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Abstract. Existence, uniqueness, and asymptotic stability of modulo peri-
odic Poisson stable solutions of dynamic equations on a periodic time scale

are investigated. The model under investigation involves a term which is con-
structed via a Poisson stable sequence. Novel definitions for Poisson stable

as well as modulo periodic Poisson stable functions on time scales are given,

and the reduction technique to systems of impulsive differential equations is
utilized to achieve the main result. An example which confirms the theoretical

results is provided.

1. Introduction and Preliminaries

Poisson stable motions, which were first introduced by Poincaré [29], include
the cases of oscillations such as periodic, quasi-periodic, almost periodic, almost
automorphic, recurrent, and pseudo-recurrent ones [8,9,14,21,37]. Results on Pois-
son stable solutions for stochastic differential equations and a class of fourth-order
dynamical systems can be found in the studies [13, 27, 28]. Recently, a new type
of flow called modulo periodic Poisson stable (MPPS) was introduced in paper [5],
where the authors also considered the presence of MPPS trajectories in quasilin-
ear systems of ordinary differential equations. In the interest of brevity, MPPS
trajectories are the ones which can be decomposed as the sum of periodic and
Poisson stable functions. Motivated by the importance of oscillations in real world
processes [12, 15, 18, 31, 36] and various application fields of dynamic equations on
time scales [23–26,32,34,35], in this study, we investigate the existence, uniqueness,
and asymptotic stability of MPPS solutions in such equations. To the best of our
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knowledge this is the first time in the literature that Poisson stable as well as MPPS
solutions are introduced and investigated for dynamic equations on time scales.

In the literature, the concept of dynamic equations on time scales has started
with Hilger [19]. This concept, in general, unifies the studies of differential and
difference equations. The basic definitions concerning dynamic equations on time
scales are as follows [1, 11, 22]. A time scale is a nonempty closed subset of R. On
a time scale T, the forward jump operator is defined by σ(t) = inf {s ∈ T : s > t},
whereas ρ(t) = sup {s ∈ T : s < t} is the backward jump operator. A point t ∈ T
is called right-dense if σ(t) = t and it is called right-scattered if σ(t) > t. Similarly,
t ∈ T is said to be left-dense, left-scattered if ρ(t) = t, ρ(t) < t, respectively. We say
that a function u : T → Rm is rd-continuous if it is continuous at each right-dense
point and its left-sided limit exists in each left-dense point. If t is a right-scattered
point of T, then the delta derivative u∆ of a continuous function u is defined to be

u∆(t) =
u(σ(t))− u(t)

σ(t)− t
. (1)

Additionally, we have

u∆(t) = lim
r→t,r∈T

u(t)− u(r)

t− r
(2)

at a right-dense point t, provided that the limit exists.
It was shown by Akhmet and Turan [6] that dynamic equations on time scales

which are union of disjoint closed intervals with positive length can be transformed
to systems of impulsive differential equations. In the present study we make use of
the technique introduced in [6] to investigate MPPS solutions of dynamic equations
on a periodic time scale. More precisely, we take into account the time scale

T0 =

∞⋃
k=−∞

[θ2k−1, θ2k] , (3)

where for each integer k the terms of the sequence {θk}k∈Z are defined by the
equations

θ2k−1 = θ + δ + (k − 1)ω, θ2k = θ + kω, (4)

in which θ is a fixed real number and ω, δ are positive numbers such that ω > δ.
The time scale T0 is periodic with period ω since t± ω ∈ T0 whenever t ∈ T0, and

θ2k+1 − θ2k = δ, k ∈ Z.

For details of periodic time scales the reader is referred to [20], and some appli-
cations of dynamic equations on such time scales can be found in [10, 16, 17]. It
is worth noting that for each k ∈ Z, the points θ2k are right-scattered and left-
dense, the points θ2k−1 are left-scattered and right-dense, and σ(θ2k) = θ2k+1,
ρ(θ2k+1) = θ2k.
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Our main object of investigation is the equation

y∆(t) = Ay(t) + f(t) + g(t), (5)

where t ∈ T0, A ∈ Rm×m is a constant matrix, f : T0 → Rm is an rd-continuous
function such that

f(t+ ω) = f(t) (6)

for each t ∈ T0, the function g : T0 → Rm is defined by

g(t) = γk (7)

for t ∈ [θ2k−1, θ2k], k ∈ Z, and {γk}k∈Z is a bounded sequence in Rm. In this paper
we rigorously prove that if the sequence {γk}k∈Z is positively Poisson stable [33],
then system (5) possesses a unique asymptotically stable MPPS solution.

