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Abstract
Let X1, X2, · · · be a sequence of independent and identically distributed random variables
which are supposed to be observed in sequence. The nth value in the sequence is a k-
record value if exactly k of the first n values (including Xn) are at least as large as it.
Let Rk denote the ordered set of k-record values. The famous Ignatov’s Theorem states
that the random sets Rk(k = 1, 2, · · · ) are independent with common distribution. We
introduce one new record named recent-k-record in this paper: Xn is a j-recent-k-record
if there are exactly j values at least as large as Xn in Xn−k, Xn−k+1, · · · , Xn−1. It turns
out that recent-k-record brings many interesting problems and some novel properties such
as prediction rule and Poisson approximation are proved in this paper. One application
named "No Good Record" via the Lovász Local Lemma is also provided. We conclude this
paper with some possible extensions for future work.
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1. Introduction
Let X1, X2, · · · be a sequence of independent and identically distributed (i.i.d) random

variable following the common probability mass function P(X = j) = pj , j ∈ Z+. For a
set A, the number of its elements is denoted by |A|. Suppose that these random variables
are observed one by one and Xn is called a k − record value if

|{i ∈ {1, 2, · · · , n} : Xi ≥ Xn}| = k.

In other words, Xn is one value with exactly k values (including itself) as large as it in
the sequence X1, X2, · · · , Xn. For fixed k, a random ordered set Rk which includes all
the k-record values in the sequence can be defined. In fact, the set

R1 = {R1, R2, R3, · · · }
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can be regarded as the observation values that are the largest yet seen when they appear,
and one can think about the set R2 of observation values that are the second largest on
their appearance, and so on. For instance, if the data sequence is
X1 = 2, X2 = 5, X3 = 1, X4 = 6, X5 = 9, X6 = 8, X7 = 3, X8 = 4, X9 = 1, X10 = 7.

Then
R1 = {X1, X2, X4, X5}, R2 = {X6}, R3 = {X3, X10}, R5 = {X7, X8}, R9 = {X9}.

The famous result which is called Ignatov’s theorem states that not only do the se-
quences of k-record values share the same probability distribution for all k, but also these
sequences are independent of each other. One can easily identify the Rk for given sequence
observed via one technique used in the proof of the famous Ignatov’s Theorem by defining
a series of subsequence of the data sequence X1, X2, · · · , for example, see [13]. Later there
are many variants and developments related to this topic, see [3, 6, 9, 10,12,14,17].

In this paper, we will introduce one novel random variable called recent-k-record (RkR)
for some fixed integer k ≥ 1: instead of considering the whole past story, we only consider
the values of Xn−k, Xn−k+1, · · · , Xn−1, i.e., the k values before Xn(do not include itself).
And let us define Xn be a j-RkR if there are exactly j values at least as large as Xn in
Xn−k, Xn−k+1, · · · , Xn−1. In other words, Xn is a j-RkR if

|{p : Xn−p ≥ Xn, 1 ≤ p ≤ k}| = j.

We will denote that i ∈ Rk
j if i is a j-RkR. In other words, there exists a subsequence with

length k + 1 such that Xn0 = i and
|{p : Xn0−p ≥ i, 1 ≤ p ≤ k}| = j.

for some n0 ≥ k + 1. We can consider the usual j-record as one "dynamic version" of
j-RkR, i.e., k = n for Xn in that case.

Actually, RkR can be found applications in many areas: for example, to assess one
athlete’s recent condition and achievements, one proper way is to check the results in his
recent records and not necessary to get the whole story(it may be nothing with his records
ten years or even five years before). For the k-records application in statistics for athletes,
see [15].

The remainder of this paper is organized as follows. In Section 2, we calculate the
conditional probability for RkR. The Poisson approximation for RkR and one interest-
ing application via the Lovász Local Lemma are presented in Section 3 and Section 4
respectively. We conclude this paper with some possible extensions for future work in
Section 5.

2. Prediction probability for RkR
Theorem 2.1. Let X1, X2, · · · be a sequence of i.i.d random variable following the com-
mon probability mass function P(X = j) = pj , j ∈ Z+. Moreover, let k ≥ 1 and
0 ≤ j ≤ k, n ≥ k + 1, Si = P(X ≥ i) =

∑
s≥i ps and Ci = P(X ≤ i) =

∑i
j=1 pj.

