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Abstract: The object of this manuscript is to investigate related to the geometry of distributions 

on pointwise quasi hemi-slant submanifolds (abbr. PQHS) in cosymplectic manifolds. In this 

context, the preconditions for such distributions to be integrable, totally geodesic foliation, 

totally geodesic and mixed totally geodesic are obtained. In addition, we are going to present 

several examples to guarantee these new types of submanifolds in cosymplectic manifolds. 

 

 

Kosimplektik Manifoldların Noktasal Yarı-Eğimli Alt Manifoldları   
 

 

Anahtar Kelimeler 

Noktasal yarı 

eğimli, 

kosimplektik 

manifold,  

Tamamen jeodezik 

yapraklanma 

 

Öz: Bu makalenin amacı, kosimplektik manifoldlarda noktasal yarı-eğimli alt manifoldlar 

(kısaltılmış PQHS) üzerindeki dağılımların geometrisiyle ilgili araştırma yapmaktır. Bu 

bağlamda, bu tür dağılımların integrallenebilir olması, tamamen jeodezik yapraklanma, 

tamamen jeodezik ve karışık tamamen jeodezik olması için ön koşullar elde edilmektedir. Ek 

olarak, kosimplektik manifoldlarda bu yeni alt manifold tiplerini garanti etmek için birkaç 

örnek sunacağız. 

 

1. INTRODUCTION 

 

Differential geometry has been one of the most 

outstanding branches of mathematics and physics since 

the earliest times. Among the most outstanding topics in 

the field of differential geometry in recent years is the 

contact geometry. Contact geometry has a very important 

place in physical and other mathematical structure. 

Sophus Lie first mentioned contact structures in his work 

on partial differential equations [1]. In recent years, the 

geometry of contact Riemannian manifolds has received 

great attention. In contact geometry, there have been 

many classes of manifolds considered as odd-dimensional 

analogs of Kähler spaces, the most important ones being 

cosymplectic and Sasakian spaces. An odd-dimensional 

equivalent of a Kähler manifold can be presented by a 

cosymplectic manifold, locally a product of a Kähler 
manifold having a line or a circle [2]. An obvious instance 

of a cosymplectic manifold can be presented with the 

product of 1-dimensional manifold with (2n)-dimensional 

Kähler manifold. 

 

On the other side, submanifold theory has got outstanding 

characteristics in Mathematical, Mechanics and Physics. 

In the recent twenty years, Kähler manifold applications 

are widely known (in particular, in the target spaces for 

non-linear 𝜎 -models having supersymmetry). Today, 

submanifolds theory has an important place in computer 

design, image processings, economic modelling. 

Submanifolds geometry concept has started with the 

concept of the extrinsic geometry of the surface and it is 

developed for ambient space with time. In this context, the 

submanifolds of a cosymplectic manifold have been 

studied by G. D. Ludden [3]. Later on, A. Cabras et al. [4] 

has given the proof of the fact that in a cosymplectic 

manifold there is not ant extrinsic sphere which is tangent 

to the structure vector fields. In 1990, Chen has put 

forward the notion of slant submanifold, which totally real 

submanifolds and generalizes holomorphic [5]. Then, the 

theory of submanifolds is investigated by many geometers 

like [6-14]. As a generalization of slant submanifolds; 

semi-slant submanifolds, hemi-slant submanifolds, bi-

slant submanifolds, quasi bi-slant submanifolds, quasi 

hemi-slant submanifolds, pointwise quasi bi-slant 

submanifolds, PQHS submanifolds [15-29] and many 
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others. In 2013, B. Şahin defined the concept of pointwise 

semi-slant submanifolds [30]. In 2014, K. S. Park has 

given the concept of pointwise almost h-semi- slant 

submanifolds and pointwise almost h-slant submanifolds 

in an almost quaternionic Hermitian manifold [31-32]. In 

2020, Akyol et al. [33] initiated the study of quasi bi-slant 

submanifolds of an almost contact metric manifold by 

generalizing slant, semi-slant, hemi-slant and bi-slant 

submanifolds (See also: [34]). Motivated by all those 

work in the present article, we are going to investigate 

PQHS submanifolds of cosymplectic manifolds. 

 

The layout of the manuscript can be given as follows: In 

the second section, the fundamental descriptions and 

formulae about cosymplectic manifolds and the geometry 

of submanifolds are given. The third section gives the 

definition of PQHS submanifolds of cosymplectic 

manifolds and we obtained some results for the next 

sections. In the fourth section, we deals with main 

theorems related to the geometry of distributions. Finally 

in the last section, we proved two examples of such 

submanifolds.  

 

2. SOME BASIC CONCEPTS 

 

This section presents a cosymplectic manifold definition 

and some fundamentals about submanifolds theory. 

An almost contact structure (𝜑, 𝜉, 𝜂)  on a (2𝑚 + 1) -

dimensional manifold 𝑁 is defined by a (1,1) tensor field 

𝜑, a vector field 𝜉 and a 1-form 𝜂 satisfying the following 

conditions: 

𝜑2 = −𝐼 + 𝜂 ⊗ 𝜉,   𝜂(𝜉) = 1, 𝜂𝑜𝜑 = 0,   𝜑𝜉 = 0.       (1) 

One can always find a Riemannian metric <, >  on an 

almost contact manifold 𝑁 which satisfies the conditions 

given below  

 
< 𝜑𝑈, 𝜑𝑉 >=< 𝑈, 𝑉 > −𝜂(𝑈)𝜂(𝑉)

 𝜂(𝑈) =< 𝑈, 𝜉 >,
     (2) 

where 𝑈, 𝑉 are vector fields on 𝑁. 

It is said that an almost contact structure (𝜑, 𝜉, 𝜂)  is 

normal when the almost complex structure 𝐽  on the 

product manifold 𝑁 × ℝ is given by  

𝐽(𝑈, 𝑓
𝑑

𝑑𝑡
) = (𝜑𝑈 − 𝑓𝜉, 𝜂(𝑈)

𝑑

𝑑𝑡
),  

in which 𝑓  is a 𝐶∞ -function on 𝑁 × ℝ  without torsion 

i.e., 𝐽 is integrable. The condition for normality in terms 

of 𝜑, 𝜉  and 𝜂  is [𝜑, 𝜑] + 2𝑑𝜂 ⊗ 𝜉 = 0  on 𝑁,  in which 

[𝜑, 𝜑]  is the Nijenhuis tensor of 𝜑 . Lastly, the 

fundamental two-form Φ  is defined Φ(𝑈, 𝑉) =<
𝑈, 𝜑𝑉 >. 

If the almost contact structure (𝜑, 𝜉, 𝜂, <, >)  is normal 

and both Φ and 𝜂 are closed, then this structure can be 

expressed as cosymplectic [3, 35-37]. From the point of 

the covariant derivative of 𝜑, the cosymplectic condition 

can be specified by  

(∇𝑈𝜑)𝑉 = 0, (3) 

for every 𝑈, 𝑉  tangent to 𝑁,  in which ∇  stands for the 

Riemannian connection of the metric <, >  on 𝑁 . 

