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Abstract  Öz 

Industrial waste is frequently utilized as reinforcing material 

in aluminum matrix composites (AMC) to improve their 

mechanical qualities. Mill Scale (MS), which is mainly 

composed of iron oxides, is obtained during the forming 

process of steel. In the present study, the utilization of MS as 

a reinforcement material in AMC was investigated. The MS 

obtained from a steel mill was initially pulverized by high-

energy ball milling, and the milling parameters were studied. 

20 hours of milling at 800 RPM provided the finest 

distribution of particle sizes with a d(0.5) value of 1.553 µm. 

The milled MS was blended with commercially pure 

aluminum with a ratio of 0-10 wt. % in a high-energy ball 

mill at 300 RPM for 60-300 min, then pressed and sintered 

for 2 h at 600-650 °C. It was observed that increasing milling 

time increases the hardness and lowers the porosity of the 

samples and increasing the temperature up to 615°C also 

decreases the porosity values. On the other hand, increasing 

reinforcement amount increases porosity up to ~10 vol. %, 

especially over 2.5 wt. %. However, increasing the MS 

amount results in higher hardness values and lower sample 

wear rates because of the harder particle reinforcement. 

 Endüstriyel atıklar, alüminyum matrisli kompozitlerin 

mekanik özelliklerini arttırmak için takviye partikülleri 

olarak yaygın şekilde kullanılmaktadır. Çeliğin 

şekillendirilmesi sırasında esas olarak demir oksitlerden 

oluşan tufaller açığa çıkmaktadır. Bu çalışmada tufalin 

alüminyum matrisli kompozitlerde takviye malzemesi olarak 

kullanımı araştırılmıştır. İlk olarak bir çelikhaneden elde 

edilen tufal, yüksek enerjili bilyeli öğütme ile öğütülmüş ve 

öğütme parametreleri incelenmiştir. En iyi parçacık boyutu 

dağılımı (d(0.5)=1.553 μm), 800 RPM'de 20 saatlik 

öğütmeden elde edilmiştir. Öğütülmüş tufal, ticari olarak saf 

alüminyum ile ağırlıkça %0-10 oranında gezegen tipi bir 

bilyalı değirmende 300 RPM'de 60-300 dakika 

harmanlanmıştır, ardından preslenenerek 600-650 °C'de 2 

saat sinterlenmiştir. Öğütme süresinin artmasