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Abstract 

Physics and engineering problems require a detailed knowledge of applied mathematics and an understanding of special functions such 

as gamma and beta functions. The topic of special functions is very important and it is constantly expanding with the existence of new 

problems in the applied sciences. In this article, we describe the basic theory of gamma and beta functions, their connections with each 

other and their applicability to engineering problems. 
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Gamma ve Beta Fonksiyonlarının Teorisi Üzerine Bir Not 

Öz 

Fizik ve mühendislik problemleri detaylı bir uygulamalı matematik bilgisini ve gamma ve beta fonksiyonları gibi özel fonksiyonların 

anlaşılmasını gerektirir. Özel fonksiyonlar konusu çok önemlidir ve uygulamalı bilimlerdeki yeni problemlerin varlığı ile sürekli 

genişlemektedir. Biz bu makalede, gamma ve beta fonksiyonlarının temel teorisini, birbirleriyle olan bağlantılarını ve mühendislik 

problemlerine uygulanabilirliklerini açıklıyoruz.  
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1. Introduction 

This research includes the definition and the theory of 

classical special functions. Euler, Gauss, Fourier, Bessel, 

Legendre spent much time on this topic (Jaabar and Hussain, 

2021). Besides applied fields such as fluid dynamics, 

mathematical physics, engineering and other applied sciences 

special functions have been a wide range of application areas in 

pure mathematics. Knowledge of the properties of gamma and 

beta functions, which are among the simplest and most important 

functions, is essential for understanding of many other functions, 

especially hypergeometric functions. In recent years, there have 

been important studies on the extensions of those functions 

(Naresh et al., 2021; Rahul et al. 2022; Chaudry et al., 1997). 

2. The Gamma Function 

Definition 2.1: 

The gamma function is defined as follows: 

Γ(𝑎) = ∫ 𝑥𝑎−1𝑒−𝑥∞

0
𝑑𝑥                  (1) 

where 𝑅𝑒(𝑎) > 0 and 𝑎 ∈ ∁ . This formula was found by Euler 

(Euler, 1729) and the notation Γ(𝑎) was introduced by Legendre 

(Legendre, 1814). The literature on the gamma function consists 

of thousands of pages and includes almost 300 years of researches 

in English, Latin, German and other languages (Rıcardo, 2021). 

The gamma function provides 

Γ(𝑎 + 1) = 𝑎 ∫ 𝑒−𝑥∞

0
𝑥𝑎−1𝑑𝑥 = 𝑎Γ(𝑎)               (2) 

the recurrence relation. This relation is called the Euler’s 

functional equation, discovered by Euler in 1729 (Euler, 1729)  

and this equality gives us the basic property of factorial. 

From equation (2) we can write  

Γ(𝑎 + 1) = 𝑎(𝑎 − 1)Γ(𝑎 − 1), 

Γ(𝑎 + 1) = 𝑎(𝑎 − 1)(𝑎 − 2)Γ(𝑎 − 2), 

If we continue in this way, from Γ(1) = 1 then we reach the 

following result: 

Γ(𝑎 + 1) = 𝑎!                               (3)                                                                                                  

This result is called the Euler’s functional equation, which was 

discovered by Euler in 1729 (Euler, 1729). 

Hovewer, the gamma function we have defined for positive values 

of 𝑎 can also be defined for negative values of 𝑎.  

  (−1 < 𝑎 < 0) Γ(𝑎) can be found since Γ(𝑎 + 1) is known. 

Γ(𝑎) =
Γ(𝑎 + 1)

𝑎
    (0 < 𝑎 + 1 < 1) 

 (−2 < 𝑎 < −1)  Γ(𝑎) can be found since Γ(𝑎 + 2) is known. 

Γ(𝑎) =
Γ(𝑎 + 2)

𝑎(𝑎 + 1)
                                    (0 < 𝑎 + 2 < 1) 

 (−3 < 𝑎 < −2)  Γ(𝑎) can be found since Γ(𝑎 + 3) is known. 

Γ(𝑎) =
Γ(𝑎 + 3)

𝑎(𝑎 + 1)(𝑎 + 2)
                       (0 < 𝑎 + 3 < 1) 

Similarly, for  −𝑛 < 𝑎 < −𝑛 + 1,  Γ(𝑎) can be found since 

Γ(𝑎 + 𝑛) is known. 

Γ(𝑎) =
Γ(𝑎 + 𝑛)

𝑎(𝑎 + 1)(𝑎 + 2) … . . (𝑎 + 𝑛 − 1)
   (0 < 𝑎 + 𝑛 < 1) 

The above equations show that gamma function is unbounded 

for zero and negative integers and it is finite for all other values 

of 𝑎. 

Theorem 2.1:    

 Γ (
1

2
) = √𝜋.                  (4) 

This property of the gamma function was found by Euler (Euler, 

1729) and discussed by Luke (Luke, 1969) and Bell (Bell, 1968). 

Theorem 2.2:  

Γ(𝑎)Γ(1 − 𝑎) =
𝜋

sin (𝜋𝑧)
 ,                 (5) 

where 𝑅𝑒(𝑎) > 0 and 𝑎 ∈ ∁. This formula is called Euler's 

completion formula (Euler, 1771). 