Furthermore, for cosymplectic manifold  

∇𝑈𝜉 = 0. (4) 

Let 𝑁 be a Riemannian manifold isometrically immersed 

in 𝑁 and induced Riemannian metric on 𝑁 is described by 

the <, > throughout this manuscript. Let ℎ and 𝒜 denote 

second fundamental form and the shape operator, 

respectively, of immersion of 𝑁  into 𝑁 . If ∇  is the 

induced Riemannian connection on 𝑁, then the Gauss and 

Weingarten formulae are presented by [5]  

 ∇̃𝑈𝑉 = ∇𝑈𝑉 + ℎ(𝑈, 𝑉)  (5) 

 and  

∇̃𝑈𝑉 = −𝒜𝑉𝑈 + ∇𝑈
⊥𝑉, (6) 

for any 𝑈, 𝑉 ∈ Γ(𝑇𝑁), 𝑉 ∈ Γ(𝑇⊥𝑁) and ∇⊥ stands for the 

connection on the normal bundle 𝑇⊥𝑁 of 𝑁. 

If 𝑁 is totally geodesic, then ℎ(𝑈, 𝑉) = 0 for all 𝑈, 𝑉 ∈
Γ(𝑇𝑁). 

At this point, one has the following description from [38]:  

Definition 2.1 A submanifold N of an almost Hermitian 

manifold Ñ is known pointwise slant if, for every point 

p ∈ N , the Wirtinger angle θ(U)  is independent of the 

selection of nonzero vector U ∈ Tp
∗N, where Tp

∗N is the 

tangent space of nonzero vectors. Under these conditions, 

θ is known slant function of N.   

Definition 2.2 A submanifold N is known (i) (𝔇1, 𝔇2)-

mixed totally geodesic if h(Z, W) = 0, for any Z ∈ Γ(𝔇1) 

and W ∈ Γ(𝔇2)  (ii) 𝔇-totally geodesic if it is (𝔇, 𝔇) -

mixed totally geodesic [34].  

 

3. POINTWISE QUASI HEMI-SLANT 

SUBMANIFOLDS OF COSYMPLECTIC 

MANIFOLDS 

 

In this section, we are going to present basic definitions 

and lemmas related to PQHS submanifolds of 

cosymplectic manifolds. 

Definition 3.1  A submanifold N  of cosymplectic 

manifolds (Ñ, φ, ξ, η, <, >) is known PQHS if there exist 

distributions 𝔇, 𝔇θ and 𝔇⊥ such that    

(i) 𝑇𝑁 = 𝔇 ⊕ 𝔇𝜃 ⊕ 𝔇⊥ ⊕< 𝜉 >. 

(ii) The distribution 𝔇 is invariant, i.e. 𝜑𝔇 = 𝔇. 

(iii) For a vector field which is different from zero 𝑈 ∈
(𝔇𝜃)𝑝  , 𝑝 ∈ 𝑁 , the angle 𝜃  between 𝜑𝑈  and (𝔇𝜃)𝑝  is 

slant function and is independent of the choice of the point 

𝑝 and 𝑈 in (𝔇𝜃)𝑝.  
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(iv) The distribution 𝔇⊥  is anti-invariant, i.e., 𝜑𝔇⊥ ⊆
𝑇⊥𝑁.    

The 𝜃  is known as a PQHS angle of 𝑁 . A PQHS 

submanifold 𝑁  is known proper if its pointwise-slant 

function satisfies 𝜃 ≠ 0,
𝜋

2
, and 𝜃 is not constant on 𝑁. 

If we represent by 𝑘1, 𝑘2 and 𝑘3 the dimension of 𝔇, 𝔇𝜃  

and 𝔇⊥, respectively, thus with the usage of generalized 

PQHS submanifold  definition, one can easily see the 

following particular cases;   

(i) 𝑁 is pointwise hemi-slant submanifold when 𝑘1 = 0,   

(ii) 𝑁 is semi-invariant submanifold when 𝑘2 = 0,   

(iii) 𝑁 is pointwise semi-slant submanifold when 𝑘3 = 0. 

  

Let 𝑁  be a PQHS submanifold of a cosymplectic 

manifold 𝑁. Thus, for any 𝑈 ∈ Γ(𝑇𝑁), one has  

𝑈 = 𝑃𝑈 + 𝑄𝑈 + 𝑅𝑈 + 𝜂(𝑈)𝜉, (7) 

in which 𝑃, 𝑄  and 𝑅  stands for the projections on the 

distributions 𝔇, 𝔇𝜃  and 𝔇⊥, respectively.  

𝜑𝑈 = 𝑇𝑈 + 𝐹𝑈, (8) 

where FU and TU are normal and tangential components 

on 𝑁 , respectively. By using (7) and (8), we get 

immediately  

 𝜑𝑈 = 𝑇𝑃𝑈 + 𝐹𝑃𝑈 + 𝑇𝑄𝑈 + 𝐹𝑄𝑈 + 𝑇𝑅𝑈 + 𝐹𝑅𝑈, 

in which due to the fact that 𝜑𝔇 = 𝔇, one has 𝐹𝑃𝑈 = 0. 

Therefore, one gets  

𝜑(𝑇𝑁) = 𝔇 ⊕ 𝑇𝔇𝜃 ⊕ 𝐹𝔇𝜃 ⊕ 𝜑𝔇⊥  

and  

𝑇⊥𝑁 = 𝐹𝔇𝜃 ⊕ 𝜑𝔇⊥ ⊕ 𝜇,  

in which 𝜇  stands for the orthogonal complement of 

𝐹𝔇𝜃 ⊕ 𝜑𝔇⊥ in 𝑇⊥𝑁 and 𝜑𝜇 = 𝜇. At the same time, for 

every 𝑍 ∈ 𝑇⊥𝑁, one has  

𝜑𝑍 = 𝐵𝑍 + 𝐶𝑍, (9) 

in which 𝐵𝑍 ∈ Γ(𝔇𝜃 ⊕ 𝔇⊥) and 𝐶𝑍 ∈ Γ(𝜇). 

When the condition (iii) given in Definition 3.1 is used 

together with (8) and (9), one obtains the followings: 

𝑇𝔇 = 𝔇,    𝑇𝔇𝜃 = 𝔇𝜃 ,    𝑇𝔇⊥ = {0},    𝐵𝐹𝔇𝜃 = 𝔇𝜃 ,   
𝐵𝐹𝔇⊥ = 𝔇⊥.  

When Eqs. (8) and (9) are used, one obtains the following 

Lemma.  

