On the boundedness of B-Riesz potential and its commutators on generalized weighted B-Morrey spaces

Ismail Ekincioglu1, Javanshir J. Hasanov2, Cansu Keskin1,*

1Istanbul Medeniyet University, Department of Mathematics, Istanbul, Turkey
2Azerbaijan State Oil and Industry University, Institute of Mathematics and Mechanics, Baku, Azerbaijan

Abstract

In the present paper, we shall investigate a characterization for the boundedness of the B-Riesz potential and its commutators on the generalized weighted B-Morrey spaces. We also give a characterization for the generalized weighted B-Morrey spaces via the boundedness of the Riesz potential and its commutators generated by generalized translate operators associated with Laplace-Bessel differential operator.

Mathematics Subject Classification (2020). 42B20, 42B25, 42B35

Keywords. generalized translate operator, B-maximal operator, B-Riesz potential operator, commutators, generalized weighted B-Morrey space

1. Introduction

The classical Morrey spaces were introduced by Morrey [26] to study the local behavior of solutions to second-order elliptic partial differential equations. Moreover, various Morrey spaces are defined in the process of study. In [11, 25, 28], Guliyev, Mizuhara and Nakai introduced generalized Morrey spaces $M^{p,\varphi}(\mathbb{R}^n)$. In [22], Komori and Shirai defined weighted Morrey spaces $L^{p,k}(w)$. Guliyev [14] gave a concept of the generalized weighted Morrey spaces $M^{p,\varphi,w}(\mathbb{R}^n)$ which could be viewed as extension of both $M^{p,\varphi}(\mathbb{R}^n)$ and $L^{p,k}(w)$. Authors also studied the boundedness of the classical operators and their commutators in spaces $M^{p,\varphi,w}(\mathbb{R}^n)$.

The boundedness of Riesz potential operator and its commutators on certain function spaces and their characterizations play an important role in various area in harmonic analysis, etc. See for example [1–3, 5–7, 9, 15–18, 22, 25, 26, 28, 29, 31, 32] and the references therein.

Let us now present some of the studies obtained and considered in this study for the maximal operator and Riesz potential. Suppose that $f \in L^{loc}_1(\mathbb{R}^n)$. Let M be a maximal operator and I^α be Riesz potential operator on \mathbb{R}^n defined by

$$Mf(x) = \sup_{t>0} |B(x,t)|^{-1} \int_{B(x,t)} |f(y)|dy,$$
If reduces to the above conditions were imposed on singular integral operator \(\omega \) in the general setting of metric measure spaces obtained in \([72x770]\], the following statement was proved, containing the result in \([72x770]\]) obtained sufficient conditions on weights \(\omega_1 \) and \(\omega_2 \) ensuring the boundedness of integral operators \(T \) from \(M_{p,\omega_1}(\mathbb{R}^n) \) to \(M_{p,\omega_2}(\mathbb{R}^n) \). In \([72x770]\], the following statement was proved, containing the result in \([72x770]\] and in the general setting of metric measure spaces obtained in \([72x770]\). In these studies, the authors obtained sufficient conditions on weights \(\omega_1 \) and \(\omega_2 \) for the boundedness of the singular integral operator \(T \) from \(M_{p,\omega_1}(\mathbb{R}^n) \) to \(M_{p,\omega_2}(\mathbb{R}^n) \). In \([72x770]\), the following doubling conditions were imposed on \(\omega(r) \):

\[
c^{-1}\omega(r) \leq \omega(t) \leq c\omega(r), \tag{1.1}
\]
whenever \(r \leq t \leq 2r \), where \(c \geq 1 \) does not depend on \(t \) and \(r \), jointly with the condition:

\[
\int_r^\infty \omega^p(t) \frac{dt}{t} \leq C \omega^p(r) \tag{1.2}
\]

for the maximal or singular integral operator and the condition

\[
\int_r^\infty t^{\alpha p} \omega^p(t) \frac{dt}{t} \leq C t^{\alpha p} \omega^p(r) \tag{1.3}
\]

for potential and fractional maximal operators, where \(C > 0 \) does not depend on \(r \).

Theorem 1.4 ([28]). Let \(1 < p < \infty \) and \(\omega(r) \) satisfy conditions (1.1)-(1.2). Then the operators \(M \) and singular integral operator \(T \) are bounded in \(M_{p,\omega}(\mathbb{R}^n) \).

Theorem 1.5 ([28]). Let \(1 < p < \infty \), \(0 < \alpha < \frac{n}{p} \), and \(\omega(t) \) satisfy conditions (1.1) and (1.3). Then the operators \(M^\alpha \) and \(P^\alpha \) are bounded from \(M_{p,\omega}(\mathbb{R}^n) \) to \(M_{q,\omega}(\mathbb{R}^n) \) with \(\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n} \).