We have the following observations
(i) P(i ∈ Rk

j in (X1, X2, · · · , Xk+1)) =
(k

j

)
Sj

i (Ci−1)k−jpi;
(ii) P(i ∈ Rk

j+1 in (X2, X3, · · · , Xk+2) | i ∈ Rk
j in (X1, X2, · · · , Xk+1)) = (Ci−1)pi;

(iii) P(i ∈ Rk
j in (X2, X3, · · · , Xk+2) | i ∈ Rk

j in (X1, X2, · · · , Xk+1)) = Sipi;
(iv) P(i /∈ Rk

j in (X1, X2, · · · , Xk+1)) =
(
1 −

(k
j

)
Sj

i (Ci−1)k−j
)

pi + (1 − pi);
(v) An upper bound for the probability of the event A = {i ∈ Rk

j in (X1, X2, · · · , Xn)}
is

P(A) ≤ (n − k)
(

k

j

)
Sj

i (Ci−1)k−jpi.
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Proof. (i) From the definition of j-RkR, the event

{i ∈ Rk
j in (X1, X2, · · · , Xk+1)}

means: Xk+1 = i and there are j elements in (X1, X2, · · · , Xk) which are not
smaller than i.

(ii) From the definition of j-RkR, the event

{i ∈ Rk
j+1 in (X2, X3, · · · , Xk+2) | i ∈ Rk

j in (X1, X2, · · · , Xk+1)}

means {X1 < i, Xk+2 = i}.
(iii) From the definition of j-RkR, the event

{i ∈ Rk
j in (X2, X3, · · · , Xk+2) | i ∈ Rk

j in (X1, X2, · · · , Xk+1)}

means {X1 ≥ i, Xk+2 = i}.
(iv) From the definition of j-RkR, the event

{i /∈ Rk
j in (X1, X2, · · · , Xk+1)}

= {i /∈ Rk
j in (X1, X2, · · · , Xk+1), Xk+1 = i} ∪ {i /∈ Rk

j in (X1, X2, · · · , Xk+1), Xk+1 ̸= i}.

(v) It is easy to see that
A = ∪n

m=k+1Am,

in which Am = {i ∈ Rk
j in (Xm−k, Xm−k+1, · · · , Xm−1, Xm)} and then the result

can be obtained by

P(A) = P(∪n
m=k+1Am) ≤ (n − k)

(
k

j

)
Sj

i (Ci−1)k−jpi.

�

Next, we present Theorem 2.2, which gives the probability of the nth observation Xn

will be some j-RkR, as well as some conditional probability related.

Theorem 2.2. With same conditions as in Theorem 2.1, we have

P(Xn ∈ Rk
j ) =

(
k

j

)+∞∑
l=1

Sj
l (Cl−1)k−jpi.

As a result, we have

qi = P(Xn = i | Xn ∈ Rk
j ) =

(k
j

)
Sj

i (Ci−1)k−jpi∑+∞
l=1

(k
j

)
Sj

l (Cl−1)k−jpl

, i = 1, 2, · · · .

Proof. The result is easy to get by conditioning on Xn,

P(Xn ∈ Rk
j ) =

+∞∑
l=1

P(Xn ∈ Rk
j | Xn = l)P(Xn = l)

=
+∞∑
l=1

(
k

j

)
Sj

l (Cl−1)k−jpl

=
(

k

j

)+∞∑
l=1

Sj
l (Cl−1)k−jpl.

(2.1)

And the second result is obtained by Bayes’ rule. �
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From Theorem 2.2, we can assert that the k random variables

Rk
1 , Rk

2 , · · · , Rk
k

do not have the same distribution and of course they are not independent either. In other
words, our result here is completely different with the famous Ignatov’s Theorem.

In the following result, we predict Xn+1 based on the states of Xn for n ≥ k + 1.

