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Abstract 

The purpose of this note is to show some key features of 𝐹𝐼𝑠𝑠 −lifting and strongly 𝐹𝐼𝑠𝑠 −lifting modules.  We examine  

that under whose condition for direct summands, direct sums and submodules of  (strongly) 𝐹𝐼𝑠𝑠 −lifting modules are 

(strongly) 𝐹𝐼𝑠𝑠 −lifting. We give an example to exhibit that an 𝐹𝐼 −lifting module needs not to be 𝐹𝐼𝑠𝑠 −lifting. We 

provide that the property of being strongly 𝐹𝐼𝑠𝑠 −lifting module is inherited by direct summands.  

Keywords: 𝑠𝑠 −supplement submodule, 𝐹𝐼𝑠𝑠 −lifting module, strongly 𝐹𝐼𝑠𝑠 −lifting module. 

 

 

𝑭𝑰𝒔𝒔 −Yükseltilebilir Modüller 

 

Öz 

Bu çalışmanın amacı 𝐹𝐼𝑠𝑠 −yükseltilebilir ve güçlü 𝐹𝐼𝑠𝑠 −yükseltilebilir modüllerin bazı temel özelliklerini göstermektir. 

(Güçlü) 𝐹𝐼𝑠𝑠 −yükseltilebilir modüllerin direkt toplam terimlerinin, direkt toplamlarının ve alt modüllerinin hangi 

koşullar altında altında (güçlü) 𝐹𝐼𝑠𝑠 −yükseltilebilir modül olduğunu inceliyoruz. 𝐹𝐼 −yükseltilebilir bir modülün 

𝐹𝐼𝑠𝑠 −yükseltilebilir olmak zorunda olmadığını gösteren bir örnek veriyoruz. Güçlü 𝐹𝐼𝑠𝑠 −yükseltilebilir modül olma 

özelliğinin direkt toplam terimleri tarafından aktarıldığını ispatlıyoruz.  

Anahtar Kelimeler: 𝑠𝑠 −tümleyen alt modül, 𝐹𝐼𝑠𝑠 −yükseltilebilir modül, güçlü 𝐹𝐼𝑠𝑠 −yükseltilebilir modül.  
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1. Introduction 

 

Along this article, whole modules are keep in view as unital left 𝑅 −modules where 𝑅 signifies 

an arbitrary ring that has unit element. Let 𝑀 be such a module. The impressions 𝐿 ≤  𝑀 , 𝐿 ≤⨁  𝑀 

mean that 𝐿 is a submodule of 𝑀, 𝐿 is a direct summand of 𝑀, respectively. A submodule 𝐿 of 𝑀 is 

small in 𝑀, notated with 𝐿 ≪  𝑀, if 𝑀 ≠  𝐿 + 𝐴 for each proper submodule 𝐴 of 𝑀. By 

𝐸(𝑀), 𝑅𝑎𝑑(𝑀) and 𝑆𝑜𝑐(𝑀), we imply the injective hull of 𝑀, the radical of 𝑀 and the socle of 𝑀, 

respectively (Wisbauer, 1991). 𝑆𝑜𝑐𝑠(𝑀) stands for the sum of whole simple submodules of  𝑀 that 

are small in 𝑀 (Zhou and Zhang, 2011). A submodule 𝐿 of a module 𝑀 is fully invariant if 𝛾(𝐿) is 

contained in 𝐿 for each endomorphism 𝛾 of 𝑀 (Wisbauer, 1991). Note that 𝑆𝑜𝑐𝑠(𝑀)  is a fully 

invariant submodule of 𝑀. A submodule 𝐿 of 𝑀 is coclosed in 𝑀, if 𝐿 has no proper submodule 𝐿′ 

for which 𝐿′ ⊂ 𝐿 is cosmall in 𝑀, that is, 𝐿 𝐿′⁄ ≪ 𝑀 𝐿′⁄ . For example, each direct summand is 

coclosed in 𝑀 (see 3.6 in (Clark et al., 2006)).  

Let 𝑀 be a module and 𝐿, 𝑉 ≤ 𝑀. 𝐿 is a supplement submodule in 𝑀 of 𝑉, if 𝑀 = 𝐿 + 𝑉 and 

𝐿 ∩ 𝑉 ≪ 𝐿 (Wisbauer, 1991). 𝑀 is a supplemented module if each submodule possesses a supplement 

in 𝑀.  𝑀 is an amply supplemented module, if each submodule 𝑇 of 𝑀 possesses ample supplements 

in 𝑀, that is, for any 𝑋 ≤ 𝑀 providing 𝑀 = 𝑇 + 𝑋 includes a supplement of 𝑇 in 𝑀 (Wisbauer, 

1991). As a special concept of supplements, in (Kaynar et al., 2020), the authors introduced that 𝑇 is 

an 𝑠𝑠 −supplement of 𝑉 in 𝑀, if 𝑀 = 𝑇 + 𝑉 and 𝑇 ∩ 𝑉 ≤ 𝑆𝑜𝑐𝑠(𝑇), where 𝑆𝑜𝑐𝑠(𝑇) = ∑{𝑇′ ≪ 𝑇|  𝑇′ 

is simple} = 𝑅𝑎𝑑(𝑇) ∩ 𝑆𝑜𝑐(𝑇) (see Lemma 2 and Lemma 3 in (Kaynar et al., 2020)). Clearly, the  

notion of 𝑠𝑠 −supplement is a proper generalization of the notion of direct summands. 𝑀 is 

𝑠𝑠 −supplemented if each submodule 𝐿 of 𝑀 possesses an 𝑠𝑠 −supplement in 𝑀.  𝑀 is amply 

𝑠𝑠 −supplemented, if each submodule 𝐿 of 𝑀 possesses ample 𝑠𝑠 −supplements in 𝑀 (Kaynar et al., 

2020). 

