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Abstract 

Energy planning in a hydro power station (HPS) is essential for reservoir management, and to ensure 

efficient operation and financial usage. For robust energy planning, operators should estimate next day 

energy generation capacity correctly. This paper investigates use of a robust neural network model to 

estimate maximum next day energy generation capacity by using reservoir inflow rates for the previous 

four days, the current level of water in the reservoir, and the weather forecast for the Darıca-2 HPS in Ordu 

Province, Turkey. The generated energy in an HPS is directly dependent on the level of stored water in the 

reservoir, which depends on reservoir inflow. As the level of water in a reservoir varies during the year 

depending on climatic conditions, it is important to be able to estimate energy generation in an HPS to 

operate the HPS most effectively. This paper uses reservoir inflow data that has been collected daily during 

2020 for the training phase of a neural network. The neural network is tested using a data set that has been 

collected daily during the first four months of 2021. Used neural network structure is called as LWNRBF 

(Linear Weighted Normalized Radial Basis Function) network, which is developed form of RBF network. 

In order to be able to be created valid model, LWNRBF network is trained with a two-pass hybrid training 

algorithm.  After the training and testing stages, average training and testing error percentages have been 

obtained as 0.0012% and -0.0044% respectively 

 

Keywords: Hydro-electric power generation, hydropower generation, neural network, reservoir inflow, 

renewable energy sources 

1. Introduction 

 
Although electrical energy is a clean form of energy, 

some electrical energy generation methods such as 

nuclear and thermoelectric plants have negative 

environmental effects. The most important negative 

effect in electrical energy generation is global warming 

due to the use of fossil fuels that cause unwanted CO2 

emission, especially in thermoelectric plants. Annual 

CO2 emission due to use of fossil fuels is about 32.8 

billion tons [1,2]. In order to reduce the effects of global 

warming, the most effective way is to use renewable 

energy sources such as hydro-electric, with hydropower 

stations being one of the most commonly used renewable 

energy sources. Globally, the hydropower industry meets 

about 17% of the world's electricity demand [3,4].  

Today HPSs are among the most cost-effective means of 

generating electricity [5]. The general structure of an 

HPS is given in Fig.1 [6]. 

 

  

 

Figure 1. General structure of a hydropower station. 
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Generally, HPSs can be categorized into three groups 

depending on their function; storage, run-of-the-river, 

and pumped-storage technologies. HPSs can also be 

grouped by size; small, medium and large [7]. A small 

size HPS has a capacity less 10MW. Capacity of a 

medium size HPS is between 10 and 100MW for run-of-

the river type and between 100 and 300MW for reservoir 

type HPS. A large-scale hydropower station capacity is 

greater than 300 MW [8]. 

 

Optimization of energy generation and planning 

processes depends on many parameters such as the 

technology, physical features, environmental features, 

losses (mechanic, electrical, hydraulic), and load 

demand. Optimization of several processes in an HPS 

using neural network structures and regression models 

have been investigated [9–11]. This includes predicting 

reservoir inflow and reservoir flow. Models include 

climatology of historical flow observations and pre-dam 

storage volumes [12–14]. 

 

Most HPSs have been established on rivers, as HPSs need 

a reliable water supply. This requires planning due to 

scarcity of water, population, and increasing energy 

demand [15]. Proper management and planning 

approaches are essential for efficient utilization of an 

HPS. 

 

The paper is structured as follows: review of academic 

literature on studies of optimization of energy generation 

and planning; introduction of case study; methodology; 

conclusions and suggestions for further research. 

 

2. Literature Review 

 

Optimization of energy generation and planning 

processes in an HPS is an important and complex 

problem in terms of technological, economic, physical, 

and environmental aspects. This study focuses on the 

energy generation stage in a hydropower station. Most 

solutions for power optimization can be divided in two 

groups (i) optimization of reservoir operation and (ii) 

scheduling the water flow [16]. However, optimization in 

this field includes many uncertainties such as 

unpredictable future demand, water flow, climate 

conditions, and economic factors. However, the 

generated energy is directly related to the power 

produced at the turbine shaft by water pressure. This 

mechanical power, P can be estimated as (1) [17]. 