Note that Theorems 1.6 and 1.7 do not require condition (1.1)

Theorem 1.6 ([11]). Let \(1 < p < \infty \) and \(\omega_1(r), \omega_2(r) \) be positive measurable functions satisfying the condition

\[
\int_r^\infty \omega_1(t) \frac{dt}{t} \leq c_1 \omega_2(r) \tag{1.4}
\]

with \(c_1 > 0 \) not depending on \(t > 0 \). Then the operators \(M \) and singular integral operator \(T \) are bounded from \(M_{p,\omega_1}(\mathbb{R}^n) \) to \(M_{p,\omega_2}(\mathbb{R}^n) \).

Theorem 1.7 ([11]). Let \(0 < \alpha < n \), \(1 < p < \infty \), \(\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n} \) and \(\omega_1(r), \omega_2(r) \) be positive measurable functions satisfying the condition

\[
\int_r^\infty t^{\alpha} \omega_1(t) \frac{dt}{t} \leq c_1 \omega_2(r). \tag{1.5}
\]

Then the operators \(M^\alpha \) and \(P^\alpha \) are bounded from \(M_{p,\omega_1}(\mathbb{R}^n) \) to \(M_{q,\omega_2}(\mathbb{R}^n) \).

The results given so far are obtained in Morrey space and generalized Morrey spaces of the maximal operator \(M^\alpha \) and Riesz potential operator \(P^\alpha \). In this paper, we shall investigate the maximal operator \(M_{\alpha,\gamma} \) (\(B \)-Maximal operator) and the Riesz potential operator \(I_{\alpha,\gamma} \) (\(B \)-Riesz potential operator) related to the generalized translate operator associated with the Laplace-Bessel differential operator and its commutators on generalized weighted Morrey spaces \(M^{p,\varphi,w}(\mathbb{R}^n) \). We also give a characterization for the \(B \)-BMO space via the boundedness of the commutator of the \(B \)-Riesz potential \(I_{\alpha,\gamma} \). Our aim is to present these two different characterizations of generalized weighted \(B \)-Morrey spaces for \(I^\alpha \) and \(I_{\alpha,\gamma} \) and its commutators.

The maximal operator and potential operator related topics associated with the Laplace-Bessel differential operator have been investigated by many researchers, see B. Muckenhoupt and E. Stein [27], I. Kipriyanov [21], K. Trimeche [38], L. Lyakhov [24], K. Stempak [37], A.D. Gadjiev and I.A. Aliiev [10], V.S. Guliyev [12,13], V.S. Guliyev and J.J. Hasanov [16], J.J. Hasanov [18], A. Serbetci, I. Ekincioglu [2,15,33] and others [19].

Now, let us introduce the Riesz potential operator \(I_{\alpha,\gamma} \) (\(B \)-Riesz potential operator) related to the generalized translate operator associated with the Laplace-Bessel differential operator

\[
\Delta_B = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} + \sum_{i=1}^{k} \frac{\gamma_i}{x_i} \frac{\partial}{\partial x_i}, \quad \gamma_1 > 0, \ldots, \gamma_k > 0.
\]

At first, we prove that the \(B \)-Riesz potential operator \(I_{\alpha,\gamma} \) and their commutators for \(0 < \alpha < n + |\gamma| \) is bounded from the generalized weighted \(B \)-Morrey space \(M_{p,\omega_1,\varphi_1,\gamma}^{n}(\mathbb{R}^n_{k,+}) \).
to \(M_{q, \varphi_2, \gamma}(\mathbb{R}^n_{k+}) \), where \(\alpha/(n + |\gamma|) = 1/p - 1/q \), \(1 \leq p < (n + |\gamma|)/\alpha \), \((\varphi_1, \varphi_2) \in \tilde{A}_{1+q/|\gamma|}(\mathbb{R}^n_{k+}), \frac{1}{p} + \frac{1}{p} = 1 \).

We now consider the generalized translation operator generated by the Laplace-Bessel differential operator \(\Delta_B \). Then, the \(B \)-maximal operator and \(B \)-Riesz potential associated with this operator are investigated in generalized weighted \(B \)-Morrey spaces. We obtain for the operator \(I_{\alpha, \gamma} \) to be bounded from generalized weighted \(B \)-Morrey space \(M_{p, \varphi_1, \varphi_2, \gamma}(\mathbb{R}^n_{k+}) \) to \(M_{q, \varphi_2, \gamma}(\mathbb{R}^n_{k+}) \) and from generalized weighted \(B \)-Morrey space \(M_{1, \varphi_1, \varphi_2, \gamma}(\mathbb{R}^n_{k+}) \) to weak generalized weighted \(B \)-Morrey space \(\text{WM}_{q, \varphi_2, \gamma}(\mathbb{R}^n_{k+}) \).

The structure of the paper is as follows. In first section, we present some definitions and auxiliary results. In second section, we introduce generalized \(B \)-Morrey spaces. In Section 3, the main results of the paper, the boundedness of the \(B \)-potential operator from \(B \)-Morrey space \(M_{p, \varphi_1, \varphi_2, \gamma}(\mathbb{R}^n_{k+}) \) to \(M_{q, \varphi_2, \gamma}(\mathbb{R}^n_{k+}) \), is proved. In the last section, the boundedness of the commutators of the \(B \)-potential operator from generalized weighted \(B \)-Morrey space \(M_{p, \varphi_1, \varphi_2, \gamma}(\mathbb{R}^n_{k+}) \) to \(M_{p, \varphi_2, \gamma}(\mathbb{R}^n_{k+}) \) is obtained.