 In (Clark et al., 2006), it is defined that 𝑀 is a lifting module if each submodule 𝐾 includes  

𝐷 ≤⨁ 𝑀 providing 𝐾 𝐷⁄ ≪ 𝑀 𝐷⁄ . This definition is called lifting condition of a module. It is proved 

in 22.3 in (Clark et al., 2006) that a module is lifting if and only if supplement submodules are direct 

summands and the module is amply supplemented .  

In (Eryılmaz, 2021), the author said a module 𝑀  𝑠𝑠 −lifting if for each submodule 𝐿 of 𝑀, 𝑀 

possesses the decomposition 𝑀 = 𝑀1⨁𝑀2 providing 𝑀1 ≤ 𝐿 and 𝐿 ∩ 𝑀2 ≤ 𝑆𝑜𝑐𝑠(𝑀2). It is obvious 

that each 𝑠𝑠 −lifting module is lifting.  

  In (Koşan, 2005), it is investigated that the lifting condition of a module and its fully invariant 

submodules. It is defined that if the whole submodules of 𝑀 which are fully invariant possess the 

lifting condition, then 𝑀 is 𝐹𝐼 −lifting. On the other side, Talebi and Amoozegar generalized the 
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concept of 𝐹𝐼 −lifting modules to strongly 𝐹𝐼 −lifting modules in (Talebi and Amoozegar, 2008). If 

each fully invariant submodule 𝐹 of a module 𝑀 includes 𝑋 ≤⨁ 𝑀 that is fully invariant providing 

𝐹 𝑋⁄ ≪ 𝑀 𝑋⁄ , then the authors said 𝑀 strongly 𝐹𝐼 −lifting.  In the same paper, the authors showed 

several properties of these modules.  

 Inspired by these concepts, we generalize the notion of  𝑠𝑠 −lifting and 𝐹𝐼 −lifting modules to  

𝐹𝐼𝑠𝑠 −lifting and strongly 𝐹𝐼𝑠𝑠 −lifting modules by taking into account each fully invariant 

submodule of a module instead of each submodule of a module.  We give an example to demonstrate 

that an  𝐹𝐼 −lifting module does not need to be 𝐹𝐼𝑠𝑠 −lifting. It is proved that a finite direct sum of 

𝐹𝐼𝑠𝑠 −lifting modules is 𝐹𝐼𝑠𝑠 −lifting. We give an example indicating that any infinite direct sum of  

𝐹𝐼𝑠𝑠 −lifting modules is not 𝐹𝐼𝑠𝑠 −lifting. We verify that the class of  𝐹𝐼𝑠𝑠 −lifting modules is closed 

under fully invariant quotients. It is showed that a fully invariant which is coclosed submodule of an 

𝐹𝐼𝑠𝑠 −lifting module is 𝐹𝐼𝑠𝑠 −lifting. We show that the property being strongly 𝐹𝐼𝑠𝑠 −lifting module 

is transferred by each direct summand. We give the necessary and sufficient condition for a module 

which is a  finite direct sum of fully invariant submodules to be strongly 𝐹𝐼𝑠𝑠 −lifting.  

2. Materials and Methods 

In this section, we define 𝐹𝐼𝑠𝑠 −lifting and strongly 𝐹𝐼𝑠𝑠 −lifting modules. But firstly, we give some 

facts about  𝑠𝑠 −lifting modules and some properties of fully invariant submodules.  

 

Lemma 2.1. For a module 𝑀, we have;  

1. Any sum or intersection of fully invariant submodules of 𝑀 is again a fully invariant submodule 

of 𝑀. 

2.  If 𝐾 ≤ 𝐿 ≤ 𝑀 such that 𝐾 is a fully invariant submodule of 𝐿 and 𝐿 is a fully invariant submodule 

of 𝑀 , then 𝐾  is fully invariant submodule of 𝑀. 

3. If 𝑀 =⊕𝑖∈𝐼 𝑀𝑖 and 𝑁 is a fully invariant submodule of 𝑀, then 𝑁 =⊕𝑖∈𝐼 (𝑁 ∩ 𝑀𝑖). 

4. If 𝐾 ≤ 𝐿 ≤ 𝑀 such that 𝐾 is a fully invariant submodule of 𝑀 and 𝐿 𝐾⁄  is a fully invariant 

submodule of 𝑀 𝐾⁄  , then 𝐿 is a fully invariant submodule of 𝑀.  

 

Proof. See Lemma 1.1 in (Birkenmeir et al., 2002) and Lemma 3.2 in (Koşan, 2005).   

 

Lemma 2.2. Let 𝑀 be a module and 𝑈 ≤ 𝑀 . The following conditions are equivalent:  

1. There is a direct summand 𝐾 of 𝑀 such that 𝐾 ≤ 𝑈 and 𝑈 𝐾⁄ ≤ 𝑆𝑜𝑐𝑠(𝑀 𝐾⁄ ). 

2. There are a direct summand 𝐾 of 𝑀 and a submodule 𝐿 of 𝑀  such that 𝐾 ≤ 𝑈, 𝑈 = 𝐾 + 𝐿 and 

𝐿 ≤ 𝑆𝑜𝑐𝑠(𝑀). 
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3. There is a decomposition 𝑀 = 𝐾⨁𝐾′ with 𝐾 ≤ 𝑈 and 𝐾′ ∩ 𝑈 ≤ 𝑆𝑜𝑐𝑠(𝑀).  

4. 𝑈 has an 𝑠𝑠 −supplement 𝐾′ in 𝑀 such that 𝐾′ ∩ 𝑈 is a direct summand of 𝑈. 

5. There is a homomorphism 𝑓: 𝑀 ⟶ 𝑀 with 𝑓2 = 𝑓 such that 𝑓(𝑀) ≤ 𝑈 and (1 − 𝑓)(𝑈) ≤

𝑆𝑜𝑐𝑠(1 − 𝑓)(𝑀).   

 

Proof. See Lemma 2 in (Eryılmaz, 2021). 

 

Theorem 2.3. For a module 𝑀, the following conditions are equivalent:  

1. 𝑀 is 𝑠𝑠 −lifting. 

