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Abstract 
 
Generation of flood inundation maps is beneficial in flood risk assessment and evaluation. 
Flood inundation mapping can be achieved by many remote sensing techniques like change 
detection (CD) with thresholding and machine learning-based (ML) methods. Optical and 
synthetic aperture radar (SAR) imagery are widely used, provided by different satellite 
systems. This study used Sentinel-1 SAR and Sentinel-2 MSI satellite data in Google Earth 
Engine (GEE) with supervised ML algorithms. Gediz Plain, Turkey was selected as the study 
area, which is an agricultural area covered mostly by croplands. A flood event that 
occurred on February 2, 2021, was examined and flood inundation map for the study area 
was composed. Support Vector Machines (SVM), Random Forest (RF) and K-Nearest 
Neighbor (KNN) ML algorithms were selected and models were trained with manually 
created labelled data in GEE. Also, CD was applied on after and before event SAR images 
in a traditional approach. RF classifier performs best in Sentinel-2 MSI imagery with 94% 
overall classification accuracy where KNN classifier gives 93.3% accuracy value for 
Sentinel-1 SAR dataset, indicating the robustness of SAR imagery for all-weather 
conditions. 
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Özet 
 
Taşkın haritalarının oluşturulması, taşkın sebepli risklerin değerlendirilmesinde oldukça 
faydalıdır. Sel-taşkın haritalaması, eşikleme ile değişiklik tespiti (DT) ve makine öğrenimi 
tabanlı (MÖ) yöntemler gibi birçok uzaktan algılama tekniği ile gerçekleştirilebilmektedir. 
Bu çalışmalarda farklı uydu sistemleri tarafından sağlanan optik ve sentetik açıklıklı radar 
(SAR) görüntüleri yaygın olarak kullanılmaktadır. Bu çalışmada, denetimli MÖ 
algoritmaları ile Google Earth Engine'de (GEE) Sentinel-1 SAR ve Sentinel-2 MSI uydu 
verileri kullanılmıştır. Çalışma alanı olarak Türkiye'nin Gediz Ovası seçilmiştir ve bu alan 
çoğunlukla ekili arazilerle kaplıdır. Bu çalışmada 2021 yılı Şubat ayının ikinci günü meydana 
gelen taşkın olayı incelenmiş ve çalışma alanı için taşkın haritası oluşturulmuştur. Çalışma 
için, Support Vector Machines (SVM), Random Forest (RF) ve K-nearest Neighbor (KNN) MÖ 
algoritmaları seçilmiş ve modeller GEE'de manuel olarak oluşturulan etiketlenmiş verilerle 
eğitilmiştir. Ayrıca geleneksel yaklaşımla olay öncesi ve sonrası SAR görüntülerine DT 
uygulanmıştır. RF sınıflandırıcısı, %94 genel sınıflandırma doğruluğu ile Sentinel-2 MSI 
görüntülerinde en iyi performansı gösterirken, KNN sınıflandırıcı, Sentinel-1 SAR veri 
kümesi için %93,3 doğruluk değeri vererek SAR görüntülerinin tüm hava koşulları için 
uygunluğunu göstermektedir. 
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1. Introduction 
 
Floods are natural disasters that occur as inundations after intense rainfall. They may cause loss of life, property damage, 
and communication line and transportation system failures in urban areas. It is the deadliest kind of disaster with a 
43.5% death ratio (Chen et al. 2021). In remote sensing, satellite data with various spatial and temporal resolutions are 
widely used in a cost-effective way to determine the extent of flooding over large regions. Satellite imagery are 
introduced in two types: optical and synthetic aperture radars (SAR). Landsat and Sentinel-2 missions present optical 
imagery from visible bands to shortwave infrared (SWIR). On the other hand, Sentinel-1 mission provide SAR imagery 
with two polar-orbiting satellites, free of charge (Clement et al. 2018). 

