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Abstract

In this study, we investigate the differential geometry of contact pseudo-slant submanifolds of a
(LCS)n -manifold. The necessary and sufficient conditions for contact pseudo-slant submanifolds of a
(LCS)n-manifold are given.
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Ozet

Bu ¢alismada, bir (LCS)n -manifoldunun kontak pseudo-slant altmanifoldlarinin diferansiyel
geometrisini arastiriyoruz. Bir (LCS)n-manifoldunun kontak pseudo-slant altmanifoldlari i¢in

gerekli ve yeterli kosullar verilmistir.

Anahtar Kelimeler: (LCS)»-manifold, slant altmanifold, kontak pseudo-slant altmanifold

1.Introduction

Chen [5],[6], first studied slant immersion in 1990 as a generalisation of both invariant and
anti-invariant submanifolds in almost Hermitian manifolds. Later, Lotta[13], extended the
concept of slant immersion into almost contact metric manifolds. After that such submanifolds
of a Sasakian manifold were studied by Cabrerizo et al. [3], [4],

Papagiuc [16], introduced the concept of semi-slant submanifolds of an almost Hermitian
manifold. Cabrerizo et al. investigated and characterised slant submanifolds of Sasakian
manifolds and K-contact, providing several examples. Cabrerizo et al. [3], [4], defined and
studied bi-slant submanifolds in an almost contact metric manifold and simultaneously gave the
notion of pseudo-slant submanifolds. Khan et al. [12] have also investigated pseudo-slant
submanifolds. Then, De et al. [7] studied and characterized pseudo-slant submanifolds of a
trans-Sasakian manifold. Recently, in [2] ; Dirik, etal. [1], [8], [9], [10] studied slant and pseudo-
slant submanifold in different manifolds.

Shaikh [17], [18], [19], recently introduced the concept of Lorentzian concircular structure
manifolds (abbreviated (LCS)n-manifolds). giving an example which generalizes the notion of
Lorentzian para Sasakian manifolds introduced by Matsumoto [14] and also by Mihai and Chen
[15]. Then, Shaikh and Baishya [18] looked into how (LCS)n -manifolds could be used in general
theory of relativity and cosmology. Also, the (LCS). -manifolds are also studied by Shaikh, Kim
and Hui [19].

The paper is structured as follows. In Section 2, Fundamental formulas and definitions for
(LCS)n -manifolds and their submanifolds are reviewed.In Section 3we investigate the geometry

of a (LCS)n - manifold's contact pseudo-slant submanifolds. In a (LCS)n -manifold, necessary and

sufficient conditions are given for a submanifold to be a contact pseudo-slant submanifold.
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2. Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff
manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field g of type

(0, 2) such that for all point x € M , the tensor gx : Tx M xTM>Risa non-degenerate inner
product of signature (-, +,--+, +), here Tx ﬁ denotes the tangenttial vector space of .Il:i atxand R

is the real number space. A non-zero vector p € Tx M is said to be timelike (resp., non-spacelike,
null, spacelike) if it satisfies gx(p, p) < 0 (resp., < 0,=0, > 0).

In a Lorentzian manifold ( ﬁ,g), a vector field K is said to be concircular[20], if the (1, 1)- tensor
field A by defined by

g(Y.K) = A(Y), 21
forallYe F(T:"I-?). It is satisfies
(Ve A)X = a{g(X.¥) + w(X)A(Y)} (2.2)

where a # 0 and w is a closed 1-form and ¥ denotes the operator of covariant differentiation
with respect to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike concircular vector
field &, called the characteristic vector field of the manifold. Then we obtain

g(§¢) = -1 (2.3)

Since ¢ is a unit concircular vector field, it follows that there exists a non-zero 1-form n such
that

g(X.¢) = n( X). (2:4)

In an (LCS)n-manifold, we obtain
T Y = a{g(x.Y) + n(¥) n(®)}, (a = 0), (25)
Vii=a{X+ X & (@ + 0) (2:6)

for all vector fields X, Y, where V¥ denotes the operator of covariant differentiation with respect
to the Lorentzian metric g and « is a non-zero scalar function satisfying