2. Every submodule 𝑈 of 𝑀 can be written as 𝑈 = 𝐾⨁𝑆 where 𝐾 is a direct summand of 𝑀 and 

𝑆 ≤ 𝑆𝑜𝑐𝑆(𝑀).  

3. 𝑀 is amply 𝑠𝑠 −supplemented and every 𝑠𝑠 −supplement submodule of 𝑀 is a direct summand 

of 𝑀.  

 

Proof.  By Theorem 1 in (Eryılmaz, 2021).  

 

Definition 2.4. We call a module 𝑀  𝐹𝐼𝑠𝑠 −lifting, if each fully invariant submodule 𝑈 of 𝑀 includes 

𝑋 ≤⨁ 𝑀 providing semisimple 𝑈 𝑋⁄ ≪ 𝑀 𝑋⁄ .  

 

 Clearly, 𝑠𝑠 −lifting modules are 𝐹𝐼𝑠𝑠 −lifting. But, each  𝐹𝐼𝑠𝑠 −lifting module does not need to 

be 𝑠𝑠 −lifting as can be seen from the following example. 

  

Example 2.5. The ℤ −module ℚ, the set of all rational numbers, is not 𝑠𝑠 −lifting as it is not lifting 

module by Example 2.8 in (Koşan, 2005). However, ℚℤ
⬚   is an 𝐹𝐼𝑠𝑠 −lifting module as its only fully 

invariant submodules are 0 and ℚℤ
⬚ .  

 

Definition 2.6. We call a module 𝑀  strongly 𝐹𝐼𝑠𝑠 −lifting, if each fully invariant submodule 𝑈 of 𝑀 

includes  𝑋 ≤⨁ 𝑀 that is fully invariant providing semisimple 𝑈 𝑋⁄ ≪ 𝑀 𝑋⁄ .  

3. Findings and Discussion 

Recall from (Talebi and Vanaja, 2002) that a module 𝑀 is cosingular (non-cosingular) module if 

�̅�(𝑀) =∩ {𝐾𝑒𝑟(𝜑)| 𝜑: 𝑀 ⟶ 𝑋 𝑖𝑠 𝑎 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑎𝑛𝑑 𝑋 ≪ 𝐸(𝑋)} = 0  (�̅�(𝑀) = 𝑀).  

Proposition 3.1. Let 𝑀 be a module. Let 𝐴 ≤ 𝑀 and 𝐿 ≤⨁ 𝑀. Assume that 𝑀 𝐿⁄  is 𝑠𝑠 −lifting. If 

𝐴 𝐴 ∩ 𝐿⁄   is non-cosingular, then 𝐴 + 𝐿 ≤⨁ 𝑀.  
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Proof. By the assumption, there is 𝑋 𝐿⁄ ≤⨁ 𝑀/𝐿  such that 𝑋 𝐿⁄ ≤ (𝐴 + 𝐿) 𝐿⁄ , (𝐴 + 𝐿) 𝑋⁄ ≪ 𝑀 𝑋⁄  

and (𝐴 + 𝐿) 𝑋⁄  is semisimple, as 𝑀 𝐿⁄  is 𝑠𝑠 −lifting. Then (𝐴 + 𝐿) 𝑋⁄  is cosingular. Since 

(𝐴 + 𝐿) 𝐿⁄ ≅ 𝐴 𝐴 ∩ 𝐿⁄ , we get  (𝐴 + 𝐿) 𝐿⁄  is non-cosingular, by the assumption. By Proposition 2.4 

in (Talebi and Vanaja, 2002), (𝐴 + 𝐿) 𝑋⁄  is non-cosingular. Hence 𝑋 = 𝐴 + 𝐿.  

Proposition 3.2. If 𝑀 is non-cosingular module and 𝑀 𝑇⁄  is 𝑠𝑠 −lifting where 𝑇 ≤⨁ 𝑀, then 

(𝑇 + 𝐿) 𝑇⁄ ≤⨁ 𝑀 𝑇⁄  for whole direct summands 𝐿 of 𝑀.  

Proof. Let 𝑀 𝑇⁄  be 𝑠𝑠 −lifting where 𝑇 ≤⨁ 𝑀. Let 𝐿 ≤⨁ 𝑀. Then 𝐿 𝐿 ∩ 𝑇⁄  is non-cosingular by 

Proposition 2.4 in (Talebi and Vanaja, 2002). Thus by Proposition 3.1, 𝐿 + 𝑇 ≤⨁ 𝑀. Hence 

(𝐿 + 𝑇) 𝑇 ≤⨁⁄  𝑀 𝑇⁄ .  

Recall from (Garcia, 1989) that a module 𝑀 has Summand Sum Property if 𝑀1 + 𝑀2 ≤⨁ 𝑀 for 

any 𝑀1, 𝑀2 ≤⨁ 𝑀.  

Corollary 3.3. Each non-cosingular 𝑠𝑠 −lifting module has the Summand Sum Property.  

Proof. Let 𝑀 be 𝑠𝑠 −lifting non-cosingular module and 𝐴, 𝐵 ≤⨁ 𝑀. Then 𝑀 = 𝐴⨁𝐴′ = 𝐵⨁𝐵′ for 

some submodules 𝐴′, 𝐵′ of 𝑀. By Theorem 3 in (Eryılmaz, 2021) 𝐴′ and 𝐵′ are 𝑠𝑠 −lifting modules. 

Since 𝑀 𝐴⁄ ≅ 𝐴′ and 𝑀 𝐵⁄ ≅ 𝐵′, (𝐴 + 𝐵) 𝐴⁄ ≤⨁ 𝑀 𝐴⁄  and (𝐴 + 𝐵) 𝐵 ≤⨁⁄  𝑀 𝐵⁄  by Proposition 3.2. 

Hence 𝐴 + 𝐵 ≤⨁ 𝑀.  