Lemma 3.2  Let N be a PQHS submanifold of an almost 

contact metric manifold Ñ. Therefore, one has  

(𝑎) 𝑇2𝑈 = −(cos2𝜃)𝑈,    (𝑏) 𝐵𝐹𝑈 = −(sin2𝜃)𝑈,  

(𝑐) 𝑇2𝑈 + 𝐵𝐹𝑈 = −𝑈,    (𝑑) 𝐹𝑇𝑈 + 𝐶𝐹𝑈 = 0,  

for any 𝑈 ∈ 𝔇𝜃 .  

With the help of (3), (8) and (9) and Definition 3.1, one 

obtains the following Lemma.  

Lemma 3.3  Let N be a PQHS submanifold of an almost 

contact metric manifold Ñ. Then, we have   

(i)  < 𝑇𝑈, 𝑇𝑉 >= (cos2𝜃) < 𝑈, 𝑉 >, 

(ii)  < 𝐹𝑈, 𝐹𝑉 >= (sin2𝜃) < 𝑈, 𝑉 >, 

for any 𝑈, 𝑉 ∈ Γ(𝔇𝜃).   

Proof. One can follow a similar way presented in 

Proposition 2.8 of [38].  

When Eqs. (3), (5), (6), (8) and (9) are used and the 

normal and tangential components are compared, one has 

the following:  

Lemma 3.4 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ. Therefore, one obtains  

∇𝑈𝑇𝑉 − 𝐴𝐹𝑉𝑈 − 𝑇∇𝑈𝑉 − 𝐵ℎ(𝑈, 𝑉) = 0  

and  

ℎ(𝑈, 𝑇𝑉) + ∇𝑈
⊥𝐹𝑉 − 𝐹(∇𝑈𝑉) − 𝐶ℎ(𝑈, 𝑉) = 0,  

for all 𝑈, 𝑉 ∈ Γ(𝑇𝑁).   

Lemma 3.5 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ. Thus, one has  

(∇̃𝑈𝑇)𝑉 = 𝐴𝐹𝑉𝑈 + 𝐵ℎ(𝑈, 𝑉), 

(∇̃𝑈𝐹)𝑉 = 𝐶ℎ(𝑈, 𝑉) − ℎ(𝑈, 𝑇𝑉), 

for any 𝑈, 𝑉 ∈ Γ(𝑇𝑁).   

Lemma 3.6  N be PQHS submanifold of a cosymplectic 

manifold Ñ. Thus, one has  

𝑇([𝑈, 𝑉]) = 𝐴𝜑𝑉𝑈 − 𝐴𝜑𝑈𝑉 

and  

𝐹([𝑈, 𝑉]) = ∇𝑈
⊥𝜑𝑉 − ∇𝑉

⊥𝜑𝑈, 

for any 𝑈, 𝑉 ∈ 𝔇⊥.   

Proof. Let 𝑈, 𝑉 ∈ Γ(𝔇⊥), then  

(∇̃𝑈𝜑)𝑉 = ∇̃𝑈𝜑𝑉 − 𝜑(∇̃𝑈𝑉).  

Taking into account of (3) in the above equation, we have  

−𝐴𝜑𝑉𝑈 + ∇𝑈
⊥𝜑𝑉 − 𝑇∇𝑈𝑉 − 𝐹∇𝑈𝑉 −

                   𝐵ℎ(𝑈, 𝑉) − 𝐶ℎ(𝑈, 𝑉) = 0.  

When the normal and tangential parts are compared in the 

equation given above, one obtains  

−𝐴𝜑𝑉𝑈 − 𝑇∇𝑈𝑉 − 𝐵ℎ(𝑈, 𝑉) = 0 (10) 



 

Tr. Doğa ve Fen Derg. Cilt 12, Sayı 1, Sayfa 108-116, 2023     Tr. J. Nature Sci. Volume 12, Issue 1, Page 108-116, 2023 
 

 

111 

and  

∇𝑈
⊥𝜑𝑉 − 𝐹∇𝑈𝑉 − 𝐶ℎ(𝑈, 𝑉) = 0. (11) 

From equations (10) and (11), one may conclude the the 

statement of Lemma 3.6.  

Lemma 3.7 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ. Under these assumptions, we 

have   

(i)  < [𝑈, 𝑉], 𝜉 >= 0, 

(ii)   < ∇̃𝑈𝑉, 𝜉 >= 0, 

for all 𝑈, 𝑉 ∈ (𝔇 ⊕ 𝔇𝜃 ⊕ 𝔇⊥).    

 

4. BASIC RESULTS  

 

Theorem 4.1 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ . Then, 𝔇  is integrable if and 

only if 

< ℎ(𝑉, 𝑇𝑈), 𝐹𝑄𝑍 > −< ℎ(𝑈, 𝑇𝑉), 𝐹𝑍 > 

=< ∇𝑈𝑇𝑉 − ∇𝑉𝑇𝑈, 𝑇𝑄𝑍 > 

+< 𝑇∇𝑉𝑇𝑈 + 𝐵ℎ(𝑉, 𝑇𝑈), 𝑅𝑍 >, 

where 𝑈, 𝑉 ∈ Γ(𝔇), 𝑍 = 𝑄𝑍 + 𝑅𝑍 ∈ Γ(𝔇𝜃 ⊕ 𝔇⊥).  

Proof. The distribution 𝔇 is integrable on 𝑁 if and only if 

< [𝑈, 𝑉], 𝜉 >= 0    𝑎𝑛𝑑    < [𝑈, 𝑉], 𝑍 >, 

for all 𝑈, 𝑉 ∈ Γ(𝔇), 𝑍 = 𝑄𝑍 + 𝑅𝑍 ∈ Γ(𝔇𝜃 ⊕ 𝔇⊥). For 

any 𝑉 ∈ Γ(𝔇) , one has < 𝑉, 𝜉 >= 0 . Taking the 

covariant derivative of (4) along 𝑈, one has  

< ∇̃𝑈𝑉, 𝜉 > +< 𝑉, ∇̃𝑈𝜉 >= 0. (12) 

From the equations (4) and (12), we obtain  

< [𝑈, 𝑉], 𝜉 >=< ∇̃𝑈𝑉, 𝜉 > −< 𝑉, ∇̃𝑈𝜉, >= 0. 

Next, for every 𝑈, 𝑉 ∈ Γ(𝔇)  and 𝑍 = 𝑄𝑍 + 𝑅𝑍 ∈
Γ(𝔇 ⊕ 𝔇𝜃). Using (5), (8) and 𝐹𝑉 = 0 for all 𝑉 ∈ Γ(𝔇), 

we get  

< [𝑈, 𝑉], 𝑍 >=< ∇̃𝑈𝜑𝑉, 𝜑𝑍 > −< ∇̃𝑉𝜑𝑈, 𝜑𝑍 >  

        =< ∇̃𝑈𝑇𝑉, 𝑇𝑄𝑍 + 𝐹𝑄𝑍 > +< ∇̃𝑈𝑇𝑉, 𝐹𝑅𝑍 >  

         −< ∇̃𝑉𝑇𝑈, 𝜑𝑄𝑍 + 𝜑𝑅𝑍 >.  