                               

                           𝑃 = 𝜂𝑡𝜌𝑤𝑔𝑄ℎ                             (2.1) 

where 

ηt  = hydraulic efficiency of the turbine 

ρw  = density of water 

g  = acceleration due to gravity 

Q  = discharge of water acting on the turbine 

h  = head of water acting on the turbine 

As seen in (1), the power produced at the generator shaft 

depends directly on the flow of the water. As the only 

energy input to the HPS is water flow, management of 

the water is essential for optimal operation of the HPS. 

Ren et al. investigated management of water resources 

and its impact on optimal hydropower generation [18]. 

They suggested an algorithm for resolving optimization 

problems in the management of the reservoir and 

hydropower generation. Huangpeng et al. used a neural 

network model to predict future hydropower generation 

under the influence of climate change [19]. Wang et al. 

developed a neural network model that includes water 

storage, water inflow, monthly water inventory, monthly 

reservoir level, and average water consumption for 

electricity generation as inputs to predict energy 

generation of an HPS [20]. 
 

Optimization of reservoir operation has been extensively 

studied in the literature; often referred as operating rules. 

Jia et al. used a Bayesian based method to determine the 

operating rules for hydropower reservoirs. They used 

129-annual flow records as input to obtain the optimal 

operation trajectories [9]. Optimization of reservoir 

operation is also important for efficient use of the water 

supply. Li et al. redesigned the operating rules of a 

reservoir to satisfy the demand for lake water in a real-

world case by using a form of genetic algorithm [21]. 

Their method reduced use of lake water by 5% and 

improved hydropower generation and hydropower 

reliability by 3.9% and 8.3%, respectively. 
 

When hydropower stations are established on the same 

river, they act in a cascade, which requires more complex 

optimization strategies. Feng et al. proposed an adaptive 

sine cosine algorithm for optimization of multiple 

hydropower reservoirs [22], applying their proposed 

method to a hydropower system in China; claiming that 

their method would be suitable for similar problems in 

other research fields. Emami et al. used machine learning 

with a hybrid constrained coral reefs optimization 

algorithm to optimize operation of multi-reservoir 

systems [23]. Li et al. proposed a multi-objective tangent 

algorithm for optimization of the operation rules of 

cascade reservoirs, with the main objective to maximize 

hydropower generation, ecology and navigation [24]. 
 

Neural networks are a useful tool for optimization in 

many engineering problems, including extensive use in 

every stage of HPS optimization. For example, Cai et al. 

used an artificial neural network to evaluate soil and 

water resources in power generation at HPSs [25]. 

Shanga et al. used a back propagation neural network for 

real-time forecasting of downstream water levels in a 

case study from China.[26] 
 

Recent studies have shown that, accurate reservoir inflow 

forecasting is also highly important for multi-purpose 

reservoir systems to improve on the economy of 

hydropower production. Olofintoyea et al. used a neural 

network model for real-time optimal water allocation in 

an HPS [27].  
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Yang et al. used a neural network model to predict inflow 

for real-time reservoir operation [28]. Hadiyan et al. used 

neural network structures to predict reservoir inflow [29], 

using several different models of static and dynamic 

artificial neural network structures in their study. Ahmad 

et al. used a neural network model that used short-term 

weather forecasts, historic hydrological data, and 

reservoir inflow as inputs to maximize hydropower 

generation [12]. Karunanayake et al. used a neural 

network with well-known learning algorithms 

(Levenberg–Marquardt, quasi-Newton, scaled conjugate 

gradient) to estimate reservoir inflow in a real-world case 

investigating future climate scenarios [30]. 

 

Although reservoir inflow estimation is a popular field in 

the literature, estimation of reservoir inflow is not an easy 

task due to the changing climate and human activity. 