 

Theorem 3.4. Let 𝑀 be a module. Then the following statements are equivalent:  

1.     𝑀 is 𝐹𝐼𝑠𝑠 −lifting.  

2.     For each fully invariant submodule 𝑈 of 𝑀, there is a decomposition 𝑀 = 𝑀1⨁𝑀2 such  

         that 𝑀1 ≤ 𝑈, 𝑀2 ∩ 𝑈 ≪ 𝑀2 and 𝑀2 ∩ 𝑈 is semisimple. 

3.     Each fully invariant submodule 𝑈 of 𝑀 possesses a decomposition 𝑈 = 𝐷⨁𝑆 where 𝐷 ≤⨁ 𝑀,   

         𝑆 ≪ 𝑀 and 𝑆 is semisimple.  

Proof. (1) ⟹ (2) Let 𝑈 ≤ 𝑀 be fully invariant. Since 𝑀 is 𝐹𝐼𝑠𝑠 −lifting, then 𝑀 has the 

decomposition 𝑀 = 𝑀1⨁𝑀2  such that 𝑀1 ≤ 𝑈, 𝑈 𝑀1 ≪ 𝑀 𝑀1⁄⁄  and 𝑈 𝑀1⁄  is semisimple. Consider 

the isomorphism 𝑓: 𝑀 𝑀1⁄ ⟶ 𝑀2. By the way, since 𝑈 𝑀1 ≪ 𝑀 𝑀1⁄⁄ , then 𝑀2 ∩ 𝑈 = 𝑓(𝑈 𝑀1⁄ ) ≪

𝑓(𝑀 𝑀1⁄ ) = 𝑀2 by 19.3(4) in (Wisbauer, 1991). Moreover, 𝑀2 ∩ 𝑈 is semisimple by 8.1.5 in (Kasch, 

1982).  

(2) ⟹ (3) Let 𝑈 ≤ 𝑀 be fully invariant. Then by the assumption, there is a decomposition of  

𝑀 such that 𝑀 = 𝑀1⨁𝑀2, 𝑀1 ≤ 𝑈, 𝑀2 ∩ 𝑈 ≪ 𝑀2 and 𝑀2 ∩ 𝑈 is semisimple. Note that 𝑀2 ∩ 𝑈 ≪
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𝑀 by 19.3(5) in (Wisbauer, 1991). We have that 𝑈 = 𝑀1⨁(𝑀2 ∩ 𝑈), by the modular law. Say         

𝐷 = 𝑀1 and 𝑆 = 𝑀2 ∩ 𝑈. Therefore, 𝑈 = 𝐷⨁𝑆 where 𝐷 ≤⨁ 𝑀, 𝑆 ≪ 𝑀 and 𝑆 is semisimple. 

(3) ⟹ (1) Let 𝑈 ≤ 𝑀 be fully invariant. By the assumption, there is a decomposition 𝑈 =

𝐷⨁𝑆 where 𝐷 ≤⨁ 𝑀, 𝑆 ≪ 𝑀 and 𝑆 is semisimple. So there is 𝐷 ≤⨁ 𝑀 such that 𝐷 ≤ 𝑈. It is obvious 

that 𝑆 ≅ 𝑈 𝐷⁄  is semisimple. Furthermore, suppose that 𝑀 𝐷⁄ = (𝑈 𝐷)⁄ + (𝑉 𝐷)⁄  for some 𝑉 ≤ 𝑀 

such that 𝐷 ≤ 𝑉. Thus we have 𝑀 = 𝑈 + 𝑉 = 𝐷 + 𝑆 + 𝑉 = 𝑆 + 𝑉. Since 𝑆 ≪ 𝑀, then we get that 

𝑀 = 𝑉. Hence 𝑀 𝐷⁄ = 𝑉 𝐷⁄ , and so 𝑈 𝐷⁄ ≪ 𝑀 𝐷⁄ .  Consequently, 𝑀 is an 𝐹𝐼𝑠𝑠 −lifting module.  

Proposition 3.5. Let 𝑀 be an 𝐹𝐼𝑠𝑠 −lifting module and 𝐹 be a fully invariant submodule of 𝑀. Then 

the factor module 𝑀 𝐹⁄  of  𝑀 is 𝐹𝐼𝑠𝑠 −lifting. 

Proof. Let 𝐿 𝐹⁄ ≤ 𝑀 𝐹⁄  be fully invariant. Then by Lemma 2.1, 𝐿 is fully invariant in 𝑀. As 𝑀 is 

𝐹𝐼𝑠𝑠 −lifting, then  𝑀  has the decomposition 𝑀 = 𝐴⨁𝐴′ such that 𝐴 ≤ 𝐿, 𝐿 𝐴 ≪ 𝑀 𝐴⁄⁄   and 𝐿 𝐴⁄  is 

semisimple. Consider the canonical projection 𝜋: 𝑀 ⟶ 𝑀 𝐴⁄  and the canonical injection 𝜄: 𝐴′ ⟶ 𝑀. 

𝑓 = 𝜄𝜋: 𝑀 ⟶ 𝑀 be an endomorphism of 𝑀. Since 𝐹 and 𝐿 are fully invariant submodules of 𝑀, 

𝑓(𝐹) ≤ 𝐹 and 𝑓(𝐿) ≤ 𝐿. It can be seen that 𝐿 = 𝑓−1(𝐿). Note that 𝑓−1(𝐹) ≤ 𝐿 = 𝑓−1(𝐿). Assume 

that 𝑇 be a submodule of 𝑀 such that 𝑓−1(𝐹) ≤ 𝑇 and 𝑀 (𝑓−1(𝐹))⁄ = (𝐿 (𝑓−1(𝐹)))⁄ +

(𝑇 (𝑓−1(𝐹))⁄ ). Then we get that 𝑀 = 𝐿 + 𝑇, and since 𝐿 𝐴 ≪ 𝑀 𝐴⁄⁄ , 𝑀 = 𝑇. Therefore, 