By using (9) in the above equation, we have  

< [𝑈, 𝑉], 𝑍 >=< ∇𝑈𝑇𝑉, 𝑇𝑄𝑍 > +< ℎ(𝑈, 𝑇𝑉), 𝐹𝑄𝑍 > 

                  +< ℎ(𝑈, 𝑇𝑉), 𝐹𝑅𝑍 >    +< 𝜑(∇̃𝑉𝑇𝑈), 𝑅𝑍 >    

                  −< ∇̃𝑉𝑇𝑈, 𝑇𝑄𝑍 + 𝐹𝑄𝑍 >  

               =< ∇𝑈𝑇𝑉 − ∇𝑉𝑇𝑈, 𝑇𝑄𝑍 > +< ℎ(𝑈, 𝑇𝑉), 𝐹𝑍 > 

+< 𝑇∇𝑉𝑇𝑈 + 𝐵ℎ(𝑉, 𝑇𝑈), 𝑅𝑍 >  

                 −< ℎ(𝑉, 𝑇𝑈), 𝐹𝑄𝑍 > (13) 

The proof comes from (13).  

Theorem 4.2 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ. Then, 𝔇θ  is integrable if and 

only if  

sin(2𝜃) 𝑍(𝜃) < 𝑈, 𝑉 > −𝑐𝑜𝑠2𝜃 < ∇𝑍𝑈, 𝑉 > 

=< 𝐴𝐶𝐹𝑈𝑉 − ∇𝑉𝐵𝐹𝑈, 𝑍 > 

                          +< ∇𝑉𝑇𝑈, 𝑇𝑃𝑍)−< ∇𝑍𝐵𝐹𝑈, 𝑉 >,     

where 𝑈, 𝑉 ∈ Γ(𝔇𝜃), 𝑍 = 𝑃𝑍 + 𝑅𝑍 ∈ Γ(𝔇 ⊕ 𝔇⊥).   

Proof. For every 𝑈, 𝑉 ∈ Γ(𝔇𝜃), 𝑍 = 𝑃𝑍 + 𝑅𝑍 ∈ Γ(𝔇 ⊕
𝔇⊥), utilizing (2), (3), (8) and (9), one has  

< [𝑈, 𝑉], 𝑍 >=< ∇̃𝑈𝑉, 𝑍 > −< ∇̃𝑉𝑈, 𝑍 >  

            = −< ∇̃𝑍𝜑𝑈, 𝜑𝑉 > −< [𝑈, 𝑍], 𝑉 > 

                     −< ∇̃𝑉𝜑𝑈, 𝜑𝑍 >    

                   =< ∇̃𝑍𝑇2𝑈, 𝑉 > +< ∇̃𝑍𝐹𝑇𝑈, 𝑉 >     

    +< ∇̃𝑍𝐵𝐹𝑈 + 𝐶𝐹𝑈, 𝑉 > −< [𝑈, 𝑍], 𝑉 >   

                   −< ∇̃𝑉𝑇𝑈, 𝜑𝑍 > −< ∇̃𝑉𝐹𝑈, 𝜑𝑍 >. (14) 

On the other hand, taking into account of Lemmma 3.2, 

using (5), (6), equation (14)  

< [𝑈, 𝑉], 𝑍 > = sin(2𝜃) 𝑍(𝜃) < 𝑈, 𝑉 > 

              +cos2𝜃  < ∇̃𝑈𝑉, Z > −sin2𝜃 < [𝑈, 𝑍], 𝑉 >
               +< ∇𝑍𝐵𝐹𝑈, 𝑉 >  −< ∇𝑉𝑇𝑈, 𝑇𝑃𝑍 >                

               +< ∇𝑉𝐵𝐹𝑈 − 𝐴𝐶𝐹𝑈𝑉, 𝑍 >  

              = sin(2𝜃)𝑍(𝜃) < 𝑈, 𝑉 > −𝑐𝑜𝑠2𝜃 < ∇𝑍𝑈, 𝑉 >   

             +< ∇𝑍𝐵𝐹𝑈, 𝑉 > −< ∇𝑉𝑇𝑈, 𝑇𝑃𝑍 >    

                +< ∇𝑉𝐵𝐹𝑈 − 𝐴𝐶𝐹𝑈𝑉, 𝑍 >.    (15) 

The proof comes from (15).   

Theorem 4.3 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ. Then, 𝔇⊥ is integrable if and 

onl if  

< 𝑇([𝑈, 𝑉]), 𝑇𝑃𝑍 − 𝑄𝑍 >=< 𝐵𝐹([𝑈, 𝑉]), 𝑄𝑍 >, 

where 𝑈, 𝑉 ∈ Γ(𝔇⊥), 𝑍 = 𝑃𝑍 + 𝑄𝑍 ∈ Γ(𝔇 ⊕ 𝔇𝜃).   

Proof. For any 𝑈, 𝑉 ∈ Γ(𝔇⊥),  𝑍 = 𝑃𝑍 + 𝑄𝑍 ∈ Γ(𝔇 ⊕
𝔇𝜃), by using (2), (3), (6), one obtains  

< [𝑈, 𝑉], 𝑍 >=< ∇̃𝑈𝜑𝑉, 𝜑𝑍 > −< ∇̃𝑉𝜑𝑈, 𝜑𝑍 > 

 =< −𝐴𝜑𝑉𝑈 + ∇𝑈
⊥𝜑𝑉, 𝜑𝑃𝑍 >  
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  +< 𝜑(𝐴𝜑𝑉𝑈 − ∇𝑈
⊥𝜑𝑉), 𝑄𝑍 >  

   +< 𝐴𝜑𝑈𝑉 − ∇𝑉
⊥𝜑𝑈, 𝑇𝑃𝑍 >  

   +< 𝜑(∇𝑉
⊥𝜑𝑈 − 𝐴𝜑𝑈𝑉), 𝑄𝑍 >. (16) 

By virtue of (8) and (9), equation (16)  

< [𝑈, 𝑉], 𝑍 >=< 𝐴𝜑𝑈𝑉 − 𝐴𝜑𝑉𝑈, 𝑇𝑃𝑍 > 

          +< 𝑇(𝐴𝜑𝑉𝑈 − 𝐴𝜑𝑈𝑉), 𝑄𝑍 >  

          +< 𝐵(∇𝑉
⊥𝜑𝑈 − ∇𝑈

⊥𝜑𝑉), 𝑄𝑍 >.  

From Lemma 3.6, one has  

< [𝑈, 𝑉], 𝑍 > =< 𝑇([𝑈, 𝑉]), 𝑇𝑃𝑍 − 𝑄𝑍 > 

                      −< 𝐵𝐹([𝑈, 𝑉]), 𝑄𝑍 >. (17) 

Hence the proof follows from (17).   