Viya = X (a) =da(X) = pn(X), (2.7)

p being a certain scalar function given by p = —=(éa). Let us take
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Then from (2.6) and (2.8) we have following equations
eX = X + n(X)¢ (2.9)

g(eX,Y) = g(X,0Y) (2.10)

from which it follows that g2 is a symmetric (1, 1)-tensor and is called the structure tensor of the
manifold. So, the Lorentzian manifold ﬁ together with the unit timelike concircular vector field

&, its associated 1-form 1 and a (1, 1)-tensor field ¢ is said to be a Lorentzian concircular
structure manifold (shortly, (LCS)»-manifold) [17]. Particularly, if we take a = 1, then we can
obtain the Lorentzian para-Sasakian structure of Matsumoto (Matsumoto and Mihai, 1988). The
following relationships hold in the (LCS)n-manifold (n > 2).

from which it follows that g2 is a symmetric (1, 1)-tensor and is called the structure tensor of the
manifold. So, the Lorentzian manifold M together with the unit timelike concircular vector field

&, its associated 1-form 1 and a (1, 1)-tensor field ¢ is said to be a Lorentzian concircular
structure manifold (shortly, (LCS)»-manifold) (Shaikh, 2003). Particularly, if we take a = 1, then
we can obtain the Lorentzian para-Sasakian structure of Matsumoto [14]. The following
relationships hold in the (LCS)n-manifold (n > 2).

o = 0,17 (§) = -1 n(eY) = 0, g(e¥,@X) = g(¥.X) + n(Y ) n(X), (211

X = X + n (X)¢, (2.12)
and
S(¥.§) = (n — (a® — p) n(¥). (213)
R(X,Y) = (a® — p)[n(Y)X — n(X)¥], (2.14)
R(EY)Z = (af — p) [9(V.2)§ — n(2)Y], (2.15)
(V@)Y = a{g(X,Y)¢ + n (V)X + 2n(Y) n(X)&}, (2.16)
(Xp) = dp(X) = Bn(X), (2.17)

R(X,YJZ = @R(X,V)Z + (a® — p) {g(V.Z)n (X) — g(X.Z) n(V)} &
(2.18)

for any vector field X, Y and Z on M and B = -(&ép) is a scalar function, where S and R are,
respectively,the Ricci tensor and the curvature tensor of the manifold.
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Let M be a submanifold of an (LCS)» -manifold M with the induced metric g- Then the Gauss and
Weingarten formulas are given by

VyX = V,X + h(V,X) (2.19)
and
V.V = —AY + ViV, (2.20)

respectively, where ¥ and ¥~ be the induced connections on the tangential bundle TM and the
normal bundle TtM of M, where h and Av are, respectively, the second fundamental form and the

shape operator (corresponding to the normal vector field V') for the submanifold of M into M.
The second fundamental form h and shape operator Ay are related by

g(AyY. X) = g(h(Y.X),V), (2:21)

for any X, Y € ['(TM) and V € T'(T*M). If h(Y,X)=0, for any Y,X € I'(TM), then M is said to be a
totally geodesic submanifold.

The mean curvature vector H of M is given by

tr(h)

”

where r is the dimension of M . A submanifold is said to be totally umbilical if it is completely
umbilical.

h(X,Y) = g(X,Y)H
e Ifh(X,¥) = 0,asubmanifold is said to be totally geodesic, where for all X,YE['(TM).

e IfH = 0, a submanifold is said to be minimal.
Now, let M be a submanifold of an (LCS)»-manifold :’l-ﬂf, then for any X € I'(TM), we may write

oX = TX + NX, (2.22)

where TX is the tangent component and NX is the normal component of gX. Also, for any V €
['(T*M), we have

eV = tV + nlV, (2.23)

where tV and nV are called tangent and normal parts of ¢ V. Thus, by using (2.12), (2.22) and
(2.23), we obtain
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T+ tN =1+ n®E NI+ nN =0 (2.24)
and
n® =1— Nt Tt + tn = 0. (2.25)

Moreover, the covariant derivatives of the tensor fields T, N, t and n are, respectively, defined by

(V,T)Y = V, TY - TV,Y, (2.26)
(V.N)Y = V; NY - NV, V¥, (2.27)
(Vot)V = VytV- tVs V (2.28)
and
(V,n)V = VynlV- nVy V. (2.29)

The covariant derivative of ¢, V¢ can be defined by
(V@)Y = Vit — oV,Y (2.30)
forany X, Y € ['(TM) and V is the Riemannian connection on M.