𝐿 (𝑓−1(𝐹))⁄ ≪ 𝑀 (𝑓−1(𝐹))⁄ , that is, (𝐿 𝐹⁄ ) ((𝑓−1(𝐹)) 𝐹⁄ )⁄ ≪ (𝑀 𝐹⁄ ) ((𝑓−1(𝐹)) 𝐹⁄ )⁄ . Moreover, 

since 𝐿 𝐴⁄  is semisimple, then 𝐿 (𝐹 + 𝐴)⁄  is semisimple as a factor module of 𝐿 𝐴⁄  by 8.1.5 in (Kasch, 

1982). Note that  

𝐿 (𝑓−1(𝐹))⁄ = (𝐿 𝐹⁄ ) ((𝑓−1(𝐹)) 𝐹)⁄⁄ = [(𝐿 (𝐹 + 𝐴))⁄ ((𝐹 + 𝐴) 𝐹⁄ )]⁄ [(𝑓−1(𝐹) 𝐹⁄ )]⁄ .  

Then 𝐿 𝑓−1(𝐹)⁄  is semisimple by 8.1.5 in (Kasch, 1982). Now we want to show that 

𝑓−1(𝐹) 𝐹 ≤⨁⁄ 𝑀 𝐹⁄ . Since 𝑀 = 𝐴⨁𝐴′, then 𝑀 = 𝑓−1(𝐹) + 𝐴′. Thus 𝑀 𝐹⁄ = ((𝑓−1(𝐹)) 𝐹)⁄ +

((𝐴′ + 𝐹) 𝐹)⁄ . Since 𝑓−1(𝐹) ∩ (𝐴′ + 𝐹) = 𝐹 + (𝑓−1(𝐹) ∩ 𝐴′) = 𝐹, then (𝑓−1(𝐹)) 𝐹⁄ ≤⨁ 𝑀 𝐹⁄ . 

Hence 𝑀 𝐹⁄  is 𝐹𝐼𝑠𝑠 −lifting.    

Theorem 3.6. Let 𝑀𝑖 be 𝐹𝐼𝑠𝑠 −lifting module for each 1 ≤ 𝑖 ≤ 𝑛 and 𝑀 =⊕𝑖=1
𝑛 𝑀𝑖. Then 𝑀  is 

𝐹𝐼𝑠𝑠 −lifting. 

Proof. Let 𝐹 ≤ 𝑀 be fully invariant. Then 𝐹 =⊕𝑖=1
𝑛 (𝐹 ∩ 𝑀𝑖) by Lemma 2.1. Note that 𝐹 ∩ 𝑀𝑖 is 

fully invariant in 𝑀𝑖 for each 1 ≤ 𝑖 ≤ 𝑛.  Since each 𝑀𝑖 is 𝐹𝐼𝑠𝑠 −lifting, then 𝐹 ∩ 𝑀𝑖 = 𝐷𝑖⨁𝑆𝑖 where 

𝐷𝑖 ≤⨁ 𝑀𝑖, 𝑆𝑖 ≪ 𝑀𝑖 and 𝑆𝑖 is semisimple for each 1 ≤ 𝑖 ≤ 𝑛 by Theorem 3.4. Say 𝐷 =⊕𝑖=1
𝑛 𝐷𝑖 and 
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𝑆 =⊕𝑖=1
𝑛 𝑆𝑖 . Then 𝐹 = 𝐷⨁𝑆, where 𝐷 ≤⨁ 𝑀, 𝑆 ≪ 𝑀 and 𝑆 is semisimple by 19.3(3) in (Wisbauer, 

1991) and 8.1.5 in (Kasch, 1982). Hence by Theorem 3.4, 𝑀 is 𝐹𝐼𝑠𝑠 −lifting.  

Corollary 3.7. Let  𝑀 be a finite direct sum of 𝑠𝑠 −lifting modules, then 𝑀 is 𝐹𝐼𝑠𝑠 −lifting.  

Now we shall give an example to exhibit any infinite direct sum of 𝐹𝐼𝑠𝑠 −lifting modules needs 

not to be 𝐹𝐼𝑠𝑠 −lifting.  

A projective module 𝑀 together with an epimorphism 𝑓: 𝑀 ⟶ 𝑁 such that 𝐾𝑒𝑟(𝑓) ≪ 𝑀 is 

called projective cover of 𝑁 (see 19.4 in (Wisbauer, 1991)). Recall from 43.9 in (Wisbauer, 1991) 

that a ring 𝑅 is left perfect if each left 𝑅 −module has a projective cover.  

A ring 𝑅 is semiperfect if 𝑅 𝑅𝑎𝑑(𝑅)⁄  is left semisimple and idempotents in 𝑅 𝑅𝑎𝑑(𝑅)⁄  can be 

lifted to 𝑅 (see 42.6 in (Wisbauer, 1991)). It is proved in Theorem 5 in (Eryılmaz, 2021) that 𝑅 is 

semiperfect ring with 𝑅𝑎𝑑(𝑅) ≤ 𝑆𝑜𝑐( 𝑅𝑅
⬚ ) if and only if 𝑅𝑅

⬚  is 𝑠𝑠 −lifting. 

Example 3.8. Let 𝑅 be semiperfect ring with 𝑅𝑎𝑑(𝑅) ≤ 𝑆𝑜𝑐( 𝑅𝑅
⬚ ) which is not left perfect and 𝑀 be 

countably generated free 𝑅 −module. By Theorem 5 in (Eryılmaz, 2021) each direct summand of 𝑀 

is 𝑠𝑠 −lifting, and so 𝐹𝐼𝑠𝑠 −lifting. Note that 𝑅𝑎𝑑(𝑀) is not small in 𝑀 and 𝑅𝑎𝑑(𝑀) is fully invariant 

in 𝑀. Here, 𝑅𝑎𝑑(𝑀) can not include a nonzero direct summand of 𝑀. If 𝑅𝑎𝑑(𝑀) included a direct 

summand 𝐷 of 𝑀, then it would be 𝐷 = 𝑅𝑎𝑑(𝐷). But this contradicts with the fact that for any 

projective 𝑅 −module 𝑁, 𝑁 ≠ 𝑅𝑎𝑑(𝑁). Hence, 𝑀 is not an 𝐹𝐼𝑠𝑠 −lifting module when considering 

its fully invariant submodule 𝑅𝑎𝑑(𝑀), although each direct summand of 𝑀 is an 𝐹𝐼𝑠𝑠 −lifting 

module. 

