏 0

) , (
𝑐 0
𝑑 0

)) ⊗ (
𝑒 0
𝑓 0

)} ⊕ {(
𝑎 0
𝑏 0

) ⊗ 𝐷 ((
𝑒 0
𝑓 0

) , (
𝑐 0
𝑑 0

))}

= {(
0 0

𝑎𝑐 0
) ⊗ (

𝑒 0
𝑓 0

)} ⨁ {(
𝑎 0
𝑏 0

) ⊗ (
0 0
𝑒𝑐 0

)} = (
0 0

(𝑎𝑐)𝑒 0
) ⨁ (

0 0
0 0

)

= (
0 0

(𝑎𝑐)𝑒 0
). 

 

Definition 9 Let 𝑅 be a hyperring and 𝐷: 𝑅 × 𝑅 → 𝑅 be a symmetric map. A mapping 𝑑: 𝑅 → 𝑅 

defined by 𝑑(𝑥) = 𝐷(𝑥, 𝑥) is called the trace of 𝐷. 

It is obvious that, in case 𝐷: 𝑅 × 𝑅 → 𝑅 be a symmetric mapping which is also bi-additive ( i. e. 

hyperadditive in both arguments ), the trace of 𝐷 satisfies the relation 

𝑑(𝑥 + 𝑦) = 𝐷(𝑥 + 𝑦, 𝑥 + 𝑦) ⊆ 𝑑(𝑥) + 𝐷(𝑥, 𝑦) + 𝐷(𝑥, 𝑦) + 𝑑(𝑦) 

and 𝑑(0) = 𝐷(0,0) = 0. If 𝐷 is strong symmetric bi-derivation, we have  
𝑑(𝑥 + 𝑦) = 𝑑(𝑥) + 𝐷(𝑥, 𝑦) + 𝐷(𝑥, 𝑦) + 𝑑(𝑦) 

Also 𝑑(−𝑥) = −𝑑(𝑥). Indeed,  

0 = 𝑑(0) = 𝑑(𝑥 + (−𝑥)) ⊆ 𝑑(𝑥) + 𝐷(𝑥, −𝑥) + 𝐷(𝑥, −𝑥) + 𝑑(−𝑥) = −𝑑(𝑥) + 𝑑(−𝑥), hence 

𝑑(−𝑥) ∈ 0 − (−𝑑(𝑥)). That is, 𝑑(−𝑥) = 𝑑(𝑥). 

Proposition 2 Let 𝑅 be a hyperring, 𝐷 be a symmetric bi-derivation of 𝑅 and 𝑎 be a fixed 

element of 𝑅. Then 𝑆 = {𝑥 ∈ 𝑅: 𝐷(𝑥, 𝑎) = 0} is a subhyperring of 𝑅. 

Proof Since 𝐷(0, 𝑎) = 0, we get 𝑆 is non-empty. Let 𝑥, 𝑦 ∈ 𝑆. Then 𝐷(𝑥, 𝑎) = 0 and 𝐷(𝑦, 𝑎) = 0. 

Now, 𝐷(𝑥 + 𝑦, 𝑎) ⊆ 𝐷(𝑥, 𝑎) + 𝐷(𝑦, 𝑎) = 0. Further, for any 𝑥 ∈ 𝑆, 𝐷(−𝑥, 𝑎) = −𝐷(𝑥, 𝑎) = 0. 
Also, 𝐷(𝑥𝑦, 𝑎) ∈ 𝐷(𝑥, 𝑎)𝑦 + 𝑥𝐷(𝑦, 𝑎) = 0. Thus for any 𝑥, 𝑦 ∈ 𝑆,  𝑥 + 𝑦 ⊆ 𝑆, −𝑥 ∈ 𝑆, 𝑥𝑦 ∈ 𝑆. 

So 𝑆 is a subhyperring of 𝑅. 