2. Preliminaries

Let \(\mathbb{R}^n \) be \(n \)-dimensional Euclidean space. For \(1 \leq k \leq n \), let \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \), \(x' = (x_1, \ldots, x_k) \in \mathbb{R}^k \) and \(x'' = (x_{k+1}, \ldots, x_n) \in \mathbb{R}^{n-k} \) such that \(x = (x', x'') \in \mathbb{R}^n \). Then, it is defined as \(\mathbb{R}^n_{k+} = \{ x = (x', x'') \in \mathbb{R}^n ; x_1 > 0, \ldots, x_k > 0 \} \).

for \(n \geq 2 \). Recall that \(E(x, r) = \{ y \in \mathbb{R}^n_{k+} ; |x-y| < r \} \) for a measurable subset \(E \subset \mathbb{R}^n_{k+} \). Let \(E_r = E(0, r) \). If \(\gamma = (\gamma_1, \ldots, \gamma_k) \) and \(\gamma_1 > 0, \ldots, \gamma_k > 0 \) then \(|\gamma| = \gamma_1 + \cdots + \gamma_k \) and \((x')^\gamma = x_1^{\gamma_1} \cdots x_k^{\gamma_k} \). For \(x' \in \mathbb{R}^k \), we define the measures on \(E \) by equality

\[
|E|_\gamma = \int_E (x')^\gamma dx,
\]

then \(|E_r|_\gamma = \omega(n, k, \gamma) r^Q \), where \(Q = n + |\gamma| \) and \(\omega(n, k, \gamma) = \int_{E_1} (x')^\gamma dx = \frac{\pi \frac{n}{2}}{\Gamma \left(\frac{\gamma+1}{2} \right)} = \prod_{i=1}^{k} \frac{\Gamma \left(\frac{\gamma_i+1}{2} \right)}{\Gamma \left(\frac{\gamma_i}{2} \right)} \).

First, we define the generalized translate operator \((B\text{-translate operator}) \) \(T^x, x \in \mathbb{R}^n \), on \(L^p(\mathbb{R}^n, d\nu) \) by equality

\[
T^x f(y) = C_{\gamma, k} \prod_{i=1}^{n} \int_0^{|y|} f((x', y')_\beta, x'' - y'') d\nu(\beta),
\]

where \((x_i, y_i)_\beta = (x_i^2 - 2x_iy_i \cos \beta_i + y_i^2)^{\frac{1}{2}}, 1 \leq i \leq k, (x', y')_\beta = ((x_1, y_1)_\beta, \ldots, (x_k, y_k)_\beta), d\nu(\beta) = \prod_{i=1}^{k} \sin^{\gamma_i-1} \beta_i d\beta_1 \cdots d\beta_k, 1 \leq k \leq n \) and

\[
C_{\gamma, k} = \pi^{-\frac{k}{2}} \prod_{i=1}^{k} \frac{\Gamma \left(\frac{\gamma_i+1}{2} \right)}{\Gamma \left(\frac{\gamma_i}{2} \right)} = \frac{2^k}{\pi^k} \omega(2k, k, \gamma).
\]

It acts from \(L^p(\mathbb{R}^n, d\nu) \) to \(L^p(\mathbb{R}^n, d\nu) \) and \(||T^x f||_p < ||f||_p \) and \(T^x 1 = 1 \) and \(L_p \)-boundedness.

We remark that the generalized translate operator \(T^x \) is closely connected with the Bessel differential operator \(B \) (for example, \(n = k = 1 \) see [23], \(n > 1, k = 1 \) see [21] and \(n, k > 1 \) see [24, 33, 34] for details).

Let \(L_{p, \varphi, \gamma}(\mathbb{R}^n_{k+}) \) be the space of Lebesgue measurable functions \(f \) such that

\[
\|f\|_{L_{p, \varphi, \gamma}(\mathbb{R}^n_{k+})} = \left(\int_{\mathbb{R}^n_{k+}} |f(x)|^p \varphi^p(x)(x')^\gamma dx \right)^{1/p} < \infty
\]
where \(1 \leq p < \infty \). For \(p = \infty \) the space \(L_{\infty, \gamma}(\mathbb{R}^n_{k,+}) \) is defined by means of the usual modification
\[
\|f\|_{L_{\infty, \gamma}} = \|f\|_{L_{\infty, \infty}} = \text{ess sup}_{x \in \mathbb{R}^n_{k,+}} \varphi(x)|f(x)|.
\]