Proposition 3.9. Let 𝑀 be a projective module. Then 𝑀 is 𝐹𝐼𝑠𝑠 −lifting if and only if 𝑀 𝑈⁄  has a 

projective cover for each fully invariant submodule 𝑈 of 𝑀 such that 𝑈 𝑋⁄  is semisimple for any 

𝑋 ≤⨁ 𝑀.  

Proof. (⟹) Suppose that the projective module 𝑀 is 𝐹𝐼𝑠𝑠 −lifting and 𝑈 ≤ 𝑀 be fully invariant. 

Then by Theorem 3.4, 𝑈 = 𝐴⨁𝐵 where 𝐴 ≤⨁ 𝑀, 𝐵 ≪ 𝑀 and 𝐵 is semisimple. Note that 𝐵 ≅ 𝑈 𝐴⁄ . 

Since 𝐵 ≪ 𝑀, then (𝐵 + 𝐴) 𝐴⁄ ≪ 𝑀 𝐴⁄  by 19.3(4) in (Wisbauer, 1991). Hence the canonical 

projection 𝜋: 𝑀 𝐴⁄ ⟶ 𝑀 (𝐴 + 𝐵)⁄ = 𝑀 𝑈⁄  is a projective cover of 𝑀 𝑈⁄ , as desired.  

(⟸) Suppose that a projective module 𝑃 with 𝑓: 𝑃 ⟶ 𝑀 𝑈⁄  is a projective cover of the factor module 

𝑀 𝑈⁄ . Then there is a homomorphism 𝑔: 𝑀 ⟶ 𝑃 providing 𝑓𝑔 = 𝜋 where  𝜋: 𝑀 ⟶ 𝑀 𝑈⁄  is the 

canonical projection. Since 𝐾𝑒𝑟(𝑓) ≪ 𝑃 and 𝜋 is an epimorphism, then 𝑔 is an epimorphism, and 
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hence 𝑔 splits. Thus 𝑀 = 𝐾𝑒𝑟(𝑔) ⨁ 𝑇 for some submodule 𝑇 of 𝑀. Then 𝑈 = 𝐾𝑒𝑟(𝑔)⨁(𝑈 ∩ 𝑇), 

and also 𝑈 ∩ 𝑇 ≪ 𝑀. Moreover, by the assumption, 𝑈 ∩ 𝑇 is semisimple.  

Corollary 3.10. Let 𝑅 be a ring. The module 𝑅𝑅
⬚  is 𝐹𝐼𝑠𝑠 −lifting if and only if for each two sided 

ideal 𝐼 of 𝑅 such that 𝐼 𝐽⁄  is semisimple for any 𝐽 ≤⨁ 𝑅, 𝑅𝑅
⬚ 𝐼⁄  has a projective cover.  

Proposition 3.11. Let 𝑀 be an 𝐹𝐼𝑠𝑠 −lifting module and 𝑈 ≤ 𝑀 be coclosed and fully invariant. Then 

𝑈 is 𝐹𝐼𝑠𝑠 −lifting.  

Proof. Let 𝐹 ≤ 𝑈 be fully invariant. Then by Lemma 2.1, 𝐹 is fully invariant in 𝑀. As 𝑀 is 

𝐹𝐼𝑠𝑠 −lifting, there is  𝐾 ≤⨁ 𝑀  such that 𝐾 ≤ 𝐹, 𝐹 𝐾⁄ ≪ 𝑀 𝐾⁄  and 𝐹 𝐾⁄  is semisimple. As 𝑈 is 

coclosed in 𝑀, then 𝑈 𝐾⁄  is coclosed in 𝑀 𝐾⁄  by 3.7(1) in (Clark et al., 2006). Thus 𝐹 𝐾⁄ ≪ 𝑈 𝐾⁄  by 

3.7(3) in (Clark et al., 2006). Also 𝐾 ≤⨁ 𝑈. Hence 𝑈 is 𝐹𝐼𝑠𝑠 −lifting. 

Proposition 3.12. If 𝑀 is an  𝐹𝐼𝑠𝑠 −lifting module, then each fully invariant submodule of 

𝑀 𝑆𝑜𝑐𝑠(𝑀)⁄  is a direct summand. 

Proof. Let 𝑁 𝑆𝑜𝑐𝑠(𝑀) ≤ 𝑀 𝑆𝑜𝑐𝑠(𝑀)⁄⁄  be fully invariant, and hence 𝑁 is too in 𝑀 by Lemma 2.1. By 

the hypothesis, there is a decomposition 𝑀 = 𝑀1⨁𝑀2 such that 𝑀1 ≤ 𝑁, 𝑀2 ∩ 𝑁 ≪ 𝑀2 and 𝑀2 ∩ 𝑁 

is semisimple. Note here that 𝑀2 ∩ 𝑁 ≤  𝑆𝑜𝑐𝑠(𝑀). Thus we get that 𝑀 𝑆𝑜𝑐𝑠(𝑀)⁄ = 

(𝑁 𝑆𝑜𝑐𝑠(𝑀)⁄ )⨁((𝑀2 + 𝑆𝑜𝑐𝑠(𝑀)) 𝑆𝑜𝑐𝑠(𝑀)⁄ ), as desired.  

4. Strongly 𝑭𝑰𝒔𝒔 −Lifting Modules  

Now the following theorem can be easily proved as in Theorem 3.4.  

Theorem 4.1. Let 𝑀 be a module. Then the following statements are equivalent: 

1.    𝑀 is strongly 𝐹𝐼𝑠𝑠 −lifting. 