However, these factors do not change rapidly over a 

period of days or months and robust methods for 

estimation of reservoir inflow for short time periods can 

be very useful for hourly or daily energy generation of an 

HPS. For example, Cheng et al. developed an artificial 

neural network model to estimate daily reservoir runoff 

[31]. Xu et al. used an artificial neural network to 

estimate short term reservoir inflow, achieving estimates 

of reservoir inflow for the forthcoming 1-7 hours [32]. 

Dampage et al. used a convolutional neural network to 

estimate daily reservoir inflow for an HPS [33]. 

 

Most studies using neural network models have been 

applied to real-world applications as each HPS has 

unique geographic, physical and seasonal properties and 

uncertainties. Ahmad et al. developed a web-based 

decision support system for the Detroit dam (Oregon) 

using weather forecasts to generate the daily optimized 

release decisions [34]. Liu et al. developed a Bayesian 

deep learning-based model that considered multiple 

uncertainties to derive operation rules for the Three 

Gorges Project on the Yangtze River [35]. 

 

Turkey is a developing country. Increasing energy 

demand and environmental considerations are making 

renewable energy sources popular in Turkey. Currently, 

HPSs provide 18.4% of energy generation in Turkey 

[36]. However, for HPSs to be more efficient, Turkey 

needs to adopt technological and scientific innovations in 

HPS operation and water management. Cobaner et al. 

developed an artificial neural network-based model to 

evaluate the feasibility of installing a hydropower plant 

at an existing irrigation dam [37]. Kucukali et al. 

developed a Fuzzy logic-based model to identify suitable 

existing irrigation dams where small HPSs could be 

developed [38]. Koç investigated the problems of the 

operation of hydropower plants that were integrated with 

irrigation schemes in Turkey and, by analyzing technical, 

environmental, social and structural problems occurring 

during the operation of an HPS, determined solutions for 

these problems [39]. 

 

In this study, we develop a neural network model that is 

used in energy planning for the Darıca-2 HPS established 

in Ordu Province, Turkey. 
 

3. Material and Methods 
 

The Darıca-2 HPS (Fig.2 and Fig.3) is on the Melet River 

in Ordu Province, Turkey.  
 

 
 

Figure 2. Location of Darıca-2 HPS. 
 

 
 

Figure 3. Location Darıca-2 hydropower station, Ordu, 

Turkey. 
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The HPS is fed by the Çambaşı Dam, which is at an 

altitude of 1395 m. The Darıca-2 HPS is at 330 m, giving 

a hydraulic head of 1064 m, the second highest in Turkey. 

Its reservoir size is 4 million m3. The Darıca-2 HPS, with 

a capacity of 75 MW, is a medium scale HPS, and has an 

average annual electrical energy generation capacity of 

207 GWh. 

 

3.1 Data Acquisition 

 

This study uses a neural network structure called 

LWNRBF to estimate the maximum possible next day 

energy generation capacity of the HPS. The inputs to the 

neural network are the reservoir inflow rates from the 

previous four days, the current level of water in the 

reservoir, and weather forecast data.  

 

 
 

Figure 4. Daily generated electrical energy during 2020 

 
 

Figure 5. Daily generated electrical energy during first 

four months of 2021. 

 

 

 

Data collected daily during 2020 were used in the 

training and testing stages of neural network and data 

collected daily from the first four months of 2021 were 

used for testing. The daily generated energy, shown in 

Fig.4 and Fig.5, were used in the training and testing 

stages. 

 

2.1. Modelling 

 

Many artificial neural network structures for pattern 

recognition, classification or modelling are described in 

the literature. Well-known forms include; multilayer 

perceptron network [40], radial basis neural network [41] 

and adaptive neuro fuzzy inference system (ANFIS) [42]. 

Learning methods include; gradient descent [43], back 

propagation [44], Levenberg–Marquardt [45], and 

orthogonal least squares [46]. Hybrid learning algorithms 

have also been used in the training stage of a neural 

network [47]. 