Nowadays, Satellite-borne SARs are used in a large extent for earth observation due to their near real-time all-
weather and all-time capabilities. SAR systems emit radar signals to penetrate obstacles like clouds (Solbø and Solheim, 
2005). SAR systems basically operate on backscatter radio signals reflecting from the surface of terrains like land or 
water and acquired by a satellite sensor. Radio signal strength depends on the roughness of the surface and rough 
surfaces like water are seen as dark in the images. Also, there are some drawbacks of SAR images where returning of 
the radio signal depends on some parameters like rain and winds that may cause waves on the water terrain (Čotar et 
al. 2016). Many satellite systems provide SAR images for use such as Sentinel-1, RADARSAT-1/2, TerraSAR-X and 
ENVISAT ASAR. Sentinel-1A and Sentinel-1B satellites can provide images with a frequency of 6 days but when they 
operate together with two orbits, they can observe any point of the earth in every six days. 

SAR images can be used in various applications like flood extent mapping (Cao et al. 2019), water surface detection 
(Martinis et al. 2015), flood depth estimation (Cian et al. 2018), flooded vegetation detection (Klemas, 2013), flood risk 
assessment (Pramanick et al. 2022), oil spill detection (Topouzelis, 2008) and ship detection (Chang et al. 2019). When 
SAR-based flood extent mapping is the case, many methods and their combinations are used by the researchers.  These 
are, texture analysis (Pradhan et al. 2014), region growing (Baghi and Karami, 2017), supervised classification (Benoudjit 
and Guida, 2019), unsupervised classification (Carincotte et al. 2006) and histogram thresholding (Brown et al. 2016). 
Texture analysis is a technique that examines and calculates textures in an image by using the first order and second 
order statistics. The region growing method calculates similarities between neighboring pixels and creates uniform 
regions while detecting edges. Supervised classification methods require training images labelled as flooded/non-
flooded. Training images can be any image of the event including flooded and non-flooded areas. These areas can be 
manually labelled before training. Also, there are some techniques used to prepare training images automatically by 
applying a log ratio to an image captured before and after the flood event. Following the preparation of the dataset, 
any supervised classifier can be used for the classification of the land cover. Contrary to supervised methods, no labelled 
datasets are required for unsupervised classification methods. Unsupervised methods are mostly used for change 
detection in order to compose difference images. Change detection process provides a difference image by comparing 
the flooding time image with a previous dry scene of the study area.  Generally, a threshold is applied to the difference 
images to classify the flooded areas. Among all these methods, histogram thresholding is the most common technique 
used for flood detection, which basically measures the backscatter signal from the terrain. Initially, a threshold is 
determined by examining the histogram of the event image, and selected threshold is applied to the image to classify it 
as flooded and non-flooded. This threshold can be defined manually by visual observation or automatically, by using 
Schumann’s (Schumann et al. 2010) method, which calculates a global threshold value from the histogram by using 
Otsu’s method (Kurita et al. 1992).  

The objective of this study is to extract the inundation map of a flood event on February 2, 2021, in the Gediz plain, 
located in the western region of Turkey, by using remote sensing data and techniques. The Gediz plain is frequently 
subject to floods.  Local news media agencies give information about the floods on two different days in February 2021. 
According to one news, the first heavy rainfall in the region was on 02.02.2021. Other news dated 14.02.2021 claims 
rainfall during a week. This region is economically important with fertile croplands, mostly as vineyards. In 1951, Turkish 
ministry council has decided a reserve area of 400 m around the Gediz river as a precaution to flood events. Flood 
mapping studies for this region can help officials to take necessary measures in advance. In this study, non-parametric 
supervised classifiers Random Forest (RF) (Breiman, 2001), Support Vector Machines (SVM) (Hsu et al. 2016), and K-
Nearest Neighbor (KNN) (Duda et al. 1973) with optical and synthetic aperture radar (SAR) imagery were used to 
examine the flood extent. Performances of these classifiers were also evaluated on the study area. In a recent study 
(Ozkan and Tarhan, 2016), a flood risk assessment of the Gediz, Bakırçay, and Menderes regions was presented. Our 
study differentiates from this study by specifically focusing on flood mapping on a specific event using remote sensing 
techniques. To our knowledge, no study has been performed with remote sensing techniques with supervised classifiers 
in our study area. 
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2. Study Area 
 