It was shown in [5] that an MPPS function is Poisson stable if the corresponding
Poisson number is zero. However, in this study, the structure of the function g(t) in
(5), which is defined by means of the sequence {γk}k∈Z, allows us to make discussion
for the Poisson stability of the MPPS solution without taking into account the
Poisson number.

The rest of the paper is organized as follows. In Section 2, we utilize the technique
introduced in [6] to reduce (5) to an impulsive system. We investigate the presence
of bounded solutions of the reduced impulsive system and hereby the ones for (5)
in Section 3. The new definitions of positively Poisson stable and MPPS functions
defined on time scales are provided in Section 4. Moreover, in that section we
rigorously prove the existence and uniqueness of an asymptotically stable MPPS
solution of system (5). Section 5, on the other hand, is devoted to an example, which
confirms the theoretical results. Finally, some concluding remarks are provided in
Section 6.

2. Reduction to Impulsive Systems

In this section we make use of the ψ-substitution method introduced by Akhmet
and Turan [6,7] to reduce dynamic equation (5) to a system of impulsive differential
equations.

We assume without loss of generality that θ−1 < 0 ≤ θ0. On the set

T′
0 = T0 \ {θ2k−1 : k ∈ Z} ,

let us consider the ψ-substitution defined through the equation

ψ(t) = t− kδ, θ2k−1 < t ≤ θ2k (8)

for each integer k [6]. The function ψ : T′
0 → R is one-to-one and onto, ψ(0) = 0,

lim
t→∞, t∈T′

0

ψ(t) = ∞, and

ψ−1(s) = s+ kδ, sk−1 < s ≤ sk (9)



910 F. TOKMAK FEN, M. O. FEN

for each integer k, where sk = ψ(θ2k). Equation (8) yields

sk = θ + k(ω − δ), (10)

and accordingly, we have sk+1 = sk + ω − δ for k ∈ Z.
The function ψ−1 : R → T′

0 defined by (9) is piecewise continuous, and it has
discontinuities of the first kind at the points sk, k ∈ Z, such that ψ−1(sk+) −
ψ−1(sk) = δ with ψ−1(sk+) = lim

s→s+k

ψ−1(s). Moreover, dψ(t)/dt = 1 for t ∈ T′
0 and

dψ−1(s)/ds = 1 for s ∈ R \ {sk : k ∈ Z} [6]. Since ψ(ω) = ω − δ, one can attain
by means of Corollary 12 [6] that the equality

ψ(t+ ω) = ψ(t) + ω − δ (11)

is fulfilled for each t ∈ T′
0.

In what follows Crd(T) stands for the set of all functions φ(t) : T → Rm which
are rd-continuous on a time scale T.

As a consequence of Lemma 13 and Lemma 14 mentioned in paper [6], we have
the following assertion.

Lemma 1. A function φ(t) ∈ Crd(T0) is periodic with period ω if and only if the
function φ(ψ−1(s)) is periodic on R with period ω − δ.

Utilizing the descriptions of the delta derivative at right-scattered and right-
dense points given respectively by (1) and (2), one can express system (5) in the
form

y′(t) = Ay(t) + f(t) + g(t), t ∈ T′
0,

y(θ2k+1) = y(θ2k) + δ (Ay(θ2k) + f(θ2k) + γk) . (12)

The substitution s = ψ(t), where ψ(t) is defined by (8), transforms (12) to the
impulsive system

x′(s) = Ax(s) + f
(
ψ−1(s)

)
+ g

(
ψ−1(s)

)
, s ̸= sk,

∆x
∣∣
s=sk

= δ
(
Ax(sk) + f

(
ψ−1(sk)

)
+ γk

)
, (13)

where x(s) = y
(
ψ−1(s)

)
, ∆x

∣∣
s=sk

= x(sk+)− x(sk), x(sk+) = lim
s→s+k

x(s), and the

sequence {sk}k∈Z of impulse moments is defined by (10).
It is worth noting that if a function x̃(s) : R → Rm is a solution of the impulsive

system (13), then the function ỹ(t) : T0 → Rm defined by ỹ(t) = x̃(ψ(t)) for t ∈ T′
0

with ỹ(θ2k+1) = x̃(sk+), k ∈ Z, is a solution of (5), and vice versa.
Existence, uniqueness, and asymptotic stability of the bounded solution for sys-

tem (5) is investigated in the next section.
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3. Bounded Solutions