 

This study uses a new type neural network structure 

called LWNRBF with a two-pass hybrid learning 

algorithm which was developed by Özdemir [47], [48]. 

As known, classic RBF networks use widely in literature. 

RBF network structure is given with Fig. 6. 

 

 
 

Figure 6. RBF Neural network structure. 

 

RBF network structure is very suitable tool in system 

modelling. Training stage of RBFN needs to find two set 

of parameters. In the training stage of RBFN needs to find 

three set of parameters. These are centres, widths and 

weights of RBF neurons. In this study, an improved 

version of RBF network called LWNRBF is used with a 

two-pass hybrid learning algorithm. LWNRBF network 

structure is given with Fig. 7. 
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Figure 7. LWNRBF Neural network structure used. 

 

The LWNRBF network has better modelling 

performance than the classical RBF network. But its 

structure is more complex than classic RBF network. 

Therefore, it needs more sophisticated training algorithm. 

Used training algorithm is given with Fig. 8. 

 

 
 

Figure 8. General framework of used two two-pass 

hybrid learning algorithm. 

 

In first step, centres of RBF neurons are selected by OLS 

Algorithm from input data. However, these centers may 

not be fully suitable. They need to be optimized by 

Gustafson – Kessel (GK) algorithm with partition 

validation. First step is started by selecting an εOLS 

parameter between 0 and 1. A small value of εOLS 

causes finding more centres.  Centres found by OLS are 

optimized by GK Algorithm. After determining of the 

centres, a two-pass hybrid training algorithm uses to fine 

tuning of the network parameters.  In first pass (Forward 

computation) RBF weights are calculated by LM 

algorithm and other parameters is fixed. In second pass 

(Backward computation) fine tuning of centres and 

widths of RBF is made by Gradient Descent (GD) 

algorithm.   

 

Table 1. Two-pass hybrid training procedure for 

LWNRBF networks. 

 

 
 

Thanks to complex structure of LWNRBF network can 

be used for modelling very complex data. However, 

LWNRBF network needs more sophisticated training 

algorithm as mentioned above than classic RBF network.  

 

Another important issue is to select input parameters of 

the network to create acceptable model. In this study, 

amount of water in reservoir, past four days reservoir 

inflow rates and weather forecast are used as inputs of the 

network. Output of the network is selected as possible 

energy generation capacity of the HPS for the next day 

(W). 

 

In experiments, a set of past reservoir inflow rates were 

used. The best model performance is obtained for past 

four days reservoir inflow rates. 

 

Training stage starts with selection only three 

parameters: OLS training parameter (εOLS) and learning 

parameters (µGD and µLM) for GD and LM algorithms. 

After the training process, if model is rejected user selects 

new parameter set until a valid model is created.  

 

Table 2: Some parameter values used in OLS Algorithm. 

Used learning parameter values Number of 

Selected 

Centers by 

OLS 

 

εOLS 
 

µGD 
 

µLM 

0.1 0.005 0.005 1 

0.09 0.005 0.005 3 

0.04 0.005 0.005 6 

0.01 0.005 0.005 8 

 

For the valid model creating, in the training stage εOLS 

parameter was selected as 0.01 and 8 RBF neuron centres 

were selected by OLS algorithm. These centers were 

optimized and reduced as 7 by GK algorithm. Learning 

parameters µGD and µLM were selected as 0.005. It has 

been observed that in order to be able to reach best 

training and testing values of error, values of µGD and 

µLM should be selected as 0.005 experimentally. 

 

Due to structure of OLS algorithm, theses two parameters 

have not  any effect on number of calculated values of 

centers by OLS algorithm. 
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Data collected daily during 2020 were used in the 

training and testing stages of neural network and data 

collected daily from the first four months of 2021 were 

used for testing. The daily generated energy, shown in 

Fig.4 and Fig.5, were used in the training and testing 

stages. Training process with modelling errors is given 

by Fig.9. 

 

 
 

Figure 9. Estimated daily electrical energy generation 

and modelling error for months of 2020. 