Theorem 4.4 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ . Then, 𝔇  defines a totally 

geodesic foliation on N if and only if  

< 𝑇∇𝑈𝑇𝑉 + 𝐵ℎ(𝑈, 𝑇𝑉), 𝑄𝑍 >=< ℎ(𝑈, 𝑇𝑉), 𝐹𝑅𝑍 > 

and  

< ∇𝑈𝑉, 𝑇𝐵𝑊 >=< 𝐹∇𝑈𝑉 + 𝐶ℎ(𝑈, 𝑉), 𝐶𝑊 >, 

where 𝑈, 𝑉 ∈ Γ(𝔇) , 𝑍 = 𝑄𝑍 + 𝑅𝑍 ∈ Γ(𝔇𝜃 ⊕ 𝔇⊥)  and 

𝑊 ∈ Γ(𝑇𝑁)⊥.   

Proof. For every 𝑈, 𝑉 ∈ Γ(𝔇), 𝑍 = 𝑄𝑍 + 𝑅𝑍 ∈ Γ(𝔇𝜃 ⊕
𝔇⊥), utilizing (2), (5), (8) and (9), one has  

       < ∇̃𝑈𝑉, 𝑍 >=< ∇̃𝑈𝜑𝑉, 𝜑𝑍 > 

         =< ∇̃𝑈𝑇𝑉, 𝜑𝑄𝑍 > +< ∇̃𝑈𝑇𝑉, 𝜑𝑅𝑍 >  

                = −< 𝜑(∇𝑈𝑇𝑉 + ℎ(𝑈, 𝑇𝑉)), 𝑄𝑍 > 

                          +< ℎ(𝑈, 𝑇𝑉), 𝜑𝑅𝑍 > 

         = −< 𝑇∇𝑈𝑇𝑉 + 𝐵ℎ(𝑈, 𝑇𝑉), 𝑄𝑍 > 

      +< ℎ(𝑈, 𝑇𝑉), 𝐹𝑅𝑍 >. (18) 

Now, for all 𝑊 ∈ Γ(𝑇𝑁)⊥ and 𝑈, 𝑉 ∈ Γ(𝔇), we get   

< ∇̃𝑈𝑉, 𝑊 >=< ∇̃𝑈𝜑𝑉, 𝐵𝑊 + 𝐶𝑊 > 

= −< ∇̃𝑈𝑉, 𝜑𝐵𝑊 + 𝜑𝐶𝑊 > 

         = −< ∇𝑈𝑉, 𝑇𝐵𝑊 > +< 𝜑∇̃𝑈𝑉, 𝐶𝑊 > 

                          = −< ∇𝑈𝑉, 𝑇𝐵𝑊 > 

        +< 𝐹∇𝑈𝑉 + 𝐶ℎ(𝑈, 𝑉), 𝐶𝑊 >. (19) 

Thus from (18) and (19), which achieves the proof.  

Theorem 4.5 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ . Then, 𝔇θ  defines a totally 

geodesic foliation on N if and only if 

cos2𝜃 < [𝑈, 𝑍], 𝑉 > + sin(2𝜃) 𝑍(𝜃) < 𝑈, 𝑉 > 

        =< 𝑇∇𝑍𝑇𝑈 + 𝐵ℎ(𝑍, 𝑇𝑈), 𝑉 > 

and  

< 𝐹𝐴𝐹𝑉𝑈, 𝑊 >=< 𝐶∇𝑈
⊥𝐹𝑉 + ∇𝑈

⊥𝐹𝑇𝑉, 𝑊 >, 

where 𝑈, 𝑉 ∈ Γ(𝔇𝜃), 𝑍 = 𝑃𝑍 + 𝑅𝑍 ∈ Γ(𝔇 ⊕ 𝔇⊥)  and 

𝑊 ∈ Γ(𝑇𝑁)⊥.   

Proof. For every 𝑈, 𝑉 ∈ Γ(𝔇𝜃), 𝑍 = 𝑃𝑍 + 𝑅𝑍 ∈ Γ(𝔇 ⊕
𝔇⊥), utilizing (2), (5), (8) and (9), we have  

< ∇̃𝑈𝑉, 𝑍 >= 𝑈 < 𝑉, 𝑍 > −< 𝑉, ∇̃𝑈𝑍 > 

     = −< [𝑈, 𝑍], 𝑉 > −< ∇̃𝑍𝜑𝑈, 𝜑𝑉 > 

                     −< ∇̃𝑍𝐹𝑈, 𝜑𝑉 > 

      = −< [𝑈, 𝑍], 𝑉 > +< 𝑇∇𝑍𝑇𝑈, 𝑉 > 

          +< 𝐵ℎ(𝑍, 𝑇𝑈), 𝑉 >  +< ∇̃𝑍𝐵𝐹𝑈, 𝑉 > 

                     +< ∇̃𝑍𝐶𝐹𝑈, 𝑉 >.  

Then from (6), Lemma 3.2 and using the property of slant 

function, we get  

< ∇̃𝑈𝑉, 𝑍 >= −< [𝑈, 𝑍] + 𝑇∇𝑍𝑇𝑈 + 𝐵ℎ(𝑍, 𝑇𝑈), 𝑉 > 

                    −< ∇̃𝑍sin2𝜃𝑈 − 𝐴𝐶𝐹𝑈𝑍, 𝑉 > 

               = −sin(2𝜃)𝑍(𝜃) < 𝑈, 𝑉 > −sin2𝜃 < ∇̃𝑍𝑈, 𝑉 > 

             −< [𝑈, 𝑍] + 𝑇∇𝑍𝑇𝑈 + 𝐵ℎ(𝑍, 𝑇𝑈), 𝑉 >.     (20) 

From (20), we obtain  

cos2𝜃 < ∇̃𝑈𝑉, 𝑍 >= −cos2𝜃 < [𝑈, 𝑍], 𝑉  >       

                                  −sin(2𝜃)𝑍(𝜃) < 𝑈, 𝑉 > 

                +< 𝑇∇𝑍𝑇𝑈 + 𝐵ℎ(𝑍, 𝑇𝑈), 𝑉 >. (21) 

 Now, for every 𝑊 ∈ Γ(𝑇𝑁)⊥, with the help of (2), (6), 

(8) and Lemma 3.2, we have  

< ∇̃𝑈𝑉, 𝑊 >=< ∇̃𝑈𝜑𝑉, 𝜑𝑊 > 

 = −< ∇̃𝑈𝑇2𝑉 − ∇̃𝑈𝐹𝑇𝑉, 𝑊 > 

       −< 𝜑(−𝐴𝐹𝑉𝑈 + ∇𝑈
⊥𝐹𝑉), 𝑊 >,  

which gives  

sin2𝜃 < ∇̃𝑈𝑉, 𝑊 >=< 𝐹𝐴𝐹𝑉𝑈 − ∇𝑈
⊥𝐹𝑇𝑉 −

𝐶∇𝑈
⊥𝐹𝑉, 𝑊 >. (22) 

Thus from (21) and (22), which achieves the proof .  
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Theorem 4.6 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ . Then, 𝔇⊥  defines a totally 

geodesic foliation on N if and only if  

< 𝐴𝐹𝑉𝑈, 𝑇𝑄𝑍 > =< ∇𝑈
⊥𝐹𝑉, 𝐹𝑄𝑍 >    

and 

    < 𝐴𝐹𝑉𝑈, 𝐵𝑊 >=< ∇𝑈
⊥𝐹𝑉, 𝐶𝑊 >, 

where 𝑈, 𝑉 ∈ Γ(𝔇⊥) , 𝑍 = 𝑃𝑍 + 𝑄𝑍 ∈ Γ(𝔇 ⊕ 𝔇𝜃)  and 

𝑊 ∈ Γ(𝑇𝑁)⊥.   