Furthermore, for any X, Y € I'(TM), we have g(TX, Y) = g(X, TY ) and for V,W € I'(T*M), we get
g(U, nW) = g(nU, W). These show that T and n are also symmetric tensor fields. Moreover, for
any Y € I'(TM) and V € T(T+M), we can write

g(NY,V) = g(¥,tV), (2.31)
which is the relation between N and t.

A submanifold M is said to be invariant if N is identically zero, that is, ¢¢Y € I'(TM) for all Y €
['(TM). On the other hand, M is said to be anti-invariant if T is identically zero, that is,
@WEeT(T+M) for all W € T'(TM).

The Gauss and Weingarten formulas together with (2.16), (2.22), (2.23) and (2.30) yield
(ViT)Y = A X + th(XY) + a{g(X.Y )¢ + n(Y)X + 2n(X)n(Y)E} (2.32)
and

(VoN)Y = nh(X,Y) — R(X,TY ). (2.33)
for any X, Y € ['(TM). Similarly, we obtain

(V,0)V = AKX — TA,X (2.34)
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and
(Vyn)V = —h(tV,X) — NA,X. (2.35)
forany Ve I'(T*M) and X € T'(TM).

The canonical structures T, N, t and n on a submanifold M are said to be parallel if VT =0, VN =0
,Vt=0 and Vn =0, respectively.

Since M is tangent to §, making use of @X :i ﬁx ¢, (2.19), (2.20), (2.21) and (2.22), we obtain
Veo& = aTX, h(X,§) = aNX, A, = atV, (2.36)
forall Ve I'(TtM) and X € I'(TM).

From (2,24), (2.32) and (2.33), we obtain

(V,T) = —a{—tNX+ X + n(X) &) (2.37)
and
(VyN)§ = —a NTX (2.38)
for any X, § € T'(TM).
Similarly, we get
(V:t)V = 2atnV (2.39)
and
(Ve n)V = —2 a NtV. (2.40)

forany Ve TI'(T*M) and § € I'(TM).
Now, we put Q = T2, Then the covariant derivative of Q, ¥Q can be defined by
(V,@)¥ = V, Q¥ — @V,Y (2.41)
forany X, Y € ['(TM).
A. Lotta introduced slant submanifolds in contact geometry as follows: [13]

Definition 2.1. Let M be a submanifold of an almost contact metric manifold :"E(CPJ 51.9).

Then M is said to be a contact slant submanifold if the angle 6(X) between @X and Tx(M) is
constant at any point x € M for any X linearly independent with & Thus the totally real and

totally real submanifolds are special classes of slant submanifolds with slant angles 8 = 0 and &
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T T
—, respectively. If the slant angle 0 is neither zero nor —, then the slant submanifold is said to

be a proper contact slant submanifold.

The following theorem is well known for the slant submanifolds of an almost contact metric
manifold [13].

Theorem 2.1. Let M be a submanifold of an (LCS)»-manifold ﬁ, such that £ is tangent to M. Then
M is a slant submanifold if and only if there exists a constant A € [0, 1] such that

T = A1 + 7 ® &) (2.42)

Moreover, if 8 is the slant angle of M, then it satisfies A = cos? B[13] .