Theorem 2.3:  

Γ(2𝑎) Γ (
1

2
) = 22𝑎−1 Γ(𝑎) Γ (𝑎 +

1

2
),              (6) 

where 𝑎 ∈ ∁\𝑍0
−. This formula is called Legendre's duplication 

formula (Legendre, 1814). 

Theorem 2.4:  

If  𝑅𝑒(𝑎) > 0 , 𝑅𝑒(𝑏) > 0 and 𝑎 ∈ ∁ and 𝑏 ∈ ∁ then we write 

∫ 𝑐𝑜𝑠𝑎−1𝑡 𝑠𝑖𝑛𝑏−1𝑡
𝜋/2

0
𝑑𝑡 =

1

2

Γ(
𝑎

2
)Γ(

𝑎

2
)

Γ(
𝑎+𝑏

2
)

 .                     (7) 

This property was first defined by Whittaker (Whittaker, 1902).  

 

3. The Pochhammer symbol  

Definition 3.1:  

If  𝑧 ∈ 𝑅 or 𝑧 ∈ ∁ and 𝑟 is zero or a positive integer then we write 
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 (𝑧)𝑟 = 𝑧(𝑧 + 1)(𝑧 + 2) ⋯ (𝑧 + 𝑟 − 1).                                 (8) 

The above expression is known as the Pochhammer symbol and 

it was first defined by Pochhammer (Pochhammer, 1870). 

From the known properties of gamma function, the following 

features of Pochhammer symbol can be written (Temme, 2011). 

  Γ(𝑧 + 𝑟) = (𝑧 + 𝑟 − 1)Γ(𝑧 + 𝑟 − 1) 

 Γ(𝑧 + 𝑟) = (𝑧 + 𝑟 − 1)(𝑧 + 𝑟 − 2)Γ(𝑧 + 𝑟 − 2) 

     … 

Γ(𝑧 + 𝑟) = (𝑧 + 𝑟 − 1)(𝑧 + 𝑟 − 2) … (𝑧 + 1)𝑧 Γ(𝑧) 

         Γ(𝑧 + 𝑟) = (𝑧)𝑟 Γ(𝑧),  

 (𝑧)𝑟 =
Γ(𝑧+𝑟)

 Γ(𝑧)
,                                                                            (9) 

and 

(𝑧)𝑟+1 =
Γ(𝑧+𝑟+1)

 Γ(𝑧)
=

zΓ(𝑧+𝑟+1)

𝑧Γ(𝑧)
= 𝑧

Γ((𝑧+1)+𝑟)

Γ(𝑧+1)
= 𝑧(𝑧 + 1)𝑟 .              

                (10) 

Specially, if we take 𝑟 = 0 in equation (9), it is seen that 

 (𝑧)0 = 1. 

4. The Beta function 

Definition 4.1: 

The Beta function is defined as follows: 

B(𝑎, 𝑏) = ∫ 𝑥𝑎−1(1 − 𝑥)𝑏−11

0
𝑑𝑥,                                       (11) 

 

where 𝑅𝑒(𝑎) > 0 , 𝑅𝑒(𝑏) > 0. This formula was found by Euler 

(Euler, 1771) and by Legendre (Legendre, 1814). 

If we define a new integration variable 𝑥 = 𝑘/(1 + 𝑘) , then (11) 

becomes  

B(𝑎, 𝑏) = ∫
𝑘𝑎−1

(1+𝑘)𝑎+𝑏  𝑑𝑘
∞

0
.                            (12)                                 

The expression of beta function in terms of the gamma function 

is as follows: 

𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
 .                                                                   (13) 

If we choose 𝑎 + 𝑏 = 1 in equation (12), then  

B(𝑎, 1 − 𝑎) = ∫
𝑘𝑎−1

1 + 𝑘
 𝑑𝑘 =

𝜋

sin 𝜋𝑎
 .        0 < 𝑎 < 1

∞

0

 

Using the above property, we can see that Γ (
1

2
) = √𝜋 such that 

for 𝑎 =
1

2
  , 

𝐵 (
1

2
, 1 −

1

2
) = 𝐵 (

1

2
,

1

2
) =

Γ(
1

2
)Γ(

1

2
)

Γ(
1

2
+

1

2
)

=
[Γ(

1

2
)]

2

Γ(1)
=

𝜋

sin 
𝜋

2

= 𝜋 , 

    [Γ (
1

2
)]

2

= 𝜋   ,    Γ (
1

2
) = √𝜋 . 

Also, beta function is symmetric to its variables (Temme, 2011): 

𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
=

Γ(𝑏)Γ(𝑎)

Γ(𝑏+𝑎)
= 𝐵(𝑏, 𝑎).                 (14)                      

 

Theorem 4.1:    

B(𝑎, 𝑏) = ∫ 𝑥𝑎−1(1 + 𝑥)−(𝑎+𝑏)∞

0
𝑑𝑥  

and 

B(𝑎, 𝑏) = B(𝑎 + 1, 𝑏) + B(𝑎, 𝑏 + 1) . 

This results were found by Watson and Whittaker (Whittaker et 

al. 1927).

5. Conclusion  

In this paper, we introduced some important and fundamental 

properties and the theory of Gamma function, Pochammer 

symbols, Beta function and we discussed the relation with other 

definitions. We believe that these analyzes will be useful for 

researchers to understand the theory of gamma and beta functions. 
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