In the remaining parts of the paper we will denote by i(J) the number of the
terms of the sequence {sk}k∈Z which take place in an interval J . One can confirm
using (10) that

i([r + ω − δ, s+ ω − δ)) = i([r, s)) (14)

for every s, r ∈ R with s > r.
Let us denote by U(s, r) the matriciant [2,30] of the linear homogeneous impul-

sive system

x′(s) = Ax(s), s ̸= sk,

∆x
∣∣
s=sk

= δAx(sk)

such that U(s, s) = I. The equation

U(s, r) = eA(s−r)(I + δA)i([r,s)) (15)

is fulfilled for s > r.
The following assumptions are required.

(A1) det(I + δA) ̸= 0, where I is the m×m identity matrix;
(A2) All eigenvalues of the matrix e(ω−δ)A(I + δA) lie inside the unit circle.

In the sequel we use the Euclidean norm for vectors and the spectral norm for
square matrices. Under the assumptions (A1) and (A2) there exist real numbers
N ≥ 1 and λ > 0 such that

∥U(s, r)∥ ≤ Ne−λ(s−r) (16)

for s ≥ r [30].
It is demonstrated in Theorem 87 [30] that the impulsive system (13) possesses

a unique solution ϕ(s) which is bounded on the real axis and satisfies the equation

ϕ(s) =

∫ s

−∞
U(s, r)

(
f
(
ψ−1(r)

)
+ g

(
ψ−1(r)

))
dr

+ δ
∑

−∞<sk<s

U(s, sk+)
(
f
(
ψ−1(sk)

)
+ γk

)
, (17)

provided that (A1) and (A2) hold. It can be verified that∥∥∥∫ s

−∞
U(s, r)

(
f
(
ψ−1(r)

)
+ g

(
ψ−1(r)

))
dr
∥∥∥ ≤ N(Mf +Mγ)

λ
(18)

and ∥∥∥ ∑
−∞<sk<s

U(s, sk+)
(
f
(
ψ−1(sk)

)
+ γk

) ∥∥∥ ≤ N(Mf +Mγ)

1− e−λ(ω−δ)
, (19)

where

Mf = sup
t∈T0

∥f(t)∥ (20)
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and

Mγ = sup
k∈Z

∥γk∥ . (21)

The inequalities (18) and (19) imply that

sup
s∈R

∥ϕ(s)∥ ≤ N(Mf +Mγ)

(
1

λ
+

δ

1− e−λ(ω−δ)

)
.

Therefore, the function ϑ(t) : T0 → Rm defined by

ϑ(t) = ϕ(ψ(t)), t ∈ T′
0, (22)

and satisfying

ϑ(θ2k+1) = ϕ(sk+), k ∈ Z, (23)

is the unique solution of system (5) which is bounded on T0 such that

sup
t∈T0

∥ϑ(t)∥ ≤ N(Mf +Mγ)

(
1

λ
+

δ

1− e−λ(ω−δ)

)
.

The asymptotic stability of the bounded solution ϑ(t) is discussed in the following
assertion.

Lemma 2. If the assumptions (A1) and (A2) are valid, then the bounded solution
ϑ(t) of system (5) is asymptotically stable.

Proof. Let us consider a solution ϑ̃(t) of system (5) satisfying ϑ̃(t0) = ϑ0 for some

t0 ∈ T′
0 and ϑ0 ∈ Rm. We denote ϕ̃(s) = ϑ̃

(
ψ−1(s)

)
and define ϕ0 = ϕ (ψ(t0)). For

s > ψ(t0), using the equations

ϕ(s) = U (s, ψ(t0))ϕ0 +

∫ s

ψ(t0)

U(s, r)
(
f
(
ψ−1(r)

)
+ g

(
ψ−1(r)

))
dr

+ δ
∑

ψ(t0)<sk<s

U(s, sk+)
(
f
(
ψ−1(sk)

)
+ γk

)
and

ϕ̃(s) = U (s, ψ(t0))ϑ0 +

∫ s

ψ(t0)

U(s, r)
(
f
(
ψ−1(r)

)
+ g

(
ψ−1(r)

))
dr

+ δ
∑

ψ(t0)<sk<s

U(s, sk+)
(
f
(
ψ−1(sk)

)
+ γk

)
,

we obtain ∥∥ϕ(s)− ϕ̃(s)
∥∥ ≤ N ∥ϕ0 − ϑ0∥ e−λ(s−ψ(t0)).