The study area was selected as Gediz River Delta which is located in the Aegean region, in the western part of Turkey. 
Gediz Delta (38◦300 N, 26◦550 E), covering nearly an area of 400 km2, is an ecosystem formed by aluvions drained by 
Gediz River. Gediz River starting from Kütahya (Murat and Şaphane mountains) to Uşak and Manisa provinces ends in 
İzmir province, which is the major province of the region with nearly 4.3 million habitants. Gediz Delta is known with its 
fertile agricultural lands. Menemen plain, a part of the region, supplies nearly 40% of the spinach production of Turkey. 
Also cotton, fruit and legumes are the main farming items in the region (ÇOB, 2007). Gediz Delta, with a biogeographic 
diversity host nearly 80,000 wetland birds in a year (Arslan et al. 2021). The study area is given in Figure 1. 

 

 
 

Figure 1. Study area 

 
Study area, mainly located in Manisa province, with a Mediterranean climate, hot dry summer and mild winter 

conditions. Mean annual rainfall of 724 mm, mostly in winter, 123 mm in January. Long-term mean annual temperature 
is 17°C, with minimum and maximum values of 3°C and 10°C in January, respectively. Highest daily rainfall was recorded 
on 12.23.1986 with the value 163,5 mm (MGM, 2023).   

Gediz Delta was selected for investigation because of the recurrent flooding events on the fertile agricultural fields. 
According to news media in April, 2012, heavy rainfall over levelled the Demirköprü Dam and officials released the 
extent water out of the Dam in a controlled way. But this caused 30 thousand m2 area to inundate and crops were 
damaged.  
 

3. Data and Methods 
 
In this study Sentinel-1 SAR and Sentinel-2 MSI data products are used for flood inundation mapping of the Gediz plain. 
For the flood event, Sentinel-2 MSI data was used for validation by using spectral indices due to the absence of ground 
truth.  
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Actually, in this study, Sentinel-2 MSI data provided little help in the validation process because of the high cloudiness 
level on the event day and following days. A special SWIR composite obtained from Sentinel-2 MSI satellite with bands 
B12, B2 and B3, apparently showed the flooded areas, with acceptable cloud disturbances. Also, this composite was 
useful for defining polygons to be used for training and validation purposes. Google Earth Engine (GEE) (Gorelick et al. 
2017) is a cloud platform provided by Google Inc. GEE provides high-computing power with an extensive set of satellite 
data and several machine learning (ML) algorithms. GEE platform was used for data access, computing, and visualization. 
 

 3.1 Data 
 
In the scope of this study, images of Sentinel-1 SAR and Sentinel-2 MSI satellite systems introduced by European Space 
Agency (ESA) were used. A huge amount of satellite data is now available and reachable from GEE without charge. 
Sentinel-1 SAR data (VV and VH polarizations) was used for the initial observation of the flood inundation. On the event 
date (02-02-2021) Sentinel-1 SAR image was available while Sentinel-2 MSI image was not available for the event date. 
The earliest optical image was on 06-02-2021 with 10.28% cloudy pixel average. The satellite data used is given in Table 
1. 
 

Table 1. Satellite data obtained and used in GEE as before/after a flood event 
 

Dataset 
Before event 

dates 
After event 

dates 
Spatial Resolution 

(m) 

Sentinel-1  
SAR GRD:C 
Band (VV-

VH) 
 

2020-12-23 2021-02-03 
10 m for VV and VH 

polarizations 

Sentinel-2 
MSI Level 

2-A 

2021-01-17           
2021-01-19 

2021-02-06 

10 m for bands 'B2', 'B3', 
'B4', 'B8', 

20 m for bands 'B11', 'B12' 

 
3.1.1 Selection of Training and Validation Data 
 
Using supervised classification algorithms in GEE requires labelled data. A collection of accurate training samples is 
required to avoid uncertain classification results. For this purpose, training data and validation data were prepared by 
manual interpretation of the study area as polygons by using the GEE interface. Extreme care was taken to select 
polygons as homogenous as possible. Polygon counts are given in Table 2 where S2 and S1 acronyms denote Sentinel-2 
and Sentinel-1 satellites, respectively. 
 