Definition 2.1. The weight function \(\varphi \) belongs to the class \(A_{p, \gamma}(\mathbb{R}^n_{k,+}) \) for \(1 \leq p < \infty \), if
\[
\sup_{x \in \mathbb{R}^n_{k,+}, r > 0} \left(\frac{1}{|E(x,r)|^\gamma} \int_{E(x,r)} \varphi^p(y)(y')^\gamma dy \right)^{\frac{1}{p}} \left(\frac{1}{|E(x,r)|^\gamma} \int_{E(x,r)} \varphi^{-p}(y)(y')^\gamma dy \right)^{\frac{1}{p}} < \infty
\]
and \(\varphi \) belongs to \(A_{1, \gamma}(\mathbb{R}^n_{k,+}) \), if there exists a positive constant \(C \) such that for any \(x \in \mathbb{R}^n_{k,+} \) and \(r > 0 \)
\[
|E(x,r)|^{-\gamma} \int_{E(x,r)} \varphi(y)(y')^\gamma dy \leq C_{y \in E(x,r)} \frac{1}{\varphi(y)}.
\]

Definition 2.2. The weight function \((\varphi_1, \varphi_2) \) belongs to the class \(\tilde{A}_{p, \gamma}(\mathbb{R}^n_{k,+}) \) for \(1 < p < \infty \), if
\[
\sup_{x \in \mathbb{R}^n_{k,+}, r > 0} \left(\frac{1}{|E(x,r)|^\gamma} \int_{E(x,r)} \varphi_1^p(y)(y')^\gamma dy \right)^{\frac{1}{p}} \left(\frac{1}{|E(x,r)|^\gamma} \int_{E(x,r)} \varphi_1^{-p}(y)(y')^\gamma dy \right)^{\frac{1}{p}} < \infty.
\]

The generalized translate operator \(T^y \) generates the corresponding \(B \)-convolution
\[
(f \otimes g)(x) = \int_{\mathbb{R}^n_{k,+}} f(y)|T^y g(y)|(y')^\gamma dy,
\]
for which the Young inequality
\[
\|f \otimes g\|_{L_{r, \gamma}} \leq \|f\|_{L_{p, \gamma}} \|g\|_{L_{q, \gamma}}, \quad 1 \leq p, q \leq r \leq \infty, \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1
\]
holds.

Lemma 2.3. For all \(x \in \mathbb{R}^n_{k,+} \) the following equality is holds
\[
\int_{E_t} T^y g(x)(y')^\gamma dy = \int_{E((x,0), t)} g\left(\sqrt{z''^2 + z_1^2 + \cdots + z_k^2}, z'' \right) d\mu(z, \overline{z}),
\]
where \(E((x,0), t) = \{(z, \overline{z}) \in \mathbb{R}^n \times (0, \infty)^k : \|(z - x, \overline{z})\| < t\} \).

Lemma 2.4. For all \(x \in \mathbb{R}^n_{k,+} \) the following equality is holds
\[
\int_{\mathbb{R}^n_{k,+}} T^y g(x)\varphi(y)M_\gamma \chi_{E_t}(y)(y')^\gamma dy
\]
\[
= \int_{\mathbb{R}^n \times (0, \infty)^k} g\left(\sqrt{z''^2 + z_1^2 + \cdots + z_k^2}, z'' \right) \varphi(z, \overline{z}) M_\nu \chi_{E((x,0), t)} (z, \overline{z}) d\nu(z, \overline{z}),
\]
where \(E((x,0), t) = \{(z, \overline{z}) \in \mathbb{R}^n \times (0, \infty)^k : \|(z - x, \overline{z})\| < t\} \).

Lemmas 2.3 and 2.4 are straightforward via the following substitutions
\[
z'' = z''', z_i = y_i \cos \alpha_i, \quad \overline{z_i} = y_i \sin \alpha_i, \quad 0 \leq \alpha_i < \pi, \quad i = 1, \ldots, k,
\]
y \in \mathbb{R}^n_{k,+}, \quad \overline{z} = (\overline{z_1}, \ldots, \overline{z_k}), \quad (z, \overline{z}) \in \mathbb{R}^n \times (0, \infty)^k, \quad 1 \leq k \leq n.

Definition 2.5 ([13]). Let \(1 \leq p < \infty \) and \(0 \leq \lambda \leq Q \). We denote by \(M_{p, \lambda, \gamma}(\mathbb{R}^n_{k,+}) \) Morrey space (\(\equiv B \)-Morrey space), associated with the Laplace-Bessel differential operator the set of locally integrable functions \(f(x), \ x \in \mathbb{R}^n_{k,+} \), with the finite norm
\[
\|f\|_{M_{p, \lambda, \gamma}} = \sup_{t > 0, \ x \in \mathbb{R}^n_{k,+}} \left(t^{-\lambda} \int_{E_t} |T^y f(x)(y')^\gamma dy \right)^{1/p}.
\]
Define the B-maximal operator of f by
\[M_\gamma f(x) = \sup_{r > 0} |E_r|^{-1} r \int_{E_r} |f(y)\gamma \cdot dy, \]
and the fractional B-maximal operator by
\[M_{\alpha,\gamma} f(x) = \sup_{r > 0} |E_r|^{-1} \int_{E_r} |f(y)\gamma \cdot dy, \quad 0 \leq \alpha < Q, \]
and the B-Riesz potential by
\[I_{\alpha,\gamma} f(x) = \int |f(y)\gamma \cdot dy, \quad 0 < \alpha < Q. \]
We write $M_{0,\gamma} f(x) = M_\gamma f(x)$ in the case $\alpha = 0$.