Proof. For all 𝑈, 𝑉 ∈ Γ(𝔇⊥) , 𝑍 = 𝑃𝑍 + 𝑄𝑍 ∈ Γ(𝔇 ⊕
𝔇𝜃), using (2), (6) and (8), one has  

< ∇̃𝑈𝑉, 𝑍 >=< ∇̃𝑈𝜑𝑉, 𝜑𝑍 > 

               =< ∇̃𝑈𝜑𝑉, 𝜑𝑃𝑍 + 𝜑𝑄𝑍 >    

=< −𝐴𝜑𝑉𝑈 + ∇𝑈
⊥𝜑𝑉, 𝐹𝑃𝑍 >  

              +< −𝐴𝐹𝑉𝑈 + ∇𝑈
⊥𝐹𝑉, 𝑇𝑄𝑍 + 𝐹𝑄𝑍 >  

                = −<   𝐴𝐹𝑉𝑈, 𝑇𝑄𝑍 > +< ∇𝑈
⊥𝐹𝑉, 𝐹𝑄𝑍 >. (23) 

Now, for every 𝑈, 𝑉 ∈ Γ(𝔇⊥) and 𝑊 ∈ Γ(𝑇𝑁)⊥, utilizing 

(2), (6), (9), we get  

< ∇̃𝑈𝑉, 𝑊 >=< ∇̃𝑈𝐹𝑉, 𝐵𝑊 + 𝐶𝑊 > 

   = −< 𝐴𝐹𝑉𝑈, 𝐵𝑊 > +< ∇𝑈
⊥𝐹𝑉, 𝐶𝑊 >.  (24) 

The proof comes from (23) and (24).  

Theorem 4.7 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ. Then, 𝔇 is totally geodesic if 

and only if 

< 𝑇∇𝑈𝑉 + 𝐵ℎ(𝑈, 𝑉), 𝐵𝑊 > 

= −< 𝐹∇𝑈𝑉 + 𝐶ℎ(𝑈, 𝑉), 𝐶𝑊 >, 

where 𝑈, 𝑉 ∈ Γ(𝔇) and 𝑊 ∈ Γ(𝑇𝑁)⊥.  

Proof. For any 𝑈, 𝑉 ∈ Γ(𝔇) and 𝑊 ∈ Γ(𝑇𝑁)⊥, by using 

(2), (5) , (8) and (9), we have  

< (ℎ(𝑈, 𝑉), 𝑊 >=< ∇̃𝑈𝜑𝑉, 𝜑𝑊 > 

                    =< 𝜑∇̃𝑈𝑉, 𝐵𝑊 > +< 𝜑∇̃𝑈𝑉, 𝐶𝑊 > 

        =< 𝑇∇𝑈𝑉 + 𝐵ℎ(𝑈, 𝑉), 𝐵𝑊 > 

                         +< 𝐹∇𝑈𝑉 + 𝐶ℎ(𝑈, 𝑉), 𝐶𝑊 >. (25) 

The proof comes from (25).   

Theorem 4.8 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ. Then, 𝔇θ is totally geodesic if 

and only if  

< 𝐴𝑊𝑈, 𝐵𝐹𝑉 >=< ∇𝑈
⊥𝑊, 𝐶𝐹𝑉 + 𝐹𝑇𝑉 >, 

where 𝑈, 𝑉 ∈ Γ(𝔇𝜃) and 𝑊 ∈ Γ(𝑇𝑁)⊥.   

Proof. For any 𝑈, 𝑉 ∈ Γ(𝔇𝜃) and 𝑊 ∈ Γ(𝑇𝑁)⊥, by using 

(2) and (8), we get  

< ℎ(𝑈, 𝑉), 𝑊 >= −< ∇̃𝑈𝜑𝑊, 𝜑𝑉 > 

                   =< ∇̃𝑈𝑊, 𝜑𝑇𝑉 > +< ∇̃𝑈𝑊, 𝜑𝐹𝑉 > 

=< ∇̃𝑈𝑊, 𝑇2𝑉 + 𝐹𝑇𝑉 > 

            +< ∇̃𝑈𝑊, 𝐵𝐹𝑉 + 𝐶𝐹𝑉 >. (26) 

Taking into account of (6) and from Lemma 3.2, equation 

(26)  

< ℎ(𝑈, 𝑉), 𝑊 > = cos2𝜃 < ∇̃𝑈𝑉, 𝑊 > 

+< ∇𝑈
⊥𝑊, 𝐹𝑇𝑉 + 𝐶𝐹𝑉 > 

            −< 𝐴𝑊𝑈, 𝐵𝐹𝑉 >. (27) 

From (27), we obtain  

sin2𝜃 < ∇̃𝑈𝑉, 𝑊 >=< ∇𝑈
⊥𝑊, 𝐹𝑇𝑉 + 𝐶𝐹𝑉 > 

   −< 𝐴𝑊𝑈, 𝐵𝐹𝑉 >. 

This implies  

< ℎ(𝑈, 𝑉), 𝑊 > = csc2𝜃{< ∇𝑈
⊥𝑊, 𝐹𝑇𝑉 + 𝐶𝐹𝑉 > 

                                     −< 𝐴𝑊𝑈, 𝐵𝐹𝑉 >}. (28) 

Thus from (28), which achieves the proof.   

Theorem 4.9 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ. Then, 𝔇⊥ is totally geodesic if 

and only if 

< 𝐵∇𝑈
⊥𝑊 − 𝑇𝐴𝑊𝑈, 𝑇𝑉 >=< 𝐹𝐴𝑊𝑉 − 𝐶∇𝑈

⊥𝑊, 𝐹𝑉 >, 

where 𝑈, 𝑉 ∈ Γ(𝔇⊥) and 𝑊 ∈ Γ(𝑇𝑁)⊥.   