 

Proposition 3 Let 𝐷 be a symmetric bi-derivation of a prime hyperring 𝑅 and 𝑎 ∈ 𝑅 such that 

𝑎𝐷(𝑥, 𝑦) = 0 ( or 𝐷(𝑥, 𝑦)𝑎 = 0 ) for all 𝑥, 𝑦 ∈ 𝑅. Then either 𝑎 = 0 or 𝐷 = 0.  

 

 

Proof Let 𝑥, 𝑦, 𝑧 ∈ 𝑅. Suppose 𝑎𝐷(𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑅, then  

0 = 𝑎𝐷(𝑥𝑧, 𝑦) ∈ 𝑎𝑥𝐷(𝑧, 𝑦) + 𝑎𝐷(𝑥, 𝑦)𝑧 = 𝑎𝑥𝐷(𝑧, 𝑦). 

Thus, 𝑎𝑥𝐷(𝑧, 𝑦) = 0. Since 𝑅 be a prime hyperring, 𝑎 = 0 or 𝐷(𝑧, 𝑦) = 0. If 𝑎 ≠ 0, then 

𝐷(𝑧, 𝑦) = 0. That is, 𝐷 = 0.  

Suppose 𝐷(𝑥, 𝑦)𝑎 = 0 for all 𝑥, 𝑦 ∈ 𝑅, then  

0 = 𝐷(𝑥𝑧, 𝑦)𝑎 ∈ 𝑥𝐷(𝑧, 𝑦)𝑎 + 𝐷(𝑥, 𝑦)𝑧𝑎 = 𝐷(𝑥, 𝑦)𝑧𝑎. 

 Thus, 𝐷(𝑥, 𝑦)𝑧𝑎 = 0. Since 𝑅 be a prime hyperring, 𝑎 = 0 or 𝐷(𝑥, 𝑦) = 0. If 𝑎 ≠ 0, then 

𝐷(𝑥, 𝑦) = 0. That is, 𝐷 = 0. 
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Proposition 4 Let 𝐷 be a strong symmetric bi-derivation with trace 𝑑 of 2-torsion free prime 

hyperring 𝑅 and 𝑎 ∈ 𝑅 such that 𝑎𝑑(𝑥) = 0 ( or 𝑑(𝑥)𝑎 = 0 ) for all 𝑥 ∈ 𝑅. Then either 𝑎 = 0 or 

𝐷 = 0.  

 

Proof Suppose 𝑎𝑑(𝑥) = 0 for all 𝑥 ∈ 𝑅. Then for all 𝑦 ∈ 𝑅,  

0 = 𝑎𝑑(𝑥 + 𝑦) = 𝑎𝑑(𝑥) + 𝑎𝐷(𝑥, 𝑦) + 𝑎𝐷(𝑥, 𝑦) + 𝑎𝑑(𝑦) = 𝑎𝐷(𝑥, 𝑦) + 𝑎𝐷(𝑥, 𝑦). 

For all 𝑧 ∈ 𝑅, 

0 = 𝑎𝐷(𝑥𝑧, 𝑦) + 𝑎𝐷(𝑥𝑧, 𝑦) ∈ 𝑎𝐷(𝑥, 𝑦)𝑧 + 𝑎𝑥𝐷(𝑧, 𝑦) + 𝑎𝐷(𝑥, 𝑦)𝑧 + 𝑎𝑥𝐷(𝑧, 𝑦) 

                    = 𝑎𝑥𝐷(𝑧, 𝑦) + 𝑎𝑥𝐷(𝑧, 𝑦)   

Since 𝑅 is 2-torsion free, we get 𝑎𝑥𝐷(𝑧, 𝑦) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑅. Since 𝑅 be a prime hyperring, 

𝑎 = 0 or 𝐷(𝑧, 𝑦) = 0. If 𝑎 ≠ 0, then 𝐷(𝑧, 𝑦) = 0. That is, 𝐷 = 0. 