Thus, ∥∥ϑ(t)− ϑ̃(t)
∥∥ ≤ N ∥ϕ0 − ϑ0∥ e−λ(ψ(t)−ψ(t0)), t > t0.
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The last inequality implies that the bounded solution ϑ(t) of (5) is asymptotically
stable. □

The main result of the present paper is provided in the next section.

4. Modulo Periodic Poisson Stable Solutions

The following definition is concerned with positively Poisson stable sequences
[33].

Definition 1. ( [33]) A bounded sequence {γk}k∈Z in Rm is called positively Pois-
son stable if there exists a sequence {ζn}n∈N of positive integers which diverges to

infinity such that
∥∥∥γk+ζn − γk

∥∥∥ → 0 as n → ∞ for each k in bounded intervals of

integers.

The definitions of positively Poisson stable and MPPS functions on time scales
are as follows.

Definition 2. Let T be a time scale such that supT = ∞. A bounded function
φ(t) ∈ Crd(T) is called positively Poisson stable if there exists a sequence {ηn}n∈N
which diverges to infinity such that ∥φ(t+ ηn)− φ(t)∥ → 0 as n → ∞ uniformly
on compact subsets of T.

Definition 3. Let T be a time scale such that there exists a positive number ω with
t ± ω ∈ T whenever t ∈ T. A function φ(t) ∈ Crd(T) is called a modulo periodic
Poisson stable function if φ(t) = φ1(t)+φ2(t) for every t ∈ T in which the function
φ1 ∈ Crd(T) is periodic and φ2 ∈ Crd(T) is positively Poisson stable.

The main result of the present study is mentioned in the following theorem.

Theorem 1. Suppose that the assumptions (A1) and (A2) are fulfilled. If the
sequence {γk}k∈Z is positively Poisson stable, then system (5) possesses a unique
asymptotically stable MPPS solution.

Proof. The bounded solution ϕ(s) of system (13), which is defined by (17), can be
expressed in the form

ϕ(s) = ϕ1(s) + ϕ2(s), s ∈ R,
where

ϕ1(s) =

∫ s

−∞
U(s, r)f

(
ψ−1(r)

)
dr + δ

∑
−∞<sk<s

U(s, sk+)f
(
ψ−1(sk)

)
(24)

and

ϕ2(s) =

∫ s

−∞
U(s, r)g

(
ψ−1(r)

)
dr + δ

∑
−∞<sk<s

U(s, sk+)γk. (25)

The bounded solution ϑ(t) of system (5), given by (22) and (23), satisfies the
equation

ϑ(t) = ϑ1(t) + ϑ2(t), (26)
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in which the functions ϑ1(t) : T0 → Rm and ϑ2(t) : T0 → Rm are respectively
defined by

ϑ1(t) = ϕ1(ψ(t))

and

ϑ2(t) = ϕ2(ψ(t))

such that the equations ϑ1(θ2k+1) = ϕ1(sk+) and ϑ2(θ2k+1) = ϕ2(sk+) are fulfilled
for each k ∈ Z.

The function ϑ(t) is an asymptotically stable solution of (5) by Lemma 2. In
the rest of the proof, we will show that ϑ(t) is an MPPS function by respectively
demonstrating the periodicity and Poisson stability of ϑ1(t) and ϑ2(t) in accordance
with Definition 3.

Firstly, let us discuss the periodicity of ϑ1(t). We attain by means of (24) that

ϕ1(s+ ω − δ) =

∫ s+ω−δ

−∞
U(s+ ω − δ, r)f

(
ψ−1(r)

)
dr

+ δ
∑

−∞<sk<s+ω−δ

U(s+ ω − δ, sk+)f
(
ψ−1(sk)

)
=

∫ s

−∞
U(s+ ω − δ, r + ω − δ)f

(
ψ−1(r + ω − δ)

)
dr

+ δ
∑

−∞<sk<s

U(s+ ω − δ, sk+1+)f
(
ψ−1(sk+1)

)
. (27)

Equations (14) and (15) yield U(s + ω − δ, r + ω − δ) = U(s, r) for s > r. In
accordance with (6), Lemma 1 implies that f

(
ψ−1(r + ω − δ)

)
= f

(
ψ−1(r)

)
for

r ∈ R and f
(
ψ−1(sk+1)

)
= f

(
ψ−1(sk)

)
for k ∈ Z. Therefore, ϕ1(s) is (ω − δ)-

periodic on R by (27). Utilizing Lemma 1 one more time we obtain that the function
ϑ1(t) is ω-periodic on T0.