Theorem 2.3 (Prediction rule). With same conditions as in Theorem 2.1,

P(Xn+1 ∈ Rk
j | Xn ∈ Rk

j ) =
+∞∑
i=1

qi

(
Sipi + pm

(∑
m>i

(
Sm

Si

)j k − j

k
+
∑
m<i

(
Cm−1
Ci−1

)k−j j

k

))
.

Proof.

P(Xn+1 ∈ Rk
j | Xn ∈ Rk

j )

= P(Xn+1 ∈ Rk
j , Xn = Xn+1 | Xn ∈ Rk

j )

+ P(Xn+1 ∈ Rk
j , Xn ̸= Xn+1 | Xn ∈ Rk

j )

(2.2)

Then we use the following formula of conditional probability

P(A | B) =
∑
Ci

P(ACi | B) =
∑
Ci

P(A | CiB)P(Ci | B)

in which {Ci}i≥1 is a partition of the corresponding sample space Ω.
Then the equation (2.2) can be written by letting Ω =

∑
i(Xn = i)

=
∑

i

P(Xn+1 ∈ Rk
j , Xn = Xn+1, Xn = i | Xn ∈ Rk

j )

+
∑

i

P(Xn+1 ∈ Rk
j , Xn ̸= Xn+1, Xn = i | Xn ∈ Rk

j )

=
∑

i

P(Xn+1 ∈ Rk
j , Xn = Xn+1 | Xn = i, Xn ∈ Rk

j )P(Xn = i | Xn ∈ Rk
j )

+
∑

i

P(Xn+1 ∈ Rk
j , Xn ̸= Xn+1 | Xn = i, Xn ∈ Rk

j )P(Xn = i | Xn ∈ Rk
j )

=
∑

i

P(Xn+1 = i ∈ Rk
j | Xn = i ∈ Rk

j )qi +
∑

i

P(Xn+1 ∈ Rk
j , Xn ̸= Xn+1 | Xn = i ∈ Rk

j )qi

=
∑

i

P(Xn+1 = i ∈ Rk
j | Xn = i ∈ Rk

j )qi +
∑

i

∑
m ̸=i

P(Xn+1 = m ∈ Rk
j | Xn = i ∈ Rk

j )qi

(2.3)
Actually, the first part of the formula 2.3 is easy and we have∑

i

P(Xn+1 = i ∈ Rk
j | Xn = i ∈ Rk

j )P(Xn = i | Xn ∈ Rk
j ) =

∑
i

Sipiqi. (2.4)

Then we will analyze the second part in several steps as follows:∑
m̸=i

P(Xn+1 = m ∈ Rk
j | Xn = i ∈ Rk

j ) =
∑
m>i

P(Xn+1 = m ∈ Rk
j | Xn = i ∈ Rk

j )

+
∑
m<i

P(Xn+1 = m ∈ Rk
j | Xn = i ∈ Rk

j )
(2.5)

Then we discuss the two different cases accordingly:
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(i) For the case m > i: we have∑
m>i

P(Xn+1 = m ∈ Rk
j | Xn = i ∈ Rk

j )

=
∑
m>i

P(Xn+1 = m ∈ Rk
j , Xn−k < i | Xn = i ∈ Rk

j )

+
∑
m>i

P(Xn+1 = m ∈ Rk
j , Xn−k ≥ i | Xn = i ∈ Rk

j )

(2.6)

(a) Conditioning on the event {Xn−k < i}: the event {Xn = i ∈ Rk
j } in-

dicates that there are exactly j elements which are at least as large as
Xn = i in Xn−k+1, Xn−k+2, · · · , Xn−1; the event {Xn+1 = m ∈ Rk

j } in-
dicates that there are exactly j elements which are at least as large as
Xn+1 = m in Xn−k+1, Xn−k+2, · · · , Xn−1. To sum up: the event {Xn+1 =
m ∈ Rk

j , Xn−k < i, Xn = i ∈ Rk
j } means: there are j elements which are at

least as large as Xn+1 = m and k −1−j elements which are strictly less than
i in Xn−k+1, Xn−k+2, · · · , Xn−1, and Xn−k < i, Xn = i, Xn+1 = m. i.e.,