Table 2. Polygon statistics which represent class labels as feature collections 
 

S2 water non-vegetated vegetated forest cloud 

Train 
 

30 30 30 30 10 

Validate 30 30 30 30 10 

S1 water other areas    

Train 
 

20 20    

Validate 20 20    

 
In Table 2, land cover class labels for Sentinel-2 imagery (SWIR composite) were defined as: water, non-vegetated, 

vegetated, forest, and cloud. Cloud was added as a feature in order to visualize the final classification map easily. On 
the other hand, another set of polygons were created for Sentinel-1 SAR imagery classification as water and other areas. 
Distinct polygons were selected for training and validation processes. For each class, polygons are obtained by polygon 
tool on GEE. 

Different approaches were tried to compose accurate polygons. Spectral indices were insufficient to demonstrate 
the flooded areas because of the cloud effect. Therefore, a SWIR composite (bands B12, B2 and B3), given in Figure 2, 
was used to label areas covered with water for water class. Other class labels were selected from the most evident 
spectral indices image (NDWI).   
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Figure 2. SWIR composite (RGB: B12, B2, B3) of the study area 
 
In Figure 2, flooded areas can be seen in blue color mostly surrounded by clouds. This image composite was the most 
obvious one for the flood event when compared to others. For the SAR classification, Sentinel-1 SAR after event image 
(VH) was used to determine the polygons.  
 

3.2 Methods 
 
This study is composed of two stages. In the first stage, generic SAR preprocessing and change analysis methodology 
were applied to find out the inundated areas. In the second stage, supervised classification was applied to optical and 
SAR images, distinctly. The whole methodology workflow of the study is given in Figure 3. 
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Figure 3. Methodology workflow of the study 
 

Satellite data was filtered with region of interest (ROI) i.e. study area, bands needed (VV and VH), event dates, and pass 
direction (DESC) for Sentinel-1. The resulting image was clipped and mosaicked. A speckle filter with a radius of 100m 
was applied for smoothing. On the other hand, for Sentinel-2 Optical images, a cloud filter and time frame filter were 
applied for the nearest event dates using the same ROI. Normalized Difference Vegetation Index (NDVI) (Rouse et al. 
1974), Normalized Difference Water Index (NDWI) (McFeeters, 1996) Normalized Difference Moisture Index (NDMI) 
(Hardisky et al. 1983), and Modified NDWI (MNDWI) (Xu, 2006) spectral indices were calculated for the resulting 
Sentinel-2 collections. Spectral indices were not successful in visualizing flooded areas because of the cloudiness of the 
optical image. NDWI was slightly better when compared to others, and this image was selected for the classification of 
the study area The SWIR composite was composed to observe floodwater and used for creation of polygons as features 
(Figure 3). 
 
3.2.1 SAR Change Detection 
 
Sentinel-1 SAR data was used to expose inundated areas with a change detection method. Although there are several 
methods for change detection like post classification comparison as an unsupervised method, image differencing, image 
rationing and Principal component analysis (PCA). In this study, change detection was applied with image differencing 
technique.   
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This technique operates as subtracting pixel values (as digital numbers) for each corresponding bands and application 
of a threshold value to each band image to delineate the resulting change images. Generally, change images are 
compared to reference images, if they exist, resulting in an error matrix (Afify, 2011).  
 
3.2.2 Classification Algorithms 
 
In this study, Random Forest (RF) (Breiman, 2001), Support Vector Machines (SVM) (Hsu et al. 2016), and K-Nearest 
Neighbor (KNN) (Duda et al. 1973) machine learning (ML) algorithms were used for the classification of optical and SAR 
images. These classifiers are able to classify the input data by learning from the training data. Default parameters were 
used for all three algorithms. Only for RF, number of trees parameter was set to 10. Comparison table for these 
classifiers are given in Table 3. 
 

Table 3. SVM, RF and KNN classifiers advantages/disadvantages (Thanh Noi and Kappas, 2017) 
 

Classifier Advantage Disadvantage 

Support Vector Machine 
(SVM) 

Insensitive to noise/overtraining Less sensitive to training dataset size 

Random Forest (RF) 
Robust to noise in data. 
Insensitive to noise/overtraining 

Size and imbalanced data of training samples 
has more impact on the classification accuracy 

k-Nearest Neighbor  (KNN) 
classifier 

Adjusts to multi class problems 
without any extra efforts. 