Next, we will prove that ϑ2(s) is positively Poisson stable. For that purpose, let
us consider a fixed compact subset C of the time scale T0. There exist integers α and
β with β > α such that C ⊆ [θ2α, θ2β ] ∩ T0. Accordingly we have ψ(C) ⊆ [sα, sβ ].

Take an arbitrary positive number ε and a positive number τ0 with

τ0 ≤ 1

2N(1 + 2Mγ)

(
1

λ
+

δ

1− e−λ(ω−δ)

)−1

. (28)

Moreover, suppose that j is a sufficiently large positive integer satisfying

j ≥ 1

λ(ω − δ)
ln

(
1

τ0ε

)
. (29)

Because {γk}k∈Z is positively Poisson stable, there is a sequence {ζn}n∈N of positive

integers which diverges to infinity such that
∥∥∥γk+ζn − γk

∥∥∥ → 0 as n→ ∞ for each
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k in bounded intervals of integers. Thus, there exists a natural number n0 such
that for n ≥ n0 the inequality∥∥∥γk+ζn − γk

∥∥∥ < τ0ε (30)

holds for each k = α − j + 1, α − j + 2, . . . , β. Accordingly, if n ≥ n0, then the
inequality ∥∥g (ψ−1(s+ µn)

)
− g

(
ψ−1(s)

)∥∥ < τ0ε (31)

is satisfied for sα−j < s ≤ sβ , where µn = (ω − δ)ζn, n ∈ N.
Let us fix a natural number n such that n ≥ n0. Making benefit of (25) one can

obtain

ϕ2(s+ µn)− ϕ2(s) =

∫ s

−∞
U(s, r)

(
g
(
ψ−1(r + µn)

)
− g

(
ψ−1(r)

))
dr

+ δ
∑

−∞<sk<s

U(s, sk+)
(
γk+ζn − γk

)
.

Therefore, for sα−j ≤ s ≤ sβ , we have

∥ϕ2(s+ µn)− ϕ2(s)∥ ≤
∫ sα−j

−∞
Ne−λ(s−r)

∥∥g (ψ−1(r + µn)
)
− g

(
ψ−1(r)

)∥∥ dr
+

∫ s

sα−j

Ne−λ(s−r)
∥∥g (ψ−1(r + µn)

)
− g

(
ψ−1(r)

)∥∥ dr
+ δ

∑
−∞<sk≤sα−j

Ne−λ(s−sk)
∥∥∥γk+ζn − γk

∥∥∥
+ δ

∑
sα−j<sk<s

Ne−λ(s−sk)
∥∥∥γk+ζn − γk

∥∥∥ .
In compliance with (30) and (31), it can be verified that

∥ϕ2(s+ µn)− ϕ2(s)∥ ≤ 2NMγ

∫ sα−j

−∞
e−λ(s−r)dr +Nτ0ε

∫ s

sα−j

e−λ(s−r)dr

+ 2δNMγ

∑
−∞<sk≤sα−j

e−λ(s−sk)

+ δNτ0ε
∑

sα−j<sk<s

e−λ(s−sk)

< 2NMγ

(
1

λ
+

δ

1− e−λ(ω−δ)

)
e−λ(s−sα−j)

+ Nτ0ε

(
1

λ
+

δ

1− e−λ(ω−δ)

)(
1− e−λ(s−sα−j)

)
.
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For s ≥ sα, the inequality e−λ(s−sα−j) ≤ τ0ε is fulfilled since (29) is valid. Hence,
if sα ≤ s ≤ sβ , then

∥ϕ2(s+ µn)− ϕ2(s)∥ < (1 + 2Mγ)

(
1

λ
+

δ

1− e−λ(ω−δ)

)
Nτ0ε.

One can confirm using (28) that

∥ϕ2(s+ µn)− ϕ2(s)∥ <
ε

2
, s ∈ ψ(C). (32)

Now, let us denote

ηn = ωζn (33)

for each n ∈ N. The sequence {ηn}n∈N diverges to infinity since the same is true
for {ζn}n∈N. Equation (11) yields ψ(t) + µn = ψ(t+ ηn), n ∈ N. Hence, according
to (32) we have

∥ϑ2(t+ ηn)− ϑ2(t)∥ <
ε

2
, t ∈ C ∩ T′

0

and

∥ϑ2(θ2k+1 + ηn)− ϑ2(θ2k+1)∥ ≤ ε

2
, k ∈ Z.

Therefore,

sup
t∈C

∥ϑ2(t+ ηn)− ϑ2(t)∥ < ε. (34)

The last inequality ensures that ∥ϑ2(t+ ηn)− ϑ2(t)∥ → 0 as n → ∞ uniformly
on compact subsets of T0. In other words, the function ϑ2(t) is positively Poisson
stable. Thus, the bounded solution ϑ(t) of (5) is an MPPS function. □

In conformity with Theorem 1 we have the following remark.

Remark 1. Suppose that the conditions of Theorem 1 are valid. Using the equation

∥ϑ1(t+ ηn)− ϑ1(t)∥ = 0, t ∈ T0,

together with (34), one can obtain for an arbitrary compact subset C of T0 and an
arbitrary positive number ε that

sup
t∈C

∥ϑ(t+ ηn)− ϑ(t)∥ = sup
t∈C

∥ϑ2(t+ ηn)− ϑ2(t)∥ < ε, n ≥ n0

for some natural number n0, where {ηn}n∈N is the sequence defined by (33) and
ϑ(t) is the bounded solution of (5), which satisfies (26). For that reason ϑ(t) is
positively Poisson stable. In other words, system (5) admits a positively Poisson
stable solution, which is asymptotically stable.

In the next section, an example possessing an MPPS solution is provided.
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5. An Example

According to the result of Theorem 4.1 [3], the logistic map

zk+1 = 3.9zk(1− zk), (35)

where k ∈ Z, admits an orbit {z∗k}k∈Z inside the unit interval [0, 1] which is posi-
tively Poisson stable in the sense of Definition 1.

Let us take into account the time scale T0 =

∞⋃
k=−∞

[θ2k−1, θ2k], where θ2k−1 =

8k−4 and θ2k = 8k+1 for k ∈ Z. The equations (4) are satisfied for the time scale
T0 with ω = 8, δ = 3, and θ = 1.

We consider the system

y∆1 (t) = −2

5
y1(t) +

1

5
y2(t) + cos

(
πt

4

)
+ g1(t),

y∆2 (t) = −1

5
y1(t)−

2

5
y2(t) + sin

(
πt

2

)
+ g2(t), (36)

where t ∈ T0, and the functions g1(t) : T0 → R and g2(t) : T0 → R are respectively
defined by g1(t) = z∗k and g2(t) = 2z∗k for t ∈ [θ2k−1, θ2k], k ∈ Z. It is worth noting
that the sequence {γk}k∈Z given by γk = (z∗k, 2z

∗
k)
T is positively Poisson stable

according to Theorem 3.2 [4]. System (36) is in the form of (5) with

y(t) = (y1(t), y2(t))
T , A =

(
−2/5 1/5
−1/5 −2/5

)
,

f(t) =

(
cos

(
πt

4

)
, sin

(
πt

2

))T
, g(t) = (g1(t), g2(t))

T .

The matrix e5A(I + 3A), where I is the 2 × 2 identity matrix, admits a pair of
complex conjugate eigenvalues both of which are inside the unit circle, and det(I +
3A) = 2/5. The assumptions (A1) and (A2) are satisfied for system (36), and
therefore, it possesses a unique asymptotically stable MPPS solution by Theorem
1. Moreover, the MPPS solution is at the same time positively Poisson stable
according to Remark 1.

6. Conclusion

We take into account a periodic time scale which is the union of infinitely many
disjoint compact intervals with a positive length, and investigate the existence,
uniqueness as well as asymptotic stability of MPPS solutions for dynamic equation
on such time scales. In our discussions we make use of the reduction technique to
impulsive systems introduced in [6]. The Poisson stability in (5) is inherited from
the sequence {γk}k∈Z. The descriptions of positively Poisson stable and MPPS
functions on time scales are newly introduced in the present study. Moreover, it is
shown that the obtained MPPS solutions are at the same time positively Poisson
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stable. Even though in general MPPS functions are not necessarily positively Pois-
son stable [5], this is true in our case owing to the commensurability of the periods
of the time scale T0 and the function f(t) used in (5). In the future, our results
can be developed for differential equations on variable time scales [7].
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