P(Xn+1 = m ∈ Rk
j , Xn−k < i | Xn = i ∈ Rk

j )

=
P(Xn+1 = m ∈ Rk

j , Xn−k < i, Xn = i ∈ Rk
j )

P(Xn = i ∈ Rk
j )

=
(k−1

j

)
Sj

m(Ci−1)k−1−jCi−1pipm(k
j

)
Sj

i (Ci−1)k−jpi

=
(

Sm

Si

)j (k − j

k

)
pm

(2.7)

(b) Conditioning on the event {Xn−k ≥ i}: the event {Xn = i ∈ Rk
j } indicates

that there are exactly j − 1 elements which are at least as large as Xn = i in
Xn−k+1, Xn−k+2, · · · , Xn−1; the event {Xn+1 = m ∈ Rk

j } and Xn = i < m
indicates that there are exactly j elements which are at least as large as
Xn+1 = m > i in Xn−k+1, Xn−k+2, · · · , Xn−1. This is not possible, so the
probability is zero.

(ii) For the case m < i: we have∑
m<i

P(Xn+1 = m ∈ Rk
j | Xn = i ∈ Rk

j )

=
∑
m<i

P(Xn+1 = m ∈ Rk
j , Xn−k < i | Xn = i ∈ Rk

j )

+
∑
m<i

P(Xn+1 = m ∈ Rk
j , Xn−k ≥ i | Xn = i ∈ Rk

j )

(2.8)

(a) Conditioning on the event {Xn−k < i}: the event {Xn = i ∈ Rk
j } indicates

that there are exactly j elements which are at least as large as Xn = i
in Xn−k+1, Xn−k+2, · · · , Xn−1, which means there will be j + 1 elements
which are as large as m in Xn−k+1, Xn−k+2, · · · , Xn, contradicting the event
{Xn+1 = m ∈ Rk

j }.
(b) Conditioning on the event {Xn−k ≥ i}: the event {Xn = i ∈ Rk

j } indi-
cates that there are exactly j − 1 elements which are at least as large as
Xn = i in Xn−k+1, Xn−k+2, · · · , Xn−1; the event {Xn+1 = m ∈ Rk

j } indi-
cates that there are exactly j − 1 elements which are at least as large as
Xn+1 = m in Xn−k+1, Xn−k+2, · · · , Xn−1. To sum up: the event {Xn+1 =
m ∈ Rk

j , Xn−k < i, Xn = i ∈ Rk
j } means: there are j − 1 elements which are
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at least as large as Xn = i > m and k − 1 − j elements which are strictly less
than m in Xn−k+1, Xn−k+2, · · · , Xn−1, and Xn−k ≥ i, Xn = i, Xn+1 = m.
i.e.,

P(Xn+1 = m ∈ Rk
j , Xn−k ≥ i | Xn = i ∈ Rk

j )

=
P(Xn+1 = m ∈ Rk

j , Xn−k ≥ i, Xn = i ∈ Rk
j )

P(Xn = i ∈ Rk
j )

=
(k−1

j−1
)
Sj−1

i (Cm−1)k−jSipipm(k
j

)
Sj

i (Ci−1)k−jpi

=
(

Cm−1
Ci−1

)k−j ( j

k

)
pm

(2.9)

Finally, we put all the pieces together, we can have

P(Xn+1 ∈ Rk
j | Xn ∈ Rk

j ) =
∑

i

P(Xn+1 ∈ Rk
j , Xn = Xn+1, Xn = i | Xn ∈ Rk

j )

+
∑

i

P(Xn+1 ∈ Rk
j , Xn ̸= Xn+1, Xn = i | Xn ∈ Rk

j )

=
∑

i

qi

(
Sipi + pm

(∑
m>i

(
Sm

Si

)j k − j

k
+
∑
m<i

(
Cm−1
Ci−1

)k−j j

k

))
.

