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Introduction 
 

Photosynthesis is a very important processes to 
acquisition carbon supply for plant growth and 
development (Cheng & Fuchigami, 2000). The 
epidermis of leaf is covered with a waxy cuticle to 
prevent water loss. But it lets diffusion of atmospheric 
CO2 toward the inner photosynthetic tissues. Gas 
exchanges are primarily realized through stomata 
(Lebaudy et al., 2008). Stomata regulates leaf gas 
exchange (the uptake of CO2) and the loss of water 
vapor in response to changing environmental 
conditions (Hetherington, 2001). The stomata occupy a 
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Abstract 
 
In this study, the effect of nitrogen (N) fertilization on gas exchange and the 
photosynthetic performance of cherry leaves were investigated. In the study, 4 
different doses of N were applied from the soil, and N, P, K, Ca, Mg, Fe, Mn, Zn, and B 
concentrations were determined in leaf samples taken from the middle part of the 
shoots 65-70 days after full flowering. Assimilation rate (A), the concentration of 
intercellular CO2 (Ci), transpiration rate (Tr), stomatal conductance to water vapor 
(Gsw), total conductance to CO2 (Gtc), and total conductance to water vapor (Gtw) 
were measured simultaneously with leaf collection for mineral analysis. Leaf water 
use efficiency (WUE) and instantaneous carboxylation efficiency (ICE) were 
calculated. N fertilizing affected the leaf accumulation of some macro (N, P, K, Ca, 
and Mg) and micro (B) nutrients. As N doses increased, N content of leaf increased, 
while decreasing leaf P, K, and B contents. N fertilizing negatively affected Tr, A, Gsw, 
Gtw, Gtc, and ICE. While there were negative correlations between leaf N 
concentration and gas exchange and leaf photosynthetic performance, they were 
positive for P and K. It means that changes in gas exchange and leaf photosynthetic 
performance were not related to increasing leaf N concentration, but decreasing leaf 
K and/or P concentrations depending on N fertilizing.  

 

central position in the pathways for both the loss of 
water from plants and the exchange of CO2. It is 
commonly assumed that they therefore provide the 
main short-term control of both transpiration and 
photosynthesis (Jones, 1998). 

Sweet cherry trees, like others fruit trees, need 
various nutrients to grow and produce high yields. 
Nitrogen (N), phosphorus (P) and potassium (K) are the 
most important nutrients and mineral nutrition can 
markedly affect photosynthesis (Longstreth & Nobel, 
1980). Bottrill et al. (1970) stated that all nutrient 
disorders, excluding iron (Fe) and molybdenum (Mo), 
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inhibit photosynthesis when chlorophyll was the basis 
of their calculation; manganese (Mn)-, copper (Cu)-, P-, 
and K-deficient plants had the greatest depression. Use 
of mineral fertilizer is the quickest way of increasing 
crop production. It is clear that the level of fertilizer 
applied influenced many processes like fruit quality in 
orchards (Bybordi, 2013). Hasanuzzaman et al. (2018) 
pointed that among all nutrients, K is one of the most 
vital elements used for plant growth and physiology. 
Physiological processes such as stomatal regulation and 
photosynthesis depend on K. Wang et al. (2012) 
reported that K deficiency increased the root abscisic 
acid (ABA) concentration of cotton. Hetherington 
(2001) showed that ABA regulates the aperture of 
stomatal pores. Basile et al. (2003) proved that K 
deficiency affected the leaf photosynthetic capacity 
through biochemical limitations. 

Cultivars and rootstocks show different responses 
to nutrient deficiencies. Hu et al. (2016) realized that 
effect of K fertilization was more important on 
photosynthesis, chlorophyll fluorescence, and 
carbohydrates contents in sensitive-K cultivar of 
cotton. Fallahi et al. (2001) investigated effect of 
rootstocks on net photosynthesis, leaf nutrition of 
apple trees and determined rootstock was important 
on leaf photosynthesis and leaf mineral concentrations. 

 Boussadia et al. (2015) stated that most limiting 
factor for tree growth is N deficiency, which induced 
stunted growth and reduced yield and poor product 
quality. According to Cheng & Fuchigami (2002), N and 
carbohydrate metabolism are interrelated, and carbon 
assimilation depends on N metabolism to meet the 
needs of the photosynthetic machinery. There is a 
negative linear relationship between tree N 
concentration and total nonstructural carbohydrates 
concentration. Cheng & Fuchigami (2000) express that 
calculated intercellular CO2 concentration, tended to 
decrease with increases in leaf N, indicating that 
stomatal conductance did not limit photosynthesis in 
leaves with low N concentration. Like K and N, P also 
affects some physiological process. Lauer et al. (1989) 
determined that low phosphate nutrition results in 
increased chlorophyll fluorescence, reduced 
photosynthetic rate, accumulation of starch and 
sucrose in leaves, and low crop yields. Bernardi et al. 
(2015) studied the effect of different doses of N, P, and 
K on photosynthesis. The results showed that the high 
levels of N photosynthesis negatively. When K was 
applied at intermediate fertilization levels, it had 
positive effects, but P had little effect. 

The aim of this study was to investigate the effect 
of increasing N doses applied to soil on gas exchange 
and leaf photosynthetic performance of sweet cherry 
trees. 

 

Material and Method 
 
We carried out this study with ‘0900 Ziraat’ sweet 

cherry cultivar grafted on Gisela 5 rootstocks. The 
experiment was carried out according to “Randomized 
Complete Block” design as 6 replicates and one tree in 
each replicate. We used 24 trees with 4 different N 
doses and 6 replications in each N dose. We planted 
the orchard used for the experiment in 2008 at 5x2 m 
planting distances. The orchard was full yield in 2014 
and treatments were applied in 2015, 2016, 2017 and 
2018, but took measurements only in 2018.   

Ammonium nitrate (33.0.0), monopotassium 
phosphate (0.52.34) and potassium sulphate (0.0.50) 
used as fertilizer sources. Fertilizers were applied 
between April and June at approximately 15-day 
intervals (19th of April, 3rd of May, 24th of May and 7th of 
June).  The required amounts were weighed for each 
tree at the recommended dose (0, 50, 125 and 250 g N) 
dissolved in water and applied beneath the tree canopy 
in 4 different periods. K (125 g K2O/tree) and P (50 g 
P2O5/tree) were stable in all treatments. 

Plant analysis: Leaf samples were collected 65 to 
70 days after full bloom from the middle part of the 
shoots. Firstly, leaf samples were washed through tap 
water, then washed through HCl (0.1 normality) and 
finally washed with deionized water. We placed them 

in paper bags and dried at 65-70 C in a drying chamber 
until a constant weight (for about 48 hours). Dried 
leaves were ground and weighed to determine N, P, K, 
Ca, Mg, Fe, Mn, Zn and B concentrations. Kjeldahl wet 
digestion (for N) and dry ashing methods (for P, K, Ca, 
Mg, Fe, Mn, Zn and B) were carried out the extraction 
of nutrients (Ryan et al., 2001) and determined by ICP-
OES. 

In the middle of the vegetative period, we carried 
out gas exchange and leaf photosynthetic 
measurements simultaneously and collected leaves for 
mineral analysis. For gas exchange and leaf 
photosynthetic, assimilation rate (A), concentration of 
intercellular CO2 (Ci), transpiration rate (Tr), stomatal 
conductance to water vapor (Gsw), total conductance 
to CO2 (Gtc), total conductance to water vapor (Gtw) 
were taken from the third fully expanded upper leaves 
between 10:00-11:00 am using Li-Cor 6800 
Photosynthesis System (Li-Cor, Lincoln, NE, USA). 
Measurement conditions: photosynthetic photon flux 
density, 1000 μmolphoton m-2 s-1, operational or chamber 
ambient CO2 concentration, 400 μmolCO2 molair

-1. Leaf 
temperature and leaf to air vapor pressure deficit 
ranged from 25.6 to 28.8 oC and from 1.22 to 3.06 kPa, 
27 oC, respectively. Leaf water use efficiency (WUE) and 
instantaneous carboxylation efficiency (ICE) were 
calculated respectively using the formula of WUE=A/Tr 
and ICE= (A/Ci). 
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Table 1. Effects of nitrogen treatments on leaf nutrient concentration of sweet cherry cv. 0900 Ziraat grafted on 
Gisela 5 rootstock and reaching full yield. All results were based on dry weight. 

 

N doses (g/tree) N (%) P (%) K (%) Ca (%) Mg (%) 

0 1.84  0.054 c 0.35  0.035 a 2.10  0.12 a 2.37  0.085 a 0.48  0.031 a 

50 1.91  0.048 c 0.26 0.012 b 2.16  0.11 a 2.02  0.075 b 0.44  0.021 b 

125 2.15  0.081 b 0.18  0.004 c 1.67  0.078 b 2.13  0.077 ab 
0.47  0.016 

ab 

250 2.43  0.047 a 0.18  0.004 c 1.48  0.060 b 2.33  0.097 a 0.50  0.018 a 

P value P<0.01 P<0.01 P<0.01 P<0.05 P<0.05 

N doses (g/tree) 
Fe 

(mg kg-1) 

Cu 

(mg kg-1) 

Mn 

(mg kg-1) 

Zn 

(mg kg-1) 

B 

(mg kg-1) 

0 106  6.27 10.2  0.48 20.5  1.87 11.0  0.49 75  4.22 a 

50 107  8.19 11.5  0.79 23.8  2.97 11.3  0.73 73  5.05 a 

125 103  8.45 11.0  0.78 27.9  4.34 11.5  1.34 67  5.56 b 

250 101  4.99 10.3  0.26 29.3  4.20 10.9  0.49 66  4.36 b 

P value NS NS NS NS P<0.01 

NS: non-significant, : standard error mean 

 
 
 
Table 2. Effects of nitrogen treatments on leaf photosynthetic performance of sweet cherry cv. 0900 Ziraat grafted 

on Gisela 5 rootstock and reaching full yield  
 

N doses (g/tree) Tr mmol m⁻² s⁻¹ A (µmol m⁻² s⁻¹) Ci µmol mol⁻¹ Gsw mol m⁻² s⁻¹ 

0 2.03  0.31 a 8.67  0.80 a 230 14.94 0.099  0.016 a 

50 1.62  0.12 b 6.85  0.38 b 236  8.70 0.074  0.005 b 

125 1.19  0.19 c 5.96  0.93 b 223  9.17 0.055  0.008 bc 

250 0.91  0.12 c 4.34  0.55 c 216  6.41 0.041  0.006 c 

P value P<0.01 P<0.01 NS P<0.01 

N doses (g/tree) Gtw mol m⁻² s⁻¹ Gtc mol m⁻² s⁻¹ WUE ICE 

0 0.096  0.015 a 0.060  0.009 a 4.61 0.42 0.038 0.002 a 

50 0.073  0.005 b 0.046 0.003 b 4.35  0.21 0.029  0.002 b 

125 0.054  0.008 bc 0.034 0.005 bc 5.38  0.85 0.028  0.005 b 

250 0.041  0.006 c 0.026 0.003 c 4.76  0.11 0.020 0.002 c 

P value P<0.01 P<0.01 NS P<0.01 

NS: non-significant, : standard error mean, A: assimilation rate, Ci: concentration of intercellular CO2, Tr: transpiration rate, 

Gsw: stomatal conductance to water vapor, Gtc: total conductance to CO2, Gtw: total conductance to water vapor, WUE: 

water use efficiency, ICE: instantaneous carboxylation efficiency 
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Table 3. Correlations between nutrient concentrations of leaf and photosynthetic performance of leaf of sweet 
cherry cv. 0900 Ziraat grafted on Gisela 5 rootstock and reaching full yield 

 

 
Tr A Ci Gsw Gtw Gtc WUE ICE 

N -0.62** -0.67** -0.15 -0.61** -0.61** -0.61** 0.16 -0.66** 

P 0.48* 0.60** -0.16 0.50* 0.50* 0.50* 0.05 0.70** 

K 0.48* 0.55** 0.11 0.50* 0.50* 0.50* 0.10 0.49* 

Ca -0.20 -0.08 -0.30 -0.18 -0.18 -0.18 0.14 0.09 

Mg -0.53** -0.40* -0.49* -0.53** -0.53** -0.53** 0.18 -0.13 

Fe -0.24 -0.15 -0.01 -0.18 -0.19 -0.19 0.38 -0.15 

Cu -0.16 -0.19 -0.05 -0.19 -0.19 -0.19 0.05 -0.18 

Mn -0.14 -0.32 0.02 -0.18 -0.18 -0.18 -0.31 -0.36 

Zn -0.17 -0.32 0.07 -0.18 -0.18 -0.18 -0.22 -0.30 

B 0.23 0.23 0.39 0.31 0.31 0.31 0.09 0.09 

A: assimilation rate, Ci: concentration of intercellular CO2, Tr: transpiration rate, Gsw: stomatal conductance to water vapor, Gtc: 

total conductance to CO2, Gtw: total conductance to water vapor, WUE: water use efficiency, ICE: instantaneous carboxylation 

efficiency 

 