Ideal value for the k parameter is hard to set, if 
k is too small it may lead to overfitting  

 
Random Forest (RF) 
 
RF algorithm is widely used in remote sensing applications. It is stable and efficient in runtime. RF combines many 
decision trees which are built during the training process. Training samples and variables are randomly selected. Each 
training sample is assigned to a class by using majority voting within these trees. The performance of the classifier is 
evaluated with samples not used in the training process. For each node, a random feature is selected from the feature 
set to split the tree properly. Generally, two parameters are used in RF: the number of trees and the number of nodes 
(Taheri Dehkordi et al. 2022; Amani et al. 2019). 
 
Support Vector Machines (SVM) 
 
SVM is a supervised ML method which is commonly used for regression and classification purposes. It is advantageous 
to use it when the sample size is small and in high dimensional feature space. SVM aims to find the optimal hyperplanes 
by using the training data to separate classes. Extreme vectors i.e. support vectors are selected to generate the 
hyperplanes.  Kernel function type, gamma value, and cost value are the parameters of this algorithm. The linear kernel 
is used to project the input space to higher spaces when the data volume is high in order to separate the data (Taheri 
Dehkordi et al. 2022; Amani et al. 2019). 
 
K-nearest Neighbor (KNN) 
 
KNN is a non-parametric ML method that is commonly used for statistical applications. The algorithm finds the K-nearest 
samples to unknown samples by using the distance functions. The K value is the single parameter that can be defined 
by using bootstrap techniques (Thanh Noi and Kappas, 2017). 
 
3.2.3 Accuracy Calculation 
 
An error matrix is commonly used to calculate the accuracy of a classification. The degree of closeness of classification 
results to the values accepted as true is measured with accuracy term. Error matrix is used to determine overall accuracy 
consumer accuracy, producer accuracy and kappa statistics (Damtea et al. 2020).  Overall Accuracy (OA) metric is in this 
study, classification accuracy has been calculated as the overall accuracy (OA) after validation and kappa coefficient (κ) 

(Cohen, 1960) was calculated by using the error matrix output of GEE for each classifier.   
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Kappa coefficient is a statistical measure which evaluates the agreement between training and validation.  (κ) takes 
values in range (–1,+1)  and values greater than 0.5 implies that it is in good agreement with classification (Taati et al. 
2015). 
 
3.2.4 Spectral Index Analysis  
 
Optical images which are nearest to the event day (as given in Table 1) were mostly covered with clouds. These image 
composites are given in Figure 4.   
 

 
 

Figure 4. a) Sentinel-2 MSI before event image composite, b) Sentinel-2 MSI after event image 
 

As seen in Figure 4, the image composite representing ‘before event’ dates have a high rate of cloud (left). The right 
image composite has a lower cloud rate but when Sentinel-1 SAR images have been examined it was seen that the 
cloudy area covers most of the flooded area. Because of that, change detection for optical images would not provide 
accurate evidences of flood. Spectral indice usage is an alternative to discriminate areas covered with water in an 
unsupervised manner. In order to discover flooded areas with spectral indices, NDVI (Normalized Difference Vegetation 
Index), NDWI (Normalized Difference Water Index), mNDWI (modified NDWI) and NDMI (Normalized Difference 
Moisture Index) were applied to Sentinel-2 MSI after event image. Formulas are given in Table 4.    

 
Table 4. The spectral indices (Goffi et al. 2020) 

 
Index Formula Reference 

NDVI  
(NIR – RED) / 
(NIR + RED) 

Rouse et al. 1974 

MNDWI 
 (GREEN – SWIR1) / 
(GREEN + SWIR1) 

 
Xu, 2006 

NDWI 
  (GREEN – NIR) / 

(GREEN + NIR) 
McFeeters, 1996 

NDMI 
 (NIR – SWIR) / 
(NIR + SWIR) 

Hardisky, 1983 

 
None of the images composed by spectral indices given in Table 4 was helpful to discriminate land covered with 

water, even special indices for water identification (NDWI, MDNWI). This is mostly because of the cloud overage in 
flooded areas. Output images of spectral indices are given in Figure 5.    
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Figure 5. a) Output images of spectral indices MNDWI, b) NDMI, c) NDVI and d) NDWI 
 

As seen in Figure 5, four of the spectral indices of Sentinel-2 MSI image on 2021-02-06 provide very similar results. After 
visual checking of these images NDWI image was selected to use in class feature selection of non-water areas.  
 

4. Results 
 

4.1 Flood Maps as Outputs of SAR CD 
 
Mosaicked and smoothed Sentinel-1 SAR images representing before and after flood event images for the ROI are given 
in Figure 6. In the VH band image, flooded areas can be seen more clearly in black color when compared to the VV band.  

 

 
 

Figure 6. a) Before event VV SAR image, b) after event VV SAR image, c) before event VH image, d) after event VH 
image 
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In order to observe the changes, change detection was applied (after event minus before event) to mosaicked and 
smoothed SAR images for both VV and VH bands by taking their differences (Figure 7).   
 

 
 

Figure 7. a) SAR difference image for VV band, b) SAR image for VH band 

 
In Figure 7, it can be seen that the speckle effect in the image of VV band is higher than the image of VH band. The 

VH band image depicts the flood inundated areas more concisely. 
 

4.2 Classification Using GEE 
 
Mosaicked Sentinel-2 after event image was obtained from Sentinel-2 dataset with 'B2', 'B3', 'B4', 'B8', 'B11', 'B12' 
bands. For the training of supervised classifiers (KNN, SVM, and RF) this image was used as input with the feature 
collections given in Table 2 as class labels. Classified images for the three classifiers are given in Figure 8. 
 

 
 

Figure 8. a) KNN classifier output, b) SVM classifier output, c) RF classifier output for Sentinel-2 MSI image composite 
 

In Figure 8, areas classified as water can be seen in blue color. KNN classifier performs worst by depicting very small 
areas as clouds and water. It is a good practice to verify these results with a ground-truth image. For this purpose, 
inundated areas have been manually checked with the SAR difference images given in Figure 7.  
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It can be seen that the SVM classifier provides the most similar output to difference image in regard to the other 
classifiers while RF and KNN classifiers show a very speckled pattern. RF classifier shows flooded areas better than the 
KNN classifier but the resulting image is not satisfactory to reflect the flood inundation.  

These classifiers were also applied to after flood event Sentinel-1 SAR image with the same steps applied for Sentinel-
2 MSI image except for only two feature classes: water and other areas, as given in Table 2.  Resulting classified outputs 
are given in Figure 9. 

 

 
 

Figure 9. a) KNN classifier output, b) SVM classifier output, c) RF classifier output for Sentinel-1 SAR image 
 

In Figure 9, areas classified as water are shown in blue color. All classifiers provide very similar outputs for flooded 
areas except KNN classifier predicts a wider area. When these images are checked with the SAR difference images given 
in Figure 7, it can be seen that flooded regions are discovered correctly by KNN classifier, but resulting in a scattered 
pattern. 
 

4.3 Classification Results 

 
Overall accuracy (OA) and Kappa coefficient values for each training/validation implementation of the three classifiers 
were calculated. In remote sensing, accuracy implies what proportion of the actual image was correctly predicted.   The 
validation step was carried out to evaluate the trained model after the training processes were completed. In this step, 
validation data given in Table 2 was used. As said for training, validation OA was also calculated with corresponding 
kappa coefficient values for each classifier. Training and validation overall accuracy (OA) values of three classifiers for 
Sentinel-2 MSI and Sentinel-1 SAR data are given in Table 5 and Table 6, respectively. 
 

Table 5. Training accuracy and Validation OA (%) values for Sentinel-2 MSI data 
 

Classifier Training Validation Kappa 

RF 99.8 82.8 0.73 

KNN 84.6 77.3 0.65 

SVM 98.7 84.0 0.75 

 
For Sentinel-2 MSI data, training accuracy values are high for both RF and SVM classifiers. SVM performs best with 

overall accuracy (validation) value of 84% kappa coefficient value 0.75 is substantial (>0.5) (Taati et al. 2015) as seen in 
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Table 5. RF classifier perform second best with OA value of 82.8% with kappa value of 0.73. KNN classifier performs 
worst with 77.3% OA value. Visual check comments given in Section 4.2 verify the numerical results given in Table 5.    