 

In the training process, average training error is 

calculated as 0.0012%. Outcomes of the testing process 

for first 4 days of 2021 is shown in Fig.10 – Fig.13. 

 

 
 

Figure 10. Estimated daily electrical energy generation 

and modelling error for January of 2021. 

 

 
 

Figure 11. Estimated daily electrical energy generation 

and modelling error for February of 2021. 

 

 
 

Figure 12. Estimated daily electrical energy generation 

and modelling error for March of 2021. 

 

 
 

Figure 13. Estimated daily electrical energy generation 

and modelling error for April of 2021. 

 

In the training process, average training error is 

calculated as -0.044%.  

 

This study has developed a neural network model to be 

used in planning the daily energy generation of an HPS 

that has been shown to be accurate and reliable for 

estimation of daily energy generation. However, sudden 

rain and unpredictable seasonal change will affect the 

accuracy of the model. It was seen that when there was a 

sudden change in reservoir inflow, the model could adapt 

to the new condition within a few days. 

 

4. Conclusion 

 

The most important and principal criterion for 

determining the energy generation of an HPS is the water 

flow into the basin where the plant is located and energy 

planning in an HPS is generally made according to the 

expected water level in the reservoir. Efficient operation 

of an HPS depends on robust planning of its energy 

generation. Energy planning for an HPS can be 

summarized in three main points: 
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1. The energy generation of an HPS to be made on the 

next day is announced to the authorized body. It is 

mandatory for the HPS to fulfil its announced energy 

generation otherwise the HPS will face fines and 

sanctions. 

 

2. Maximum efficiency of use of the water in the 

reservoir depends directly on energy planning and 

estimation. During a flood period, the entire volume of 

water cannot be used for electrical energy generation 

because the excess water must be drained. Outside a 

flood period, most of the water in the reservoir can be 

used for energy generation through robust estimation of 

energy generation. 

 

3. Incorrect planning will cause unwanted stop-start 

operations and this will increase maintenance costs. This 

study uses a neural network model to estimate next day 

energy generation of an HPS and has shown that the 

neural network can provide accurate prediction of next 

day energy generation.  

 

The study shows that unforeseen weather events will 

cause errors in the estimations. Although sudden rainfall 

causes deviations in the output of the model, it was seen 

that model would adapt to the new situation within a short 

period.  

 

The model works most accurately with hourly data and 

for very short-term estimation. However, to be most 

useful for energy planning, the model needs to provide 

accurate estimation of next day energy generation. 

Although the neural network model made some incorrect 

estimates in the testing stage, with the main reason due to 

unpredictable conditions such as faults, sudden rain, and 

incorrect stop-start operations, the overall error was small 

and, as a result, the presented neural network is 

considered useful for energy planning.  

 

Our aim in future work is to use a recursive neural 

network structure that can adapt itself to new conditions 

and new data coming and can make more reliable 

estimations for energy planning. 

 

Author’s Contributions  

 

Serkan Inal and Ali Ekber Özdemir: Designed and 

developed the models and methods, analyzed the data, 

and drafted the manuscript. 

Sibel Akkaya Oy: Guided and supervised the whole 

process.  

S. Inal., S. Akkaya Oy and A.E. Ozdemir  revised the 

manuscript; and all authors read and approved the fnal 

manuscript.  

 

Ethics 

 

There are no ethical issues after the publication of this 

manuscript. 

References 

 
[1]. Saravanan, A, Senthil kumar, P, Vo, DVN, Jeevanantham, 

S, Bhuvaneswari, V, Anantha Narayanan, V, Yaashikaa, PR, Swetha, 
S, Reshma, B. 2021. A comprehensive review on different approaches 

for CO2 utilization and conversion pathways. Chemical Engineering 

Science;  236: 116515 

[2]. IEA (International Energy Agency)  2017. CO2 emissions 

from fuel combustion: Highlight. 

https://euagenda.eu/upload/publications/untitled-110953-ea.pdf/ 

(accessed at 12.01.2021). 