Statistical analysis: Data means were separated 
using one-way ANOVA with “JMP© 8.0” (SAS Institute, 
Inc.) according to LSD (Least Square Difference). 
Statistical differences based on P<0.05 and P<0.01. In 
addition, with pairwise correlations between the 
nutrients and physiological parameters were examined. 

 

Results and Discussion 
 

Nitrogen fertilization applied to the soil at different 
doses affected N, P, K, Ca, Mg and B leaf accumulations. 
As N doses increased, N concentration of leaves 
increased, but decreased nutrients such as P, K and B. 
While the highest N values (2.43%) were obtained from 
the highest N dose (250 g N/tree), the lowest values 
(1.84%) resulted from the lowest N dose (0 g N/tree).  
The situation contrasted with P, K and B concentrations 
of leaves and the highest values of P, K and B were 
obtained at the lowest N dose. In other words, while 
regression between leaf N and increasing N doses was 
linear and positive, it was linear and negative for P, K, B. 
Ca, and Mg had the same trend and we obtained the 
highest values of Ca and Mg at 0 g N/tree and 250 g 
N/tree treatments (Table 1). Assimilation rate (A), 
transpiration rate (Tr), stomatal conductance to water 
vapor (Gsw), total conductance to CO2 (Gtc), and 
instantaneous carboxylation efficiency (ICE) were also 
affected from increasing N doses and while the highest 
values were determined at the lowest N dose, and the 
lowest ones were in the highest N dose (Table 2). 

According to correlation analysis, of all nutrients, N, P, K 
and Mg had effect on gas exchange and leaf 
photosynthetic performance. While correlations were 
negative for leaf N and Mg concentrations, they were 
positive for P and K (Table 3). 

Fallahi et al. (2001a), Klein (2002), Prsa et al. 
(2007) and Souza et al. (2013) reported that as N 
supply increase, it results in high N concentration in the 
leaves. Fallahi et al. (1984) reported that they fertilized 
apple trees with N applied to the soil and determined 
increasing Mg concentration and reducing K and P 
concentration in apple leaves. Neilsen et al. (1984) 
realized N, which is applied from soil at different doses, 
increased the N and Mn concentration of the apple 
leaves. Klein et al. (1989) informed that fertilizer N 
applied to the soil reduced significantly the K amount 
of soil solution in top soil layer (0-30 cm) and the 
according to increasing N dose, N concentration of leaf 
increased. Neilsen et al. (1999) found that the N 
concentration of the leaves and fruits increased with 
increasing of applied N in the apple orchard, but the P 
concentration of the fruits and the K concentration of 
the leaves and fruits decreased. Yang et al. (2015) 
determined a significant negative correlation between 
the N and B concentrations in the leaves of litchi trees. 
Uçgun & Altindal (2021) determined that as N 
fertilization applied from soil increased, the nutrient 
levels of sweet cherry leaves changed with increasing N 
and Mn and decreasing P, K and B concentrations. 

Cheng & Fuchigami (2000) determined that the 
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calculated intercellular CO2 decreased with increasing 
leaf N and found curvilinear relationship between leaf N 
concentration and photosynthetic capacity in apple 
leaves. Tóth et al. (2002) performed a study to 
determined effect of the different N doses (30, 60, 90, 
120 and 150 N kg/ha) on photosynthesis of in maize 
plants and found no significant differences. Cechin & De 
Fátima Fumis (2004) obtained that the CO2 assimilation 
of the sunflower leaves for photosynthesis was 
remarkably increased by high nitrogen supply. N did not 
affect statically stomatal conductance, but high-N grown 
plants had lower intercellular CO2 concentration. Reddy 
et al. (1996) characterized net photosynthetic rate, 
stomatal conductance and transpiration of cotton were 
positively correlated with leaf N concentration. Prsa et al. 
(2007) stated that the treatment with 80 kg N/ha 
(recommended dose in integrated apple production) had 
no or little effect on physiological parameters according 
to control (no fertilizer).  