 
Table 6. Training accuracy and Validation OA (%) values for Sentinel-1 SAR data 

 

Classifier Training Validation Kappa 

RF 98.4 92.3 0.78 

KNN 94.0 93.3 0.80 

SVM 95.7 90.0 0.69 

 
The same training and validation steps were applied to Sentinel-1 SAR after event image (VH). Differently, feature 

classes prepared for SAR image given in Table 2 were used for sampling. Two classes were enough to represent the 
image as water and other areas. When the OA results given in Table 6 are considered, it is obvious that, training and 
validation values are high for RF, KNN and SVM classifiers where all kappa values show good agreement (<=0.8). These 
results reflect the classifier outputs given in Figure 9 where KNN classifier provides the highest validation and kappa 
values, consistent with manual image interpretations. 

 

5. Discussion and Conclusion  
 
In this study, flood inundation mapping of an extensive part of the Gediz plain for a flood event that occurred on 
02.02.2021 was presented. European Space Agency (ESA) provides Sentinel-1 SAR and Sentinel-2 multispectral images 
free of charge. Google Earth Engine (GEE) presents a free cloud service for high-performance computing in a bundle of 
Machine Learning (ML) algorithms and a large amount of satellite data for public use.  We have taken advantage of 
cloud computing via GEE to map inundated areas in Gediz plain by examining the SAR images in a traditional change 
detection approach. Supervised classification was performed by using the built-in GEE ML algorithms: RF, KNN, and 
SVM.   

SAR change detection images were used for validation of the supervised classification results because of the lack of 
ground truth for the study area on the event day. Results imply a major point in image classification with supervised 
classifiers. The point is the selection of the polygons for training and validation. RF and SVM gives very high training 
accuracy values as 99.8% and 98.7%, respectively. A large polygon set was composed for training in the study and these 
high values imply the sufficiency of this dataset. Also overfitting can be seen for SVM and RF classifiers in the lower right 
part of Figure 8.b when compared with the corresponding Sentinel-1 SAR imagery. When this region was investigated it 
has been observed that there does not exist any train and validation polygons in the right lower bound of the study 
area. This was done intentionally because the blue pixels in SWIR composite (Figure 2) regarding this region was not 
absolutely blue, conversely these regions were heterogeneous with a combination with some white, black, blue pixels. 
It would increase noise if these regions were labelled. This claim also supports the best OA values of RF and SVM 
classifiers.  SVM performs best with overall accuracy value of 84% kappa coefficient value 0.75. SVM is advantageous in 
image classification problems where input/output dependencies are unknown. Regarding the noisy nature of the 
training dataset robustness of SVM classifier gives the best OA values among other classifiers.   

Same classifiers were applied to Sentinel-1 SAR after event image with unique training and validation polygons. The 
best performing classifier for SAR image was KNN classifier with an OA value of 93.3% and a good kappa value 0.80. RF 
classifier performs very near to KNN classifier with an OA value of 92.3% and a good kappa value 0.78. This classification 
was implemented with two classes and noise in data is very low because of two pixel values: black or white. Although 
KNN and RF classifiers give near OA values, KNN classifier output is very similar to SAR difference images in Figure 7. RF 
classifier output should be very near to this result, the cause could be overfitting with a 98.4% training accuracy value.     

During and after the heavy rainfall, Sentinel-2 MSI images were covered with clouds. Even though, after the event 
image cloud rate was low in rate, cloudy regions in the image affected the classifiers in a negative way by covering a 
large extent of the flooded area. Classifiers were trained with Sentinel-1 SAR and Sentinel-2 MSI images to acquire the 
best result. The best accuracy results were acquired by the SVM classifier for the optical and kNN classifier for the SAR 
after event images. It was hard challenging to hand label polygons in Sentinel-2 MSI images. To improve the results a 
large number of polygons were labelled. Results of the study verify the efficiency of SAR images in all-weather and their 
robustness to clouds.  
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