Proof. For any 𝑈, 𝑉 ∈ Γ(𝔇⊥) and 𝑊 ∈ Γ(𝑇𝑁)⊥, by using 

(2), (6), (8) and (9), we have  

< ℎ(𝑈, 𝑉), 𝑊 >= −< ∇̃𝑈𝜑𝑊, 𝜑𝑉 > 

            = −< 𝜑(−𝐴𝑊𝑈 + ∇𝑈
⊥𝑊), 𝜑𝑉 > 

   =< 𝑇𝐴𝑊𝑈 − 𝐵∇𝑈
⊥𝑊, 𝑇𝑉 > 

                            +< 𝐹𝐴𝑊𝑉 − 𝐶∇𝑈
⊥𝑊, 𝐹𝑉 >. (29) 

The proof comes from (29).  

Theorem 4.10 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ . Then, 𝔇 − 𝔇θ  mixed totally 

geodesic if and only if 

< 𝐹𝐴𝐹𝑉𝑈 − ∇𝑈
⊥𝐹𝑇𝑉 − 𝐶∇𝑈

⊥𝐹𝑉, 𝑊 >= 0, 

where 𝑈 ∈ Γ(𝔇), 𝑉 ∈ Γ(𝔇𝜃) and 𝑊 ∈ Γ(𝑇𝑁)⊥.   
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Proof. For any 𝑈 ∈ Γ(𝔇), 𝑉 ∈ Γ(𝔇𝜃) and 𝑊 ∈ Γ(𝑇𝑁)⊥, 

by using (2), (5), (6), (8), (9) and from Lemma 3.2, one 

can obtain  

< ℎ(𝑈, 𝑉), 𝑊 >=< ∇̃𝑈𝜑𝑉, 𝜑𝑊 > 

           =< ∇̃𝑈𝑇𝑉, 𝜑𝑊 > +< ∇̃𝑈𝐹𝑉, 𝜑𝑊 > 

                       =< ∇̃𝑈𝑇2𝑉 + 𝐹𝑇𝑉, 𝑊 > −< 𝜑∇̃𝑈𝐹𝑉, 𝑊 > 

                = cos2𝜃 < ∇̃𝑈𝑉, 𝑊 > −< ∇𝑈
⊥𝐹𝑇𝑉, 𝑊 > 

        −< 𝜑∇̃𝑈𝐹𝑉, 𝑊 >. (30) 

From equation (30), we have  

                sin2𝜃 < ℎ(𝑈, 𝑉), 𝑊 > 

=< 𝐹𝐴𝑇𝑉𝑈 − ∇𝑈
⊥𝐹𝑇𝑉 − 𝐶∇𝑈

⊥𝐹𝑉, 𝑊 >, 

which gives  

         < ℎ(𝑈, 𝑉), 𝑊 > 

= csc2𝜃{< 𝐹𝐴𝐹𝑉𝑈 − ∇𝑈
⊥𝐹𝑇𝑉 − 𝐶∇𝑈

⊥𝐹𝑉, 𝑊 >}, 

which completes the proof.   

Theorem 4.11 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ . Then, 𝔇 − 𝔇⊥  mixed totally 

geodesic if and only if 

∇𝑉𝐵𝑊 − 𝐴𝐶𝑊𝑉 ∈ Γ(𝔇⊥), 

where 𝑈 ∈ Γ(𝔇), 𝑉 ∈ Γ(𝔇⊥) and 𝑊 ∈ Γ(𝑇𝑁)⊥.   

Proof. For every 𝑈 ∈ Γ(𝔇) , 𝑉 ∈ Γ(𝔇⊥)  and 𝑊 ∈
Γ(𝑇𝑁)⊥, by using (2), (5), (6), (8) and (9), we get  

< ℎ(𝑈, 𝑉), 𝑊 >= −< ∇̃𝑉𝜑𝑊, 𝜑𝑈 > 

= −< ∇̃𝑉𝐵𝑊 + 𝐶𝑊, 𝑇𝑈 > 

          = −< ∇𝑉𝐵𝑊 − 𝐴𝐶𝑊𝑉, 𝑇𝑈 >. (31) 

The proof comes from (31).  

Theorem 4.12 Let N  be a PQHS submanifold of a 

cosymplectic manifold Ñ. Then, 𝔇θ − 𝔇⊥ mixed totally 

geodesic if and only if  

< 𝐴𝐹𝑉𝑈, 𝐵𝑊 >=< ∇𝑈
⊥𝐹𝑉, 𝐶𝑊 >, 

where 𝑈 ∈ Γ(𝔇𝜃), 𝑉 ∈ Γ(𝔇⊥) and 𝑊 ∈ Γ(𝑇𝑁)⊥.  

Proof. For every 𝑈 ∈ Γ(𝔇𝜃) , 𝑉 ∈ Γ(𝔇⊥)  and 𝑊 ∈
Γ(𝑇𝑁)⊥, by using (2), (5), (6), (8) and (9), one has  

< ℎ(𝑈, 𝑉), 𝑊 >=< ∇̃𝑈𝜑𝑉, 𝜑𝑊 > 

                         =< ∇̃𝑈𝐹𝑉, 𝐵𝑊 + 𝐶𝑊 > 

                         =< ∇𝑈
⊥𝐹𝑉, 𝐶𝑊 > −< 𝐴𝐹𝑉𝑈, 𝐵𝑊 >. (32) 

The proof comes from (32).  

Finally, we mention the following examples.  

 

5. EXAMPLES  

 

Example 5.1 For θ ∈ (0,
π

2
), consider a submanifold N of 

a cosymplectic manifold Ñ described by immersion f as 

follows:  

 𝑓(𝜃, 𝑢, 𝑤, 𝑠, 𝑚, 𝑛, 𝑧) =

(
√3

2
𝑤, 0, 0, −

𝑤

2
, 𝑢2, −sin𝜃, 𝑢2, cos𝜃, 𝑠, 0, 𝑢2, −sin𝜃, 𝑢2, cos𝜃, 𝑚, 𝑛, 𝑧). 

By aid of simple calculations, one can easily control that 

the tangent bundle of 𝑁  is spanned by the set 

{𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7}, where  

𝑋1 = −cos𝜃
𝜕

𝜕𝑦3

− sin𝜃
𝜕

𝜕𝑦4

− cos𝜃
𝜕

𝜕𝑦6

− sin𝜃
𝜕

𝜕𝑦7

, 

𝑋2 = 2𝑢
𝜕

𝜕𝑥3

+ 2𝑢
𝜕

𝜕𝑥4

+ 2𝑢
𝜕

𝜕𝑥6

+ 2𝑢
𝜕

𝜕𝑥7

, 

𝑋3 =
√3

2

𝜕

𝜕𝑥1

−
1

2

𝜕

𝜕𝑦2

,        𝑋4 =
𝜕

𝜕𝑥5

, 

𝑋5 =
𝜕

𝜕𝑥8

,        𝑋6 =
𝜕

𝜕𝑦8

,        𝑋7 =
𝜕

𝜕𝑧
. 