Hu et al. (2016) proved non-stomatal factors such 
as chlorophyll and decreased carboxylation efficiency 
supervised photosynthesis level when K was deficiency. 
Basile et al. (2003) determined that leaf potassium 
concentration didn’t affect stomatal conductance 
significantly and leaves having low potassium had the 
highest calculated internal CO2 concentrations. Zhao et 
al. (2001) stated that photosynthetic rate of cotton 
(Gossypium hirsutum L.) grown in K deficiency-
environment was only 23% of the control plants 
receiving a full K supply. It was mainly associated with 
mainly low chlorophyll concentration, poor chloroplast 
ultrastructure, and restricted saccharide translocation. 
There was no relationship between stomata conductance 
and photosynthetic rate. Fallahi et al. (2001b) revealed 
the scion leaf net photosynthesis and leaf mineral 
concentrations were affected by rootstock. Bud.9 
rootstock had lower net photosynthesis, higher Ca and 
Mn but lower K concentrations than those on the other 
rootstocks. Bednarz & Oosterhuis (1999) indicated that 
reductions in leaf physiological processes and growth of 
cotton plants occur after the petiole K concentration fell 
below 0.88% on a dry weight basis. According to Terry & 
Ulrich (1974)’s results, low K apparently decreased 
photosynthesis through an increase in mesophyll 
resistance to CO2 (rm). Kanai et al. (2007) stated that K 
had a positive effect on biomass of tomato plants and K 
deficiency decreased severely biomass of all organs and 
depressed leaf photosynthesis and transport of 13C 
assimilates. Behboudian & Anderson (1990) also showed 
that K deficiency caused lower rate of photosynthesis in 
tomato plants. This decreasing effect in -K leaves were 
due to impairment of photosynthetic capacity and not to 
stomatal closure. Peaslee & Moss (1966) stated that 
photosynthetic capacity in maize leaves were primarily 
associated with leaf K concentration and the critical level 
was about 2 mg/g for K in fresh weight. Normal-
appearing leaves living K deficiency showed a sharply 

decreasing in photosynthesis rates. Reddy & Zhao (2005) 
determined photosynthesis rate decreased in cotton 
with decreasing K levels. 

In the study of Fujita et al. (2003), P‐deficiency 
treatment affected negatively leaf photosynthesis, 
stomatal conductance of tomato plants. Kondracka & 
Rychter (1997) stated that phosphate deficiency affects 
plant growth and the rate of photosynthesis. Bernardi 
et al. (2015) evaluated the effect of N, P and K 
fertilizing on gas exchange and leaf photosynthetic 
performance in sweet orange. The results indicated 
that photosynthesis rate was depressed by the high 
levels of N, improved by K at intermediate fertilization 
levels and affected a little by P. Li et al. (2021) studied 
the nutrient uptake and distribution in mycorrhizal 
cuttings of Populus × canadensis ‘Neva’ under drought 
stress and determined that gas exchange parameters 
positively correlated with the concentrations of leaf P, 
K, Ca, Fe, Mn, Cu, and Zn while negatively with N.  

In many studies as mentioned above, it was 
revealed nutrients have positive or negative effects on 
gas exchange and gas exchange and leaf 
photosynthetic performance. These effects may occur 
directly or indirectly. The excessive or deficiency of a 
mineral element affects some enzyme activities and 
hormone syntheses and these enzymes and hormones 
regulate some physiological process affecting gas 
exchange and leaf photosynthetic performance. 

 

Conclusion 
 
While N fertilization affected positively the leaf 

accumulation of N, its effect was negative on the leaf 
accumulation of P and K. As for Tr, A, Gsw, Gtw, Gtc, 
and ICE, they decreased with increasing N fertilizing. 
There were negative correlations between decreasing 
gas exchange and leaf photosynthetic performance and 
increasing leaf N level, but contrarily for P and K. It is 
known that there is antagonistic and synergic 
interaction between mineral nutrients. We determined 
an antagonistic effect of N fertilization applied to the 
soil on the accumulation of P and K. It shouldn’t be 
forgotten that overfertilizing with any nutrient causes 
environmental pollution, soil salinization (which also 
precludes the absorption of mineral nutrients), 
decreased yield, and decreases gas exchange and leaf 
photosynthetic performance. Increased fertilization 
also has a high cost decreasing profit margins for fruit 
producers. 
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