(2.10)
�

Remark 2.4. Actually, the more general case of the conditional probability
P(Xn+1 ∈ Rk

j1 | Xn ∈ Rk
j2)

for j1 ̸= j2 is a little complicated. To see this fact, we have

P(Xn+1 ∈ Rk
j1 | Xn ∈ Rk

j2) =
P(Xn+1 ∈ Rk

j1 , Xn ∈ Rk
j2)

P(Xn ∈ Rk
j2

)

=
∑∞

i=1 P(Xn+1 ∈ Rk
j1 , Xn ∈ Rk

j2 , Xn = i)∑∞
i=1 P(Xn ∈ Rk

j2
, Xn = i)

=
∑∞

i=1 P(Xn+1 ∈ Rk
j1 , Xn ∈ Rk

j2 | Xn = i)P(Xn = i)∑∞
i=1 P(Xn ∈ Rk

j2
| Xn = i)P(Xn = i)

=
∑∞

i=1 P(Xn+1 ∈ Rk
j1 , Xn ∈ Rk

j2 | Xn = i)pi∑∞
i=1

( k
j2

)
Sj2

i Ck−j2
i−1 pi

=
∑∞

i=1 P(Xn+1 ∈ Rk
j1 , Xn = i ∈ Rk

j2)pi∑∞
i=1

( k
j2

)
Sj2

i Ck−j2
i−1 pi

=
∑∞

i=1
∑∞

j=1 P(Xn+1 = j ∈ Rk
j1 , Xn = i ∈ Rk

j2)pipj∑∞
i=1

( k
j2

)
Sj2

i Ck−j2
i−1 pi

.

(2.11)

The probability P(Xn+1 = j ∈ Rk
j1 , Xn = i ∈ Rk

j2) is very difficult to obtain and have no
neat expression.

3. Poisson approximation for Rk
j

The asymptotic properties of sum of random variables are very important in probability
and statistics. It is well known that convergence to a Poisson distribution can occur
if the individual means of Bernoulli random variable are all small even if they are not
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independent, more detailed information can be found in [8]. In this section, we will give
the Poisson approximation for Rk

j using the Stein-Chen method, see [7].
We will give the definition of dependency graph first and then give the Poisson approx-

imation Lemma based the dependency graph.

3.1. Dependency graph in general and Poisson approximation Lemma
Let (I, E) be a graph with finite or countable vertex set I and edge set E. For i, j ∈ I,

we denote i ∼ j if (i, j) ∈ E. For i ∈ I, let Ni = {i} ∪ {j ∈ I : i ∼ j}. The graph (I, ∼)
is called a dependency graph for a collection of random variables (ξi, i ∈ I) if for any two
disjoint subsets I1, I2 of I such that there are no edges connecting I1 to I2, the collection
of random variables {ξi, i ∈ I1} is independent of {ξi, i ∈ I2}. The notion of dependency
graphs gives a very useful to express some rare-independence, which is a technique to
generalize the independence.

The Lemma below gives the total variance of two distributions by Stein-Chen technique
with the help of the dependency graphs.

Lemma 3.1 ([5]). Suppose {ξi, i ∈ I} is a finite collection of Bernoulli random variables
with dependency graph (I, ∼). Set pi := P(ξi = 1) = E(ξi), and set pij := E(ξiξj). Let
λ :=

∑
i∈I pi, and suppose λ is finite, let W :=

∑
i∈I ξi. Then

dTV(W, Po(λ)) ≤ min(3, λ−1)

∑
i∈I

∑
j∈N(i)\{i}

pij +
∑
i∈I

∑
j∈N(i)

pipj

 .

In which dTV(ξ, η) = supA⊆Z | P(ξ ∈ A) − P(η ∈ A) | for two integer-valued random
variables ξ, η and Po(λ) is the Poisson distribution with parameter λ.

3.2. Poisson approximation for RkR
For fixed i0 ∈ Z+, we define a series of random variables as follows:

ξi =
{

1 if i0 ∈ Rk
j in (Xi, Xi+1, · · · , Xi+k),

0 else.

Which means the random variables ξi are indexed by the (k +1)-set {Xi, Xi+1, · · · , Xi+k}.
For instance, set i0 = 3, k = 3, j = 1 and the data sequence is

X1 = 2, X2 = 5, X3 = 1, X4 = 1, X5 = 2, X6 = 8, X7 = 3, X8 = 2, X9 = 1, X10 = 3.