Corollary 2.2. Let M be a slant submanifold of an (LCS)n-manifold M with slant angle 6. Then for
any X, Y € ['(TM), we have

g(TX,TY) = cos*8 {g(X,¥) + n(X) n(¥)]} (2.43)
and

g(NX,NY) =sin® 8 {g(X,¥) + n(X)n (¥)}. (2.44)
3 Contact pseudo-slant submanifolds in an (LCS)n-manifold

In this section, In a (LCS)n-manifold, necessary and sufficient conditions are given for a
submanifold to be a contact pseudo-slant submanifold.

Definition 3.1. [12]Let M be a submanifold of an (LCS)n-manifold h?(cp, £, M.g). We say that M
is a contact pseudo-slant submanifold if there exists a pair of orthogonal distributions D+ and D¢
on M such that

(i) The distribution D! is a anti-invariant, i.e., {J (D) € T'M,

(ii) The distribution De is a slant with slant angle 6,

(iii) The tangent space TM admits the orthogonal direct decomposition
TM = D= Dy, €r(Dy).

Let d1 and d: be the dimensions of D! and De, respectively, Thus if

(i) d2=0, then M is a anti-invariant submanifold.

(i) di=0and & =0, then M is a invariant submanifold.
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(ili)dr=0and 0 < O < ; , then M is a proper contact slant submanifold.

™
(iv) 8 = —, then M is a anti-invariant submanifold.

(V)dzdi1#0ve0 <8< ; , then M is a proper contact pseudo-slant submanifold.

If we denote the projections on D! and De by w1 and @2, respectively, then for any X € ['(TM), we
have

X = oX + w,X + n(X)¢.
If u is the invariant subspace of the normal bundle T*M, then in the case of a contact pseudo-
slant submanifold, the normal bundle T+*M can be decomposed as follows

T'M = ¢ (D) S ND)® p @ (DY) LND).
Theorem 3.1. Let M proper contact pseudo-slant submanifold of a (LCS)n-manifold M. If ¢ is
parallel, then M is either mixed geodesic or anti-invariant submanifold.

Proof. For any X € I'(De), Y € I'(D4), from (2,33) and (2,34) we have t parallel if and only if N
parallel, so ¥F=0.
This implies

Ch(X,Y)— h(X,TY)= 0. (3.1)
When we replace X in the above equation with TX, we get
nh(TX,Y)-h (TX,TY) =0 (3.2)
for Y € I'(D4), TY=0, so
nh(TX,¥) = 0. (3.3)

We get by replacing X in the above equation with TX.
nh(T*X,¥) = —n cos® 8 h(X,¥) = 0. (3.4)

As aresult, we have 6=; (M is anti-invariant) or h=0 (M is mixed geodesic).

Theorem 3.2. Let M be a contact pseudo-slant submanifold of a (LCS)n-manifold M. Then the
covariant derivative of T is symetric.

Proof. For any X)Y,Z € I'(TM), we have (2,32)

9((VxTIV,Z) = g(AwX + th(X,¥) + a (g(X,¥ )§ + n(¥ )X
+2n(X In(Y)EL ). (3,35)

If equation ( 3,35) is used, we obtain
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g((V4;T)Y.Z) = g(h(X.Z),NY)+ g(th(X,Y),Z)
tafg(XY)n(Z)+ n(Y)g(X.2) + 2n(X) n(¥) n(2)}
= g(th(X,2),Y)+ g( h(X,Y),N2)
+a{g(z)x + g(X,2)¢ +2n(X)n(2)¢,Y)}
= g(AyzX + th(X,Z2) + a{g(X,2) + n(Z )X
+2n(X) n(2)¢.Y)
= g((VxT)ZY).

Which supports our claim.

Theorem 3.3. Let M be a proper pseudo-slant submanifold of a (LCS)s-manifold M. The tensor
field N is parallel if and only if shape operatory Aysatisfies

ATY = cos®8(A, Y + n(¥)E) (3.5)
for any Ye I'(TM) and Ve I'(T+M).
Proof. If N is parallel, we get from (2,33)
nh(X,Y) - h(X,TY) =0 (3.6)
for any X, YE I'(TM), This implies
nh(X,TY) - h(X,T?Y) =0 (3.7)

so,
nh(X,TY) = cos® 8 h(X, ¥ + n(¥)&). (3.8)
As a result, we have
g(nh(X,TY),V) = cos*8 g(h(X,Y + n(¥) &),V)
g(h(X,TY),nV) = cos*8 g(A, XY + n(¥) &)
g(A,,TY,X) = cos*8 g(A,Y + (V)& X)
for any Ve I'(TM4). This equivalent to

A, TY = cos® B(A, Y + An(Y)E). (3.9)

The proof is now complete.