Let ω and φ positive measurable weight functions. The norm in the spaces $M_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ and $M_{p,\omega,\varphi,\gamma}(\mathbb{R}^n_{k,+})$ defined in two forms,
\[
\|f\|_{M_{p,\omega,\gamma}} = \sup_{x \in \mathbb{R}^n_{k,+}, t > 0} \omega(t) \left(\int_{E_t} T^\gamma f(x)^P(x) (y)\gamma \cdot dy \right)^{1/p},
\]
and
\[
\|f\|_{M_{p,\omega,\varphi,\gamma}} = \sup_{x \in \mathbb{R}^n_{k,+}, t > 0} \frac{1}{\omega(t)\varphi(t)} \left(\int_{E_t} T^\gamma f(x)^P(x) \varphi(y)(y)\gamma \cdot dy \right)^{1/p}.
\]
If $\omega(t) \equiv r^{-\frac{Q}{p}}$ then $M_{p,\omega,\gamma}(\mathbb{R}^n_{k,+}) \equiv L_{p,\gamma}(\mathbb{R}^n_{k,+})$, if $\omega(t) \equiv t^{-\frac{\lambda - Q}{p}}$, $0 \leq \lambda < Q$, then $M_{p,\omega,\gamma}(\mathbb{R}^n_{k,+}) \equiv M_{p,\lambda,\gamma}(\mathbb{R}^n_{k,+})$.

Denote by M_1^γ, the sharp B-maximal function defined by
\[M_1^\gamma f(x) = \sup_{t > 0} |E(0,t)|^{-1} t \int_{E(0,t)} |T^\gamma f(x) - f_{E(0,t)}(x)| (y)\gamma \cdot dy, \]
where $f_{E(0,t)}(x) = |E(0,t)|^{-1} \int_{E(0,t)} T^\gamma f(x)(y)\gamma \cdot dy$.

$B - BMO$ space, $BMO_\gamma(\mathbb{R}^n_{k,+})$, defined as the space of locally integrable functions f with finite norm
\[\|f\|_{BMO_\gamma} = \sup_{t > 0, x \in \mathbb{R}^n_{k,+}} |E(0,t)|^{-1} \int_{E(0,t)} |T^\gamma f(x) - f_{E(0,t)}(x)| (y)\gamma \cdot dy < \infty, \]
or
\[\|f\|_{BMO_\gamma} = \inf_C \sup_{t > 0, x \in \mathbb{R}^n_{k,+}} |E(0,t)|^{-1} \int_{E(0,t)} |T^\gamma f(x) - C(\gamma) (y)\gamma \cdot dy < \infty. \]

The following theorem was proved in [4].

Theorem 2.6.
\[\text{i) If Let } f \in L^{loc}_{1,\gamma}(\mathbb{R}^n_{k,+}). \]
\[\sup_{t > 0, x \in \mathbb{R}^n_{k,+}} \left(|E(0,t)|^{-1} \int_{E(0,t)} |T^\gamma f(x) - f_{E(0,t)}(x)|^P(y)^\gamma \cdot dy \right)^{1/p} = \|f\|_{BMO_{p,\gamma}} < \infty, \]
then for any $1 < p < \infty$
\[\|f\|_{BMO_\gamma} \leq \|f\|_{BMO_{p,\gamma}} \leq A_p \|f\|_{BMO_\gamma}, \]
where the constant A_p depends only on p.

ii) Let \(f \in BMO_\gamma(\mathbb{R}^n_{k,+}) \). Then, there is a constant \(C > 0 \) such that

\[
|f_{E(0,r)} - f_{E(0,t)}| \leq C\|f\|_{BMO_\gamma} \ln \frac{t}{r}, \quad 0 < 2r < t
\]

where \(C \) is independent of \(f, x, r \) and \(t \).

Lemma 2.7 ([20]). Let \(1 < p < \infty, \varphi \in A_{p,\gamma}(\mathbb{R}^n_{k,+}), b \in BMO_\gamma(\mathbb{R}^n_{k,+}) \). Then

\[
\|b\|_{BMO_\gamma} \approx \sup_{x \in \mathbb{R}^n_{k,+}, r > 0} \frac{\|T b(x) - b_{E(0,r)}\|_{L_{p,p,\gamma}(E(0,r))}}{\|\varphi\|_{L_{p,\gamma}(E(0,r))}}.
\]