[3]. Kuriqi, A, Pinheiro, AN, Sordo-Ward, A, Bejarano, MD, 

Garrote, L. 2021. Ecological impacts of run-of-river hydropower 
plants—Current status and future prospects on the brink of energy 

transition. Renewable and Sustainable Energy Reviews; 142: 110833.  

[4]. IHA. Hydropower status report. 7 ed. London United 
Kingdom: International Hydropower Association (IHA). 

https://hydropower-assets.s3.eu-west-2.amazonaws.com/publications-

docs/2020_hydropower_status_report.pdf (accessed at 08.12.2020). 

[5]. IRENA (International Renewable Energy Agency). 

Available online: https://www.irena.org/hydropower (accessed at 

15.05.2021). 

[6]. Shi, Y, Zhou, J, Lai, X, Xu, Y, Guo, W, Liu, B. 2021. 

Stability and sensitivity analysis of the bending-torsional coupled 

vibration with the arcuate whirl of hydro-turbine generator unit. 

Mechanical Systems and Signal Processing; 149: 107306  

[7]. Bilgili, M, Bilirgen, H, Ozbek, A, Ekinci, F, Demirdelen, T. 

2018. The role of hydropower installations for sustainable energy 
development in Turkey and the world. Renewable Energy; 126: 755-

764. 

[8]. IEA Renewable Energy Essentials: Hydropower Available 
online: https://iea.blob.core.windows.net/assets/5b4df552-d99d-4bbb-

b41e-c8ab4b6123b5/Hydropower_Essentials.pdf   (16.05.2021). 

[9]. Jia, B, Zhou, J, Chen, X, He, Z, Qin, H. 2019. Deriving 
Operating Rules of Hydropower Reservoirs Using Gaussian Process 

Regression. IEEE Access; 7: 158170-158182. 

[10]. Feng, Z, Liu, S, Niu, W, Liu, Y, Lou, B, Miao, S, Wang, S. 
2019. Optimal Operation of Hydropower System by Improved Grey 

Wolf Optimizer Based on Elite Mutation and Quasi-Oppositional 

Learning. IEEE Access; 7: 155513-155529. 

[11]. Li, B., Li, C., Cui, X., Lai, X., Ren, J., He, Q.: A 

Disassembly Sequence Planning Method with Team-Based Genetic 

Algorithm for Equipment Maintenance in Hydropower Station. IEEE 

Access. 8, 47538-47555 (2020). 

[12]. Shahryar Khalique, A, Hossain, F. 2019. A generic data-
driven technique for forecasting of reservoir inflow: Application for 

hydropower maximization. Environmental Modelling & Software; 119: 

147-165. 

[13]. Ahmad, A, El-Shafie, A, Razali, SFM. 2014. Reservoir 

Optimization in Water Resources: A Review. Water Resour Manage; 

28: 3391–3405. 

[14]. Rahman, I., Mohamad-Saleh, J. 2018. Hybrid bio-Inspired 

computational intelligence techniques for solving power system 

optimization problems: A comprehensive survey. Applied Soft 

Computing; 69: 72-130. 

[15]. Chong, K.L., Lai, S.H., Ahmed, A.N., Zurina, W., Jaafar, 

W., El-Shafie, A.: Optimization of hydropower reservoir operation 
based on hedging policy using Jaya algorithm. Applied Soft Computing; 

106, 107325. 

[16]. Azad, A., Rahaman, SA, Watada, J, Vasant, P, Vintaned, 
JAG. 2020. Optimization of the hydropower energy generation using 

Meta-Heuristic approaches: A review. Energy Reports; 6: 2230-2248. 

https://euagenda.eu/upload/publications/untitled-110953-ea.pdf/


 

Celal Bayar University Journal of Science  
Volume 19, Issue 3, 2023, p 197-204 

Doi: 10.18466/cbayarfbe.1218381                                                                                            S.Akkaya.Oy 

 

204 

[17]. Mishra, S, Singal, SK, Khatod, DK. 2011. Optimal 

installation of small hydropower plant—A review. Renewable and 

Sustainable Energy Reviews; 15: 3862-3869. 