 

Theorem 1 Let 𝐷 be a strong symmetric bi-derivation of 2-torsion free reduced hyperring 𝑅. If 

𝐷(𝐷(𝑥, 𝑦), 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑅, then 𝐷 = 0. 

 

Proof Let 𝐷(𝐷(𝑥, 𝑦), 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑅. Replacing 𝑥 by 𝑥𝑧, 𝑧 ∈ 𝑅, we get 

0 = 𝐷(𝐷(𝑥𝑧, 𝑦), 𝑦) ∈ 𝐷(𝐷(𝑥, 𝑦)𝑧 + 𝑥𝐷(𝑧, 𝑦), 𝑦) = 𝐷(𝐷(𝑥, 𝑦)𝑧, 𝑦) + 𝐷(𝑥𝐷(𝑧, 𝑦), 𝑦)
∈ 𝐷(𝑥, 𝑦)𝐷(𝑧, 𝑦) + 𝐷(𝐷(𝑥, 𝑦), 𝑦)𝑧 + 𝑥𝐷(𝐷(𝑧, 𝑦), 𝑦) + 𝐷(𝑥, 𝑦)𝐷(𝑧, 𝑦), 

From here, 0 ∈ 𝐷(𝑥, 𝑦)𝐷(𝑧, 𝑦) + 𝐷(𝑥, 𝑦)𝐷(𝑧, 𝑦). Since 𝑅 is 2-torsion free hyperring, we have 

𝐷(𝑥, 𝑦)𝐷(𝑧, 𝑦) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑅. If we take 𝑥 instead of 𝑧, we get (𝐷(𝑥, 𝑦))
2

= 0 for all 

𝑥, 𝑦 ∈ 𝑅. Since 𝑅 is reduced hyperring, we have 𝐷(𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑅. That is, 𝐷 = 0. 

 

Definition 10 Let 𝐷 be a non-trivial symmetric bi-derivation ( resp. strong symmetric bi-

derivation ) of a hyperring 𝑅. A hyperideal 𝐼 of 𝑅 is said to be a 𝐷-differential ( resp. strongly 𝐷-

differential ) hyperideal of 𝑅, if 𝐷(𝐼, 𝐼) ⊆ 𝐼. 

 

Remark 1 ([2]) Let 𝑆 be a non-empty subset of a hyperring 𝑅. The set 𝐴𝑛𝑛𝑙(𝑆) = {𝑥 ∈ 𝑅: 𝑥𝑆 = 0} 

is called the left annihilator of 𝑆 in 𝑅. Similarly, we have the right annihilator 𝐴𝑛𝑛𝑟(𝑆) of 𝑆 in 𝑅. 

In a reduced hyperring 𝑅, if 𝑎𝑏 = 0 for all 𝑎, 𝑏 ∈ 𝑅, then 𝑏𝑎 = 0 and therefore, there is no 

distinction from a left annihilator of 𝑆 and a right annihilator of 𝑆 in 𝑅. In this case, we just call it 

by the annihilator of 𝑆 in 𝑅 and is denoted by 𝐴𝑛𝑛(𝑆). The following results of reduced hyperrings 

follows from [1]. 

 

Proposition 5 ([2]) Let 𝑅 be a reduced hyperring. (i) If 𝑆 is a non-empty subset of 𝑅, then 𝐴𝑛𝑛(𝑆) 

is a hyperideal of 𝑅. (ii) If 𝑆1 and 𝑆2 are subsets of 𝑅 such that 𝑆1 ⊆ 𝑆2, then 𝐴𝑛𝑛(𝑆2) ⊆ 𝐴𝑛𝑛(𝑆1). 

Corollary 1 Let 𝑅 be a reduced hyperring and 𝐼 be a 𝐷-differential hyperideal of 𝑅, then 𝐴𝑛𝑛(𝐼) ⊆

𝐴𝑛𝑛(𝐷(𝐼, 𝐼)). 