3. \(B \)-Riesz potentials on generalized weighted \(B \)-Morrey spaces

Theorem 3.1. Let \(0 < \alpha < Q, 1 < p < \frac{Q}{\alpha}, \frac{1}{p} - \frac{1}{q} = \frac{\alpha}{Q} \), \((\varphi_1, \varphi_2) \in \tilde{A}_{1+\frac{n}{\alpha},\gamma}(\mathbb{R}^n_{k,+}) \), \(\frac{1}{p} + \frac{1}{p'} = 1 \) and \(\omega_1(r), \omega_2(r) \) be positive measurable functions satisfying the condition

\[
\int_0^\infty \omega_1(t)\|\varphi_1\|_{L_{p,\gamma}(E(0,r))} \frac{dr}{r} \leq C\omega_2(t). \tag{3.1}
\]

Then \(I_{\alpha,\gamma} \) is bounded from \(M_{p,\omega_1,\varphi_1,\gamma}(\mathbb{R}^n_{k,+}) \) to \(M_{q,\omega_2,\varphi_2,\gamma}(\mathbb{R}^n_{k,+}) \).

Proof. Let \(f \in M_{p,\omega_1,\varphi_1,\gamma}(\mathbb{R}^n_{k,+}) \). Then

\[
I_{\alpha,\gamma}f(x) = I_{\alpha,\gamma}f_1(x) + I_{\alpha,\gamma}f_2(x). \tag{3.2}
\]

Firstly, we estimate \(I_{\alpha,\gamma}f_1(x) \). By using the Hölder’s inequality, we have

\[
|I_{\alpha,\gamma}f_1(x)| \leq \int_{E(0,t)} T^y |f(x)| |y|^{\alpha - Q}(y')^\gamma dy
\]

\[
\leq \sum_{j=-\infty}^{-1} \left(2^j t \right)^{\alpha - Q} \int_{E(0,2^{j+1}t)\setminus E(0,2^jt)} T^y |f(x)|(y')^\gamma dy
\]

\[
\leq \sum_{j=-\infty}^{-1} \left(2^j t \right)^{\alpha - Q} \left(\int_{E(0,2^{j+1}t)\setminus E(0,2^jt)} T^y |f(x)|^p \varphi_1^p(y)(y')^\gamma dy \right)^{1/p}
\]

\[
\times \left(\int_{E(0,2^{j+1}t)\setminus E(0,2^jt)} \varphi_1^{-p'}(y)(y')^\gamma dy \right)^{1/p'}
\]

\[
\leq C\|f\|_{L_{p,\varphi_1,\gamma}(E(0,t))}\|\varphi_2\|_{L_{q,\gamma}(E(0,t))}^{-1}.
\]

By the inequality (3.1), we obtain

\[
\|I_{\alpha,\gamma}f_1\|_{L_{q,\varphi_2,\gamma}(E(0,t))} \leq C\|f\|_{L_{p,\varphi_1,\gamma}(E(0,t))}
\]

\[
\leq C\|f\|_{L_{p,\varphi_1,\gamma}(E(0,t))}\|\varphi_2\|_{L_{q,\gamma}(E(0,t))} \int_0^\infty \omega_1(r)\|\varphi_1\|_{L_{p,\gamma}(E(0,r))} \frac{dr}{r}
\]

\[
\leq C\|f\|_{M_{p,\omega_1,\varphi_1,\gamma}}\omega_2(t)\|\varphi_2\|_{L_{q,\gamma}(E(0,t))}.
\]

Hence, we have

\[
\|I_{\alpha,\gamma}f_1\|_{L_{q,\varphi_2,\gamma}(E(0,t))} \leq C\|f\|_{M_{p,\omega_1,\varphi_1,\gamma}}\omega_2(t)\|\varphi_2\|_{L_{q,\gamma}(E(0,t))} \tag{3.3}
\]
Now we estimate $I_{α,γ}f_2(x)$. By using the Hölder’s inequality, we get
\[
|I_{α,γ}f_2(x)| \leq \int_{\mathbb{R}^n_{k,+}\setminus E(0,t)} T^y|f(x)||y|^{α−Q}(y')^γ \, dy \\
\leq \sum_{j=0}^∞ \left(2^j t\right)^{α−Q} \int_{E(0,2^{j+1}t)\setminus E(0,2^jt)} T^y|f(x)|(y')^γ \, dy \\
\leq \sum_{j=0}^∞ \left(2^j t\right)^{α−Q} \left(\int_{E(0,2^{j+1}t)\setminus E(0,2^jt)} \varphi_1^{-p'}(y)(y')^γ \, dy \right)^{1/p'} \\
\times \left(\int_{E(0,2^{j+1}t)\setminus E(0,2^jt)} T^y |f(x)|^p \varphi_1^{p'}(y)(y')^γ \, dy \right)^{1/p} \\
\leq C\|f\|_{M_{p,ω_1,φ_1,γ}} \int_{t}^{∞} \frac{ω_1(r)}{r} \|φ_1\|_{L_{p,γ}(E(0,r))} \, dr.
\]
Thus, by the inequality (3.1), we obtain
\[
|I_{α,γ}f_2(x)| \leq C\|f\|_{M_{p,ω_1,φ_1,γ}} \omega_2(t). \tag{3.4}
\]
So, from (3.3) and (3.4), we have
\[
\|I_{α,γ}f\|_{L_{q,φ_2,γ}(E(0,t))} \leq \|I_{α,γ}f_1\|_{L_{q,φ_2,γ}(E(0,t))} + \|I_{α,γ}f_2\|_{L_{q,φ_2,γ}(E(0,t))} \\
\leq C\|f\|_{M_{p,ω_1,φ_1,γ}} \omega_2(t) \|φ_2\|_{L_{q,γ}(E(0,t))}.
\]
Finally $I_{α,γ}f \in M_{q,ω_2,φ_2,γ}(\mathbb{R}^n_{k,+})$ and
\[
\|I_{α,γ}f\|_{M_{q,ω_2,φ_2,γ}} \leq C\|f\|_{M_{p,ω_1,φ_1,γ}}.
\]