Then we have
ξ4 = ξ7 = 1; ξj = 0, for j /∈ {4, 7}.

There are many interesting properties on these random variables ξi.

Theorem 3.2. For fixed i0 ∈ Z+, we have the following results:
(i) E(ξi) = P(ξi = 1) =

(k
j

)
Sj

i0
(1 − Si0)k−jpi0 ;

(ii) E(ξiξi+1) =
(k−1

j−1
)
Sj

i0
(1 − Si0)k−jp2

i0 ;
(iii) For |i1 − i2| = m > k,

P(ξi1 = 1, ξi2 = 1) = P(ξi1 = 1)P(ξi2 = 1), E(ξi1ξi2) = E(ξi1)E(ξi2);

(iv) For |i1 − i2| = m ∈ {1, 2, · · · , k},
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ϕm = E(ξi1ξi2)

=
min{k−m,j−1}∑

t=max{0,j−m−1}

(
m

j − t

)
Sj−t

i0
(1 − Si0)m−j+t

(
m − 1

j − t − 1

)
Sj−t−1

i0
(1 − Si0)m−j+t

×
(

k − m

t

)
St

i0(1 − Si0)k−m−tp2
i0

=
min{k−m,j−1}∑

t=max{0,j−m−1}

(
m

j − t

)(
m − 1

j − t − 1

)(
k − m

t

)
S2j−t−1

i0
(1 − Si0)m−2j+t+kp2

i0 .

(3.1)

Proof. (i) It is easy to see that {ξi = 1} means that: Xi+k = i0 and there at j
random variables in Xi, Xi+1, · · · , Xi+k−1 which are not smaller than i0. That
is,

E(ξi) = P(ξi = 1) =
(

k

j

)
Sj

i0
(1 − Si0)k−jpi0 .

(ii) It is easy to see that {ξi = 1, ξi+1 = 1} means that: Xi+k = Xi+k+1 = i0, and
there are j − 1 random variables in Xi + 1, Xi+1, · · · , Xi+k−1 which are not
smaller than i0 while Xi should also not smaller than i0. In other words,

P(ξi = 1, ξi+1 = 1) = Si0

(
k − 1
j − 1

)
Sj−1

i0
(1 − Si0)k−jp2

i0 .

(iii) From definition of ξi, we can see that the value of ξi is determined by the
status of Xi, Xi+1, · · · , Xi+k. To be specific, the value of random variable
ξi1 depends on Xi1 , Xi1+1, · · · , Xi1+k and ξi2 depends on Xi2 , Xi2+1, · · · , Xi2+k.
Xi1 , Xi1+1, · · · , Xi1+k, Xi2 , Xi2+1, · · · , Xi2+k are i.i.d. when |i1 − i2| > k.

(iv) It is easy to see that {ξi1 = 1} means Xi1+k = i0 and there are j values which
are not not smaller than i0 in Xi1 , Xi1+1, · · · , Xi1+k−1; the event {ξ21 = 1}
means Xi2+k = i0 and there are j values which are not not smaller than i0 in
Xi2 , Xi2+1, · · · , Xi2+k1 . The events {ξi1 = 1} and {ξi2 = 1} are not indepen-
dent when |i1 − i2| = m ≤ k since they both depend on the status of Xi2 =
Xi1+m, · · · , Xi1+k. We classify the event {ξi1 = 1, ξi2 = 1} into different cases by
the number of values twhich are not smaller than i0 in Xi1+m, · · · , Xi1+k−1. To be
more precise, if there are t variables which are not smaller than i0, {ξi1 = 1, ξi2 =
1} implies there are j −t values which are not smaller than i0 in Xi1 , · · · , Xi1+m−1
and there are j−t−1 values which are not smaller than i0 in Xi1+k+1, · · · , Xi2+k−1
as well as Xi1+k = Xi2+k = i0. The result is obtained by summing all the different
cases.