𝜑 be the (1,1) tensor field defined by  

𝜑 (
𝜕

𝜕𝑥𝑖

) = −
𝜕

𝜕𝑦𝑖

,    𝜑 (
𝜕

𝜕𝑦𝑗

) =
𝜕

𝜕𝑥𝑗

,    

 𝜑(
𝜕

𝜕𝑧
) = 0,    1 ≤ 𝑖, 𝑗 ≤ 8. 

If the linearity of 𝜑 and <, > is used, one has  

𝜑2 = −𝐼 + 𝜂 ⊗ 𝜉,        𝜑𝜉 = 0,        𝜂(𝜉) = 1, 

< 𝜑𝑈, 𝜑𝑉 >=< 𝑈, 𝑉 > −𝜂(𝑈)𝜂(𝑉), 

for every 𝑈, 𝑉 ∈ Γ(𝑇𝑁) . Hence (𝑁, 𝜑, 𝜉, 𝜂, <, >)  is 

almost contact metric manifold. At the same time, one can 

easily illustrate that (𝑁, 𝜑, 𝜉, 𝜂, <, >)  is a cosymplectic 

manifold of dimension 17. Thus we have  

𝜑𝑋1 = −cos𝜃
𝜕

𝜕𝑥3

− sin𝜃
𝜕

𝜕𝑥4

− cos𝜃
𝜕

𝜕𝑥6

− sin𝜃
𝜕

𝜕𝑥7

, 

𝜑𝑋2 = −2𝑢
𝜕

𝜕𝑦3

− 2𝑢
𝜕

𝜕𝑦4

− 2𝑢
𝜕

𝜕𝑦6

− 2𝑢
𝜕

𝜕𝑦7

, 

𝜑𝑋3 = −
√3

2

𝜕

𝜕𝑦1

−
1

2

𝜕

𝜕𝑥2

,        𝜑𝑋4 = −
𝜕

𝜕𝑦5

, 

𝜑𝑋5 = −
𝜕

𝜕𝑦8

,        𝜑𝑋6 =
𝜕

𝜕𝑥8

,        𝜑𝑋7 = 0. 

With simple computations, one can obtain 𝔇 =
𝑆𝑝𝑎𝑛{𝑋5, 𝑋6}  is an invariant,  𝔇𝜃 = 𝑆𝑝𝑎𝑛{𝑋1, 𝑋2}  is a 

pointwise slant with slant function −cos−1(
sin2𝜃

√2
)  and 
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𝔇⊥ = 𝑆𝑝𝑎𝑛{𝑋3, 𝑋4}  is anti-invariant. Thus 𝑓  defines a 

proper 7 -dimensional PQHS submanifold in 

cosymplectic manifold 𝑁.   

Example 5.2 For θ ∈ (0,
π

2
)  and k ∈ R  consider a 

submanifold N  of a cosymplectic manifold Ñ  described 

by immersion γ as follows:  

𝛾(𝑢, 𝑣, 𝑤, 𝜃, 𝑠, 𝑡, 𝑞) =  (𝑢, 𝑤, 0,
𝑠

√2
, 0,

𝑡

√2
, 0, 𝑣,             

                      cos(𝜃 + 𝑘), −sin(𝜃 + 𝑘),0,
𝑠

√2
, 0,

𝑡

√2
, 𝑞). 

One can obviously observe the fact that the tangent bundle 

of N is spanned by the tangent vectors  

𝑍1 =
𝜕

𝜕𝑥1

,            𝑍2 =
𝜕

𝜕𝑦1

,            𝑍3 =
𝜕

𝜕𝑥2

, 

𝑍4 = cos(𝜃 + 𝑘)
𝜕

𝜕𝑦2

− sin(𝜃 + 𝑘)
𝜕

𝜕𝑦3

, 

𝑍5 =
1

√2
(

𝜕

𝜕𝑥4
+

𝜕

𝜕𝑦5
),   𝑍6 =

1

√2
(

𝜕

𝜕𝑥6
+

𝜕

𝜕𝑦7
),   

   𝑍7 =
𝜕

𝜕𝑧
. 

One can describe (1,1)-tensor field 𝜑 as  

𝜑(
𝜕

𝜕𝑥𝑖

) =
𝜕

𝜕𝑦𝑖

,    𝜑(
𝜕

𝜕𝑦𝑗

) = −
𝜕

𝜕𝑥𝑗

,    ∀𝑖, 𝑗 = 1, . . . ,7. 

When the linearity of 𝜑 and <, >, one has  

𝜑2 = −𝐼 + 𝜂 ⊗ 𝜉,        𝜑𝜉 = 0,        𝜂(𝜉) = 1, 

< 𝜑𝑈, 𝜑𝑉 >=< 𝑈, 𝑉 > −𝜂(𝑈)𝜂(𝑉), 

for every 𝑈, 𝑉 ∈ Γ(𝑇𝑁) . Hence (𝑁, 𝜑, 𝜉, 𝜂, <, >)  is 

almost contact metric manifold. At the same time, it can 

be obviously seen that (𝑁, 𝜑, 𝜉, 𝜂, <, >) is a cosymplectic 

manifold of dimension 15. Thus we have  

𝜑𝑍1 =
𝜕

𝜕𝑦1

,            𝜑𝑍2 = −
𝜕

𝜕𝑥1

,            𝜑𝑍3 =
𝜕

𝜕𝑦2

, 

𝜑𝑍4 = −cos(𝜃 + 𝑘)
𝜕

𝜕𝑥2

+ sin(𝜃 + 𝑘)
𝜕

𝜕𝑥3

, 

𝜑𝑍5 =
1

2
(

𝜕

𝜕𝑦4

−
𝜕

𝜕𝑥5

),     𝜑𝑍6 =
1

2
(

𝜕

𝜕𝑦6

−
𝜕

𝜕𝑥7

),   

 𝜑𝑍7 = 0. 

Now, let the distributions 𝔇 = 𝑆𝑝𝑎𝑛{𝑍1, 𝑍2} , 𝔇𝜃 =
𝑆𝑝𝑎𝑛{𝑍3, 𝑍4} , 𝔇⊥ = 𝑆𝑝𝑎𝑛{𝑍5, 𝑍6} . Then obviously 𝔇 , 

𝔇𝜃  and 𝔇⊥ satisfy the definition of pointwise quasi hemi 

slant of a cosymplectic manifold. Thus 𝛾 defines a proper 

7-dimensional PQHS submanifold of 𝑅15 with pointwise 

slant function (𝜃 + 𝑘).   

6. CONCLUSION 

 

In this paper, we have presented a novel class of 

submanifolds of cosymplectic manifolds that may be seen 

as a generalization of quasi hemi-slant, hemi-slant, slant 

etc. submanifolds. Moreover, conditions for such 

distributions to be integrable, totally geodesic foliation, 

totally geodesic and mixed totally geodesic are obtained.  
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