Theorem 3.4. Let M be a proper contact pseudo-slant submanifold of a (LCS)n-manifold M.
Then n is parallel if and only if the shape operatér Av of M satisfies the condition
Ay tV = — A, tU for all U Ve I(TM).

Proof. Let n be parallel. Then from (2,35), we have



Siileyman Dirik, Umit Celik, (2022), On contact pseudo-slant submanifolds in
(Ics)n-manifolds, Journal of Amasya University the Institute of Sciences and Technology, 3(2)

g((Vxm)V,U) = g(—h(X,tV)— N A, X,U)=0
= —g(AytV,X) — g(A,X,tU) =0
= —g(AytV + A, tU,X) = 0.

Hence we get A;; tV = — A, tU for Xe I'(TM) and U, V€ I'(T*M).
which proves our assertion.

Theorem3.5: Let be M be a contact pseudo-slant submanifold of a (LCS)» - manifold M. Then,

we get
cos® Bg([X.Y].Z) = g(TAy X — Ay, TX.Y)
for any XY € I'(Do) and Z€(D4).
Proof: for any XY € I'(Ds) and Z€(D+), by direct calculation using (2,32) and (2,33) we obtain
+A4,, X +th(X,Z) =(ViT)Z= —TV, Z
and
(V.N)Z =nh (X,2).
Also by using (2,27) and (3,40), we conclude that
g([x.¥].2) = g(Ay, X, TY) — g(Ay,¥Y.TX) + g(VyNZ,NX) — g(ViNZ, NY)

= g(TA;X.V) —g(4,;TX,Y) + g((VuN)Z + NV, Z,NX)
— g((VgN)Z + NV, Z,NY)

= g(TAy X —Ay;TX, V) +g(V,Z,NX) — g(NV,Z,NY)
= g(TAyzX — Ay, TX,Y) + sin”6{g (Vy¥,Z) — g(VyX, Z)}
= g(TAyzX — Ay, TXY) + sin”8{g([X,Y],2)},

thus, we concdude
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cos® Bg([X,Y].Z) = g(TAy;X — Ay TX,Y).

Theorem 3.6. Let M be a totally umbilical submanifold of an (LCS)s,-manifold M. Then at least
one of the following satements is true.

(i). M is proper (LCS)n.
(ii). H e I'(v).
(iii).Dim (D—) = 1.
Proof: Let X € I'(D—) and using (2.6), we obtain
(Ve )X = ag(X,X)s
On applying (2.19), (2.20), (2.22) and (2.23), we get
VeNX — (VX + h(X, X)) — a g(X,X)¢ = 0.
—A X+ VENX— NV.X—th(X,X) —nh(X,X) —ag(X,X)=0.
The tangential components are compared
A X+ th(X, X) + a g(X, X)¢ =0.
Taking the product by W € I'(D—) ,we obtain
(A X, W) + g(th(Xx,X),w) = 0.
Since M is totally umbilical submanifold, we obtain
g(AW, X) + (th(x,X),w)=0
g(h(W,X),NX) —g(h(X,X),NW) =0
g(W.X)g(H.NX) — g(X,X)g(H.NW) = 0
—g(X, X)g(tH W)+ g(X,X)g(tH,X) = 0
thatis

g(tH, X)W — g(tH, W)X = 0
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Here tH is either zero or X and W are linearly dependent vector fields. If tH # 0, than dim
(D—) = 1. Othervise H € I'(n). Since Dg # 0 M is (Ics). Since 8 # 0and d,d, #= 0 proper
(LCS)n.
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