[18]. Ren, X, Zhao, Y, Hao, D, Sun, Y, Chen, S, Gholinia, F. 

2021. Predicting optimal hydropower generation with help optimal 

management of water resources by Developed Wildebeest Herd 

Optimization (DWHO). Energy Reports; 7: 968-980. 

[19]. Huangpeng, Q, Huang, W, Gholinia, F. 2021. Forecast of the 

hydropower generation under influence of climate change based on 
RCPs and Developed Crow Search Optimization Algorithm. Energy 

Reports; 7: 385-397. 

[20]. Wang, Y, Liu, J, Han, Y. 2020. Production capacity 
prediction of hydropower industries for energy optimization: Evidence 

based on novel extreme learning machine integrating Monte Carlo. 

Journal of Cleaner Production; 272: 122824. 

[21]. Li, X, Liu, P, Gui, Z, Ming, B, Yang, Z, Xie, K, Zhang, X. 

2020. Reducing lake water-level decline by optimizing reservoir 

operating rule curves: A case study of the Three Gorges Reservoir and 

the Dongting Lake. Journal of Cleaner Production; 264: 121676. 

[22]. Feng, ZK, Niu, WJ, Liu, S, Luo, B, Miao, SM, Liu, K. 2020. 

Multiple hydropower reservoirs operation optimization by adaptive 
mutation sine cosine algorithm based on neighborhood search and 

simplex search strategies. Journal of Hydrology; 590: 125223. 

[23]. Emami, M, Nazif, S, Mousavi, SF, Karami, H, Daccache, A. 
2021. A hybrid constrained coral reefs optimization algorithm with 

machine learning for optimizing multi-reservoir systems operation. 

Journal of Environmental Management; 286: 112250. 

[24]. Li, J., Qin, H., Zhang, Z., Yao, L., Gul, E., Jiang, Z, Wang, 

Y., Mo, L, Pei. S.: Operation Rules Optimization of Cascade Reservoirs 

Based on Multi-Objective Tangent Algorithm. IEEE Access. 7, 

161949-161962 (2019). 

[25]. Cai, X, Ye, F, Gholinia, F. 2020. Application of artificial 

neural network and Soil and Water Assessment Tools in evaluating 
power generation of small hydropower stations. Energy Reports; 6: 

2106-2118. 

[26]. Yizi Shang, Yang Xu, Ling Shang, Qixiang Fan, Yongyi Wang, 

Zhiwu Liu, A method of direct, real-time forecasting of downstream 

water levels via hydropower station reregulation: A case study from 
Gezhouba Hydropower Plant, China, Journal of Hydrology, Volume 

573, 2019, Pages 895-907,ISSN 0022-1694, 

[27]. Olofintoye, O, Otieno, F, Adeyemo, J. 2016. Real-time 
optimal water allocation for daily hydropower generation from the 

Vanderkloof dam South Africa. Applied Soft Computing;  47: 119-129. 

[28]. Yang, S, Yang, D, Chen, J, Zhao, B. 2019. Real-time 
reservoir operation using recurrent neural networks and inflow forecast 

from a distributed hydrological model.  Journal of Hydrology; 579: 

579124229. 

[29]. Hadiyan, PP, Moeini, R,  Ehsanzadeh, E. 2020. Application 

of static and dynamic artificial neural networks for forecasting inflow 

discharges case study: Sefidroud Dam reservoir. Sustainable 

Computing: Informatics and Systems; 27: 100401. 

[30]. Karunanayake, C, Gunathilake, MG, Rathnayake, U. 2020. 

Inflow Forecast of Iranamadu Reservoir Sri Lanka under Projected 
Climate Scenarios Using Artificial Neural Networks. Applied 

Computational Intelligence and Soft Computing; 1-11. 