 

Proof Since 𝐼 is a 𝐷-differential hyperideal of 𝑅, we have 𝐷(𝐼, 𝐼) ⊆ 𝐼. From Proposition 5, we have 

𝐴𝑛𝑛(𝐼) ⊆ 𝐴𝑛𝑛(𝐷(𝐼, 𝐼)). 

 

Theorem 2 Let 𝐷 be a symmetric bi-derivation of a reduced hyperring 𝑅. Then for any subset 𝑆 of 

𝑅, 𝐷(𝐴𝑛𝑛(𝑆), 𝐴𝑛𝑛(𝑆)) ⊆ 𝐴𝑛𝑛(𝑆). 

 

Proof If 𝑥, 𝑦 ∈ 𝐴𝑛𝑛(𝑆), 𝑆𝑥 = 0 and 𝑆𝑦 = 0. Now for 𝑠 ∈ 𝑆, 0 = 𝐷(𝑠𝑥, 𝑦) ∈ 𝐷(𝑠, 𝑦)𝑥 + 𝑠𝐷(𝑥, 𝑦). 

Multiplying by 𝑠 from the right, we get 0 ∈ 𝐷(𝑠, 𝑦)𝑥𝑠 + 𝑠𝐷(𝑥, 𝑦)𝑠. Hence we have 𝑠𝐷(𝑥, 𝑦)𝑠 =

0. And so, (𝑠𝐷(𝑥, 𝑦))
2

= 0. Since 𝑅 is reduce hyperring, we get 𝑠𝐷(𝑥, 𝑦) = 0. That is, 𝐷(𝑥, 𝑦) ∈

𝐴𝑛𝑛(𝑆). This means that 𝐷(𝐴𝑛𝑛(𝑆), 𝐴𝑛𝑛(𝑆)) ⊆ 𝐴𝑛𝑛(𝑆).  

 

Example 4 Consider the reduced hyperring 𝑅 = {0, 𝑎, 𝑏, 𝑐} with the hyperaddition ⨁ and the 

multiplication ⨀ defined as follows. 
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  +    0             𝑎            𝑏         c 

0 
 

𝑎 
 

   𝑏 
    

   c 

  {0}         {𝑎}           {𝑏}      {𝑐} 
 

  {𝑎}       {0, 𝑏}       {𝑎, 𝑐}      {𝑏} 
 

  {𝑏}      {𝑎, 𝑐}      {0, 𝑏}     {𝑎}     
 

  {𝑐}         {𝑏}         {𝑎}       {0} 

 

  .    0          𝑎          𝑏        c 

0 
 

𝑎 
 

    𝑏 
 

    c 

 {0}        {0}      {0}     {0} 
 

  {0}       {𝑎}      {𝑏}     {𝑐} 
 

  {0}       {𝑏}       {𝑏}      {0}    
 

  {0}       {𝑐}       {0}      {𝑐}       
 

It is clear that the map 𝐷: 𝑅 × 𝑅 → 𝑅 defined by 𝐷(𝑎, 𝑎) = 𝐷(𝑏, 𝑏) = 𝐷(𝑎, 𝑏) = 𝐷(𝑏, 𝑎) = 𝑏  

and 𝐷(𝑥, 𝑦) = 0 if 𝑥, 𝑦 in the other cases, is a symmetric bi-derivation of 𝑅. 

Now, 𝐴𝑛𝑛(0, 𝑏) = {0, 𝑐} is a hyperideal of 𝑅. Since 𝐷(𝐴𝑛𝑛(0, 𝑏), 𝐴𝑛𝑛(0, 𝑏)) =
𝐷({0, 𝑐}, {0, 𝑐}) = {0} ⊆ 𝐴𝑛𝑛(0, 𝑏), we see that 𝐴𝑛𝑛(0, 𝑏) is a 𝐷-differential hyperideal of 𝑅. 
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