\begin{corollary}
Let $0 < α < Q$, $1 < p < \frac{Q}{α}$, $\frac{1}{p} - \frac{1}{q} = \frac{α}{Q}$, $(φ_1, φ_2) \in \tilde{A}_{1+\frac{α}{p},γ}(\mathbb{R}^n_{k,+})$. Then the operator $I_{α,γ}$ is bounded from $L_{p,φ_1,γ}(\mathbb{R}^n)$ to $L_{q,φ_2,γ}(\mathbb{R}^n)$.
\end{corollary}

\begin{corollary}
Let $0 < α < Q$, $1 < p < \frac{Q}{α}$, $\frac{1}{p} - \frac{1}{q} = \frac{α}{Q}$, $(φ_1, φ_2) \in \tilde{A}_{1+\frac{α}{p},γ}(\mathbb{R}^n_{k,+})$. Then the operator $M_{α,γ}$ is bounded from $L_{p,φ_1,γ}(\mathbb{R}^n)$ to $L_{q,φ_2,γ}(\mathbb{R}^n)$.
\end{corollary}

4. Commutators of B-Riesz potential on generalized weighted B-Morrey spaces

In this section, we consider commutators of the B-Riesz potential defined as the following equality
\[
[b, I_{α,γ}]f(x) = \int_{\mathbb{R}^n_{k,+}} (b(x) - b(y))|y|^{α−Q} T^y f(x)(y')^γ \, dy, \quad 0 < α < Q.
\]
Given a measurable function b the operator $|b, I_{α,γ}|$ is defined by
\[
|b, I_{α,γ}]f(x) = \int_{\mathbb{R}^n_{k,+}} |b(x) - b(y)||y|^{α−Q} T^y f(x)(y')^γ \, dy, \quad 0 < α < Q.
\]