[31]. Cheng, CT, Niu, WJ, Feng, ZK, Shen, JJ, Chau, KW. 2015. 
Daily Reservoir Runoff Forecasting Method Using Artificial Neural 

Network Based on Quantum-behaved Particle Swarm Optimization. 

Water; 7: 4232-4246. 

[32]. Xu ZX and Li JY. 2002. Short-term inflow forecasting using 

an artificial neural network model. Hydrol. Process; 16:2423-2439. 

[33]. Dampage, U, Gunaratne, Y, Bandara, O, Silva, SD, 
Waraketiya, V. 2020. Artificial Neural Network for Forecasting of 

Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri 

Lanka 2020 5th International Conference on Computational 

Intelligence and Applications (ICCIA) Beijing China 19-21 June 2020. 

 [34]. Ahmad, SK, Hossain, F. 2019. A web-based decision 
support system for smart dam operations using weather forecasts. 

Journal of Hydroinformatics; 21: 687-707. 

[35]. Liu, Y, Qin, H, Zhang, Z, Yao, L, Wang, Y, Li, J, Liu, G, 
Zhou, J. 2019. Deriving reservoir operation rule based on Bayesian 

deep learning method considering multiple uncertainties. Journal of 

Hydrology; 579: 124207. 

[36]. Energy Atlas of Turkey. 

https://www.enerjiatlasi.com/elektrik-uretimi/ (accessed at 23.05. 

2021). 

[37]. Cobaner, M, Haktanir, T, Kisi, O. 2008. Prediction of 

Hydropower Energy Using ANN for the Feasibility of Hydropower 

Plant Installation to an Existing Irrigation Dam. Water Resour Manage; 

22: 757–774. 

[38]. Kucukali, S, Bayatı, OA, Maraş, HH. 2021. Finding the 

most suitable existing irrigation dams for small hydropower 
development in Turkey: A GIS-Fuzzy logic tool.  Renewable Energy; 

172: 633-650. 

 [39]. Koç, C. 2018. A study on operation problems of hydropower 
plants integrated with irrigation schemes operated in Turkey. 

International Journal of Green Energy; 15: 129-135. 

[40]. Mazroua, AA, Salama, MMA, Bartnikas, R. 1993. PD 
pattern recognition with neural networks using the multilayer 

perceptron technique. IEEE Transactions on Electrical Insulation; 28: 

1082-1089. 

[41]. Lippmann, RP. 1993. Pattern classification using neural 

networks. IEEE Communications Magazine; 27: 47-50. 

[42]. Jang, JR. 1993. ANFIS: adaptive-network-based fuzzy 
inference system. IEEE Transactions on Systems Man and Cybernetics;  

23: 665-685. 

[43]. Baldi, P. 1995. Gradient descent learning algorithm 
overview: a general dynamical systems perspective. IEEE Transactions 

on Neural Networks; 6: 182-195. 

[44]. Karnin, ED. 1990. A simple procedure for pruning back-

propagation trained neural networks. IEEE Transactions on Neural 

Networks; 1: 239-242. 

[45]. Hagan, MT,  Menhaj, MB. 1994. Training feedforward 

networks with the Marquardt algorithm. IEEE Transactions on Neural 

Networks; 5: 989-993. 

[46]. Chen, S, Cowan, CFN, Grant, PM. 1991. Orthogonal least 

squares learning algorithm for radial basis function networks. IEEE 

Transactions on Neural Networks; 2: 302-309. 

[47]. Kayhan, G, Özdemir, AE, Eminoğlu, İ. 2013. Reviewing 

and designing pre-processing units for RBF networks: initial structure 

identification and coarse-tuning of free parameters. Neural Computing 

and Applications; 22: 1655-1666. 

[48]. Ozdemir, AE. 2011.  Algorithmic signal processing 

substructure improvement needed for control of multifunctional 
myoelectric prosthesis hand and arm. PHD thesis, Ondokuz Mayıs 

University, Samsun Turkey. 