2.    For each fully invariant submodule 𝑈 of 𝑀, there are submodules 𝐷 and 𝑆 of 𝑀 such           

   that  𝑈 = 𝐷 + 𝑆 where 𝐷 ≤⨁ 𝑀 is fully invariant , 𝑆 ≪ 𝑀 and 𝑆 is semisimple.  

3.      Each fully invariant submodule 𝑈 of 𝑀 possesses a decomposition 𝑈 = 𝐷⨁𝑆 where 𝐷 ≤⨁ 𝑀      

         is fully invariant, 𝑆 ≪ 𝑀 and 𝑆 is semisimple. 

Proposition 4.2. Let 𝑀 be an 𝐹𝐼𝑠𝑠 −lifting module with 𝑆𝑜𝑐𝑠(𝑀) = 0 and 𝑈 ≤ 𝑀 be fully invariant. 

Then 𝑈 is strongly 𝐹𝐼𝑠𝑠 −lifting.  
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Proof. Let 𝑋 ≤ 𝑈 be fully invariant. Thus by Lemma 2.1, 𝑋 is fully invariant in 𝑀. Since 𝑀 is 

𝐹𝐼𝑠𝑠 −lifting, then 𝑋 = 𝐷⨁𝑆 where 𝐷 ≤⨁ 𝑀,  𝑆 ≪ 𝑀 and 𝑆 is semisimple by Theorem 3.4. Note 

that 𝑆 ≤ 𝑆𝑜𝑐𝑠(𝑀). Since 𝑆𝑜𝑐𝑠(𝑀) = 0, then 𝑋 ≤⨁ 𝑀. Hence 𝑋 ≤⨁ 𝑈.  

Theorem 4.3. Strongly 𝐹𝐼𝑠𝑠 −lifting modules are transferred by direct summands.  

Proof. Suppose that 𝑀 be a strongly 𝐹𝐼𝑠𝑠 −lifting module and 𝑀1 ≤⨁ 𝑀. Thus 𝑀 = 𝑀1⨁𝑀2 for 

some submodule 𝑀2 of 𝑀. Let the module 𝑈1 be fully invariant in 𝑀1. Therefore, there is a fully 

invariant submodule 𝑈2 of 𝑀2  providing that 𝑈1⨁𝑈2 is fully invariant in 𝑀 by Lemma 1.11 in (Rizvi 

and Cosmin, 2004). Since 𝑀 is strongly 𝐹𝐼𝑠𝑠 −lifting, then 𝑈1⨁𝑈2 = 𝐾⨁𝑇 where 𝐾 ≤⨁ 𝑀 is fully 

invariant, 𝑇 ≪ 𝑀 and 𝑇 is semisimple. 𝐾 = (𝐾 ∩ 𝑀1)⨁(𝐾 ∩ 𝑀2) by Lemma 2.1  and 𝐾 ∩ 𝑀1 is fully 

invariant in 𝑀1. Also 𝐾 ∩ 𝑀1 ≤⨁ 𝑀. Thus we have 𝑈1 = 𝜋𝑀1
(𝐾) + 𝜋𝑀1

(𝑇)=(𝐾 ∩ 𝑀1)+𝜋𝑀1
(𝑇) 

where 𝜋𝑀1
: 𝑀 ⟶ 𝑀 𝑀2⁄  is the canonical projection. Since 𝑇 ≪ 𝑀, 𝜋𝑀1

(𝑇) ≪ 𝑀1 by 19.3(4) in 

(Wisbauer, 1991). Moreover, since 𝑇 is semisimple, then 𝜋𝑀1
(𝑇) is semisimple by 8.1.5 in (Kasch, 

1982). Hence 𝑀1 is strongly 𝐹𝐼𝑠𝑠 −lifting by Theorem 4.1.    

Proposition 4.4. Let 𝑀 =⊕𝑖=1
𝑛 𝑀𝑖 and 𝑀𝑖 be fully invariant in 𝑀 for each 1 ≤ 𝑖 ≤ 𝑛. Then 𝑀 is 

strongly 𝐹𝐼𝑠𝑠 −lifting module if and only if 𝑀𝑖 is strongly 𝐹𝐼𝑠𝑠 −lifting module for each 1 ≤ 𝑖 ≤ 𝑛. 

Proof.  (⟹) The proof follows from Theorem 4.3. 

 (⟸) Let 𝑈 be a fully invariant submodule of 𝑀. Then 𝑈 =⊕𝑖=1
𝑛 (𝑈 ∩ 𝑀𝑖) by Lemma 2.1. Also 

𝑈 ∩ 𝑀𝑖 is fully invariant in 𝑀𝑖 for each 1 ≤ 𝑖 ≤ 𝑛. Since  𝑀𝑖 is strongly 𝐹𝐼𝑠𝑠 −lifting, then 𝑈 ∩ 𝑀𝑖 =

𝐴𝑖⨁𝐵𝑖 where 𝐴𝑖 ≤⨁ 𝑀𝑖 is fully invariant, 𝐵𝑖 ≪ 𝑀𝑖 and 𝐵𝑖 is semisimple for each 1 ≤ 𝑖 ≤ 𝑛 by 

Theorem 4.1. Put 𝐴 =⊕𝑖=1
𝑛 𝐴𝑖 and 𝐵 =⊕𝑖=1

𝑛 𝐵𝑖. Note that 𝐵 ≪ 𝑀 by 19.3(3) in (Wisbauer, 1991) 

and 𝐵 is semisimple by 8.1.5 in (Kasch, 1982). Then we have 𝑈 = 𝐴⨁𝐵, where 𝐴 ≤⨁ 𝑀. Moreover, 

since 𝐴𝑖 is fully invariant in 𝑀𝑖 and 𝑀𝑖 is fully invariant in 𝑀 for each 1 ≤ 𝑖 ≤ 𝑛, then 𝐴𝑖 is a fully 

invariant submodule of 𝑀 for each 1 ≤ 𝑖 ≤ 𝑛 by Lemma 2.1. By using Lemma 2.1, 𝐴 is fully invariant 

in 𝑀. Hence 𝑀 is strongly 𝐹𝐼𝑠𝑠 −lifting.  