\begin{theorem}
Let $0 < α < Q$, $1 < p < \frac{Q}{α}$, $\frac{1}{p} - \frac{1}{q} = \frac{α}{Q}$, $b \in BMO_γ(\mathbb{R}^n_{k,+})$, $(φ_1, φ_2) \in \tilde{A}_{1+\frac{α}{p},γ}(\mathbb{R}^n_{k,+})$, $φ_1 \in A_{p,γ}(\mathbb{R}^n_{k,+})$ and $ω_1(r)$, $ω_2(r)$ be positive measurable functions satisfying the condition (3.1). Then $|b, I_{α,γ}|$ is bounded from $M_{p,ω_1,φ_1,γ}(\mathbb{R}^n_{k,+})$ to $M_{q,ω_2,φ_2,γ}(\mathbb{R}^n_{k,+})$.
\end{theorem}
Proof. Let $f \in \mathcal{M}_{p,\omega_1,\varphi_1,\gamma} \left(\mathbb{R}^n_{k,+} \right)$. Then
\[
|b, I_{\alpha,\gamma} f(x)| = \left(\int_{E(0,t)} + \int_{E(0,t)} \right) T^y \| |b - b(x)||f(x)||y|^{-Q}(y')^\gamma \, dy
\]
\[
= F_1(x, t) + F_2(x, t).
\]
Firstly, we estimate $F_1(x, t)$. By using the Hölder’s inequality, we have
\[
F_1(x, t) = \int_{E(0,t)} T^y \| |b - b(x)||f(x)||y|^{-Q}(y')^\gamma \, dy
\]
\[
\leq \sum_{j=-\infty}^{-1} (2^j t)^{-Q} \int_{E(0,2^{j+1}t) \setminus E(0,2jt)} T^y \| |b - b(x)||f(x)||y|^{-Q}(y')^\gamma \, dy
\]
\[
\leq \sum_{j=-\infty}^{-1} (2^j t)^{-Q} \left(\int_{E(0,2^{j+1}t) \setminus E(0,2jt)} |T^y b(x) - b|^{p'} \varphi_1^{-1}(y)(y')^\gamma \, dy \right)^{1/p'}
\]
\[
\times \left(\int_{E(0,2^{j+1}t) \setminus E(0,2jt)} |f(x)|^p \varphi_1(y)(y')^\gamma \, dy \right)^{1/p}
\]
\[
\leq C \|b\|_{BMO, \gamma} \|f\|_{L_{p,\varphi_1,\omega_1}(E(0,t))} \|\varphi_2\|_{L_{q,\gamma}(E(0,t))}^{-1}.
\]
By the inequality (3.1), we obtain
\[
\|F_1\|_{L_{q,\varphi_2,\omega_2,\gamma}(E(0,t))} \leq C \|b\|_{BMO, \gamma} \|f\|_{L_{p,\varphi_1,\omega_1,\gamma}(E(0,t))} \int_0^\infty \omega_1(r) \|\varphi_1\|_{L_{p,\gamma}(E(0,r))} \, dr
\]
\[
\leq C \|b\|_{BMO, \gamma} \|f\|_{L_{p,\varphi_1,\omega_1,\gamma}} \|\varphi_2\|_{L_{q,\gamma}}^{-1}.
\]
Hence we have
\[
\|F_1\|_{L_{q,\varphi_2,\omega_2,\gamma}(E(0,t))} \leq C \|b\|_{BMO, \gamma} \|f\|_{L_{p,\varphi_1,\omega_1,\gamma}} \|\varphi_2\|_{L_{q,\gamma}}^{-1}.
\] (4.1)
Now we estimate $F_2(x, t)$. By using the Hölder’s inequality, we get
\[
F_2(x, t) \leq \int_{\mathbb{R}^n_{k,+} \setminus E(0,t)} T^y \| |b - b(x)||f(x)||y|^{-Q}(y')^\gamma \, dy
\]
\[
\leq \sum_{j=0}^\infty (2^j t)^{-Q} \int_{E(0,2^{j+1}t) \setminus E(0,2jt)} T^y \| |b - b(x)||f(x)||y|^{-Q}(y')^\gamma \, dy
\]
\[
\leq \sum_{j=0}^\infty (2^j t)^{-Q} \left(\int_{E(0,2^{j+1}t) \setminus E(0,2jt)} |T^y b(x) - b|^{p'} \varphi_1^{-1}(y)(y')^\gamma \, dy \right)^{1/p'}
\]
\[
\times \left(\int_{E(0,2^{j+1}t) \setminus E(0,2jt)} |f(x)|^p \varphi_1(y)(y')^\gamma \, dy \right)^{1/p}
\]
\[
\leq C \|b\|_{BMO, \gamma} \|f\|_{M_{p,\varphi_1,\omega_1,\gamma}} \int_0^\infty \omega_1(r) \|\varphi_1\|_{L_{p,\gamma}(E(0,r))} \, dr \frac{1}{r}.
\]
Thus by the inequality (3.1), we have
\[
F_2(x, t) \leq C \|b\|_{BMO, \gamma} \|f\|_{M_{p,\varphi_1,\omega_1,\gamma}} \varphi_2(t).
\] (4.2)
Therefore, from (4.1) and (4.2), we obtain
\[\| b, I_{\alpha,\gamma} |f| \|_{L^{q,\varphi,\gamma}(E(0,t))} \leq \| F_1 \|_{L^{q,\varphi,\gamma}(E(0,t))} + \| F_2 \|_{L^{q,\varphi,\gamma}(E(0,t))} \]
\[\leq C \| b \|_{\text{BMO}_\gamma} \| f \|_{M_{p,\varphi_1,\varphi_2}(t)} \| \varphi_2 \|_{L^{q,\gamma}(E(0,t))}. \]
Finally, we get \(|b, I_{\alpha,\gamma}|f| \in M_{q,\omega_2,\varphi_2,\gamma}(\mathbb{R}^n_k) \) and
\[\| b, I_{\alpha,\gamma} |f| \|_{M_{q,\omega_2,\varphi_2,\gamma}} \leq C \| b \|_{\text{BMO}_\gamma} \| f \|_{M_{p,\varphi_1,\varphi_2,\gamma}}. \]

\[\square \]

Corollary 4.2. Let \(0 < \alpha < Q, \ 1 < p < \frac{Q}{\alpha}, \ \frac{1}{p} - \frac{1}{Q} = \frac{\gamma}{\gamma}, \ b \in \text{BMO}_\gamma(\mathbb{R}^n_k), \ (\varphi_1, \varphi_2) \in \tilde{A}_{1+\frac{\gamma}{\alpha}}(\mathbb{R}^n_k) \) and \(\varphi_1 \in A_{p,\gamma}(\mathbb{R}^n_k) \). Then the operator \(|b, I_{\alpha,\gamma}| \) is bounded from \(L_{p,\varphi_1,\gamma}(\mathbb{R}^n) \) to \(L_{q,\varphi_2,\gamma}(\mathbb{R}^n) \).

Acknowledgment. The authors would like to express their gratitude to the referees for his very valuable comments and suggestions. The research of I. Ekincioglu and C. Keskin was supported by the grant of Cooperation Program 2532 TUBITAK- RFBR (Russian foundation for basic research) with agreement number no. 119N455.

References

The boundedness of B-Riesz potential and its commutators