�

We then define the dependency graph for RkR as follows:
Let In be the set of all (k + 1)-sets {Xi, Xi+1 · · · , Xi+k} of {X1, X2, · · · , Xn+k}. It is

easy to see that the size of In is n. For each element i ∈ In, let Ni be the set of j ∈ In such
that i and j have at least one element in common. And let i ∼ j if j ∈ Ni but i ̸= j. In
other words, Ni = {i} ∪ {j ∈ In : i ∼ j}.Then ξi is independent of ξj except when j ∈ Ni,
and as a result the graph (In, ∼) is a dependency graph for ξi, i = 1, 2, · · · , n.

As a consequence of Lemma 3.1 and Theorem 3.2, we can get the following result easily:

Theorem 3.3. Let i0 ∈ Z+ be fixed, then the number of i0 ∈ Rk
j in the sequence

(X1, X2, · · · , Xn+k) is ξ =
∑n

i=1 ξi, which has an asymptotic Poisson distribution with
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parameter λ := n
(k

j

)
Sj

i0
(1 − Si0)k−jpi0. To be more precise, we have

dTV(ξ, Po(λ)) ≤ n min{3, λ−1}
(

k∑
s=1

ϕs + (k + 1)p2
)

.

In which ϕs = E(ξi1ξi2) when |i1 − i2| = s ≤ k and p =
(k

j

)
Sj

i0
(1 − Si0)k−jpi0.

Proof. It is easy to get that P(ξi = 1) =
(k

j

)
Sj

i0
(1 − Si0)k−jpi0 = p, leading to

λ = E(ξ) =
n∑

i=1
E(ξi) = np.

We then get

∑
i∈In

∑
j∈N(i)\{i}

pij =
∑
i∈In

k∑
s=1

ϕs = n
k∑

s=1
ϕs

and ∑
i∈In

∑
j∈N(i)

pipj = n
∑

j∈N(i)
E(ξi = 1)E(ξj = 1) = n(k + 1)p2.

Then by Lemma 3.1, we complete the proof. �

4. "No Good Record" via the Lovász Local Lemma
Let Ei be the event that i0 ∈ Rk

j in (Xi, Xi+1, · · · , Xi+k), (i = 1, 2, · · · , n). In this
section, we will show that there are positive probability that i0 will not be one RkR in the
sequence {X1, X2, · · · , Xn+k}, i.e., the events ∩n

i=1Ēi can happen with positive probability
once pi0 is chosen properly. Our result bases mainly on one version of the famous Lovász
Local Lemma which can be checked in [11].

Lemma 4.1 (Lovász Local Lemma). Let E1, · · · , En be a set of events, and assume that
the following hold:

(i) for all i, P(Ei) ≤ p;
(ii) the degree of the dependency graph given by E1, · · · , En is bounded by d;
(iii) 4dp ≤ 1.

Then

P(∩n
i=1Ēi) > 0.

Our result goes as follows:

Theorem 4.2 ("No Good Result" Theorem). Let Ei = {i0 ∈ Rk
j in (Xi, Xi+1, · · · , Xi+k)},

where i = 1, 2, · · · , n. There exists some pi0 > 0, such that

P(∩n
i=1Ēi) > 0.

In other words, there exists some one with "no good record" in the whole story with positive
probability.
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Proof. Let pi = E(Ei), then we have

4kpi = 4k

(
k

j

)
Sj

i0
(1 − Si0)k−jpi0

≤ 4k

(
ke

j

)j

Sj
i0

(1 − Si0)k−jpio

= 4k

(
ke

j

)j (jSi0 + (k − j)(1 − Si0)
k

)k

pi0

= 4k

(
ke

j

)j (k − j + Si0(2j − k)
k

)k

pi0

≤ 4k

(
ke

j

)j

max
{(

k − j

k

)k

,

(
j

k

)k
}

pi0 .

:= C(k, j)pi0 .

(4.1)

Since C(k, j) is some constant depending on k, j, one can choose pi0 accordingly to make
sure

C(k, j)pi0 < 1.

�

5. Conclusion
Records and related problems are very interesting topics in applied probability as well as

general mathematics, see [1,4]. One novel record named recent-k-record was introduced in
this paper and some interesting properties of the recent-k-record were explored. It will be
glad to see more variants of records in the classical case and their corresponding statistical
properties like ones mentioned in [2, 16] in the future.
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