Proposition 4.5. Let 𝑀 be strongly 𝐹𝐼𝑠𝑠 −lifting module and 𝑆 be an 𝑠𝑠 −supplement submodule of 

𝑀 such that 𝑆 is fully invariant in 𝑀. If any of the conditions below is verified, then 𝑆 is strongly 

𝐹𝐼𝑠𝑠 −lifting. 

1. 𝑆 is indecomposable. 

2. 𝑀 is a self-injective module.  
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Proof. (1) Since 𝑆 is an indecomposable fully invariant 𝑠𝑠 −supplement submodule of 𝑀, then 

𝑆 ≤⨁ 𝑀. Thus 𝑆 is strongly 𝐹𝐼𝑠𝑠 −lifting by Theorem 4.3.  

 (2) Let 𝑉 ≤ 𝑆 be fully invariant. Thus 𝑉 is a fully invariant submodule of 𝑀 by Lemma 2.1, and 

hence 𝑉 = 𝑋⨁𝑌 where 𝑋 ≤⨁ 𝑀 is fully invariant, 𝑌 ≪ 𝑀 and 𝑌 is semisimple by Theorem 4.1. Thus 

𝑋 ≤⨁ 𝑆, and so 𝑌 ≪ 𝑆 as 𝑆 is a supplement submodule of 𝑀, by 20.2 in (Clark et al., 2006). Also, 

since 𝑀 is self-injective, each homomorphism from 𝑆 to 𝑆 can be extended to a homomorphism from 

𝑀 to 𝑀. Hence 𝑋 is a fully invariant submodule of  𝑆.  

Recall from (Özcan et al., 2006) that  𝑀 is duo module if each submodule of 𝑀 is fully invariant.  

Proposition 4.6. Let 𝑀 be a duo module. If 𝑀 is 𝑠𝑠 −lifting, then 𝑀 is strongly 𝐹𝐼𝑠𝑠 −lifting. 

Proof. Suppose that 𝑈 ≤ 𝑀 be fully invariant. Since 𝑀 is 𝑠𝑠 −lifting, then 𝑈 includes  𝑇 ≤⨁ 𝑀 such 

that 𝑈 𝑇⁄ ≪ 𝑀 𝑇⁄  and 𝑈 𝑇⁄  is semisimple by Lemma 2.2. Since 𝑀 is duo module, then 𝑇 is fully 

invariant in 𝑀. Hence 𝑀 is a strongly 𝐹𝐼𝑠𝑠 −lifting module.  

Proposition 4.7. Let 𝑀 be a module such that 𝑅𝑎𝑑(𝑀) is semisimple. Then 𝑀 is an 𝐹𝐼 −lifting 

module if and only if 𝑀 is an 𝐹𝐼𝑠𝑠 −lifting module.  

Proof. Let 𝑀 be an 𝐹𝐼 −lifting module and 𝑈 ≤ 𝑀 be fully invariant. Then 𝑀 possesses the  

decomposition 𝑀 = 𝑀1⨁𝑀2 providing  𝑀1 ≤ 𝑈 and 𝑀2 ∩ 𝑈 ≪ 𝑀2. Note that 𝑀2 ∩ 𝑈 ≤ 𝑅𝑎𝑑(𝑀). 

By the assumption, 𝑀2 ∩ 𝑈 is semisimple. Hence 𝑀 is an 𝐹𝐼𝑠𝑠 −lifting module. The converse 

assertion is clear.  

Example 4.8. Consider the left ℤ −module 𝑀 =  ℤ 2ℤ⁄ ⨁  ℤ 8 ℤ⁄ . Then 𝑀 is 𝐹𝐼 −lifting module by 

Example 3.9 in (Koşan, 2005). But since 𝑅𝑎𝑑(𝑀) is not semisimple, 𝑀 is not 𝐹𝐼𝑠𝑠 −lifting module 

by Proposition 4.7.  

Example 4.9. Consider the module 𝑀 given in Example 4.8 and the submodule 𝑇 =  ℤ 2ℤ⁄ ⨁ 4ℤ 8 ℤ⁄  

of 𝑀. 𝑇 is not small in 𝑀 and does not include a nonzero fully invariant direct summand of 𝑀. 

Consequently, 𝑀 is not strongly 𝐹𝐼𝑠𝑠 −lifting module.  

Proposition 4.10. Let 𝑀 be a duo module. 𝑀 is 𝐹𝐼𝑠𝑠 −lifting if and only if 𝑀 is 𝑠𝑠 −lifting.  

Proof. Let 𝑀 be an 𝐹𝐼𝑠𝑠 −lifting module and 𝑈 ≤ 𝑀. As 𝑀 is a duo module, 𝑈 is fully invariant in 

𝑀. By the assumption, 𝑀 possesses the decomposition 𝑀 = 𝑀1⨁𝑀2 with the conditions 𝑀1 ≤ 𝑈,                                

𝑀2 ∩ 𝑈 ≪ 𝑀2 and semisimple 𝑀2 ∩ 𝑈. Hence 𝑀 is an 𝑠𝑠 −lifting module. The converse assertion is 

clear.  
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5. Conclusions and Recommendations 

 

Here, we define a new concept of 𝑠𝑠 − lifting modules. Instead of every submodule which 

satisfies 𝑠𝑠 −lifting property of a module, we consider every fully invariant submodule which 

satisfies 𝑠𝑠 −lifting property. The results in this paper can be generalized for weak 𝑠𝑠 −lifting 

modules that are defined in (Nişancı Türkmen, 2020), and also can be generalized for 𝛿𝜏 −lifting and 

𝜏𝑒 −lifting modules that are defined in (Tian et al., 2023) and (Öztürk Sözen, 2020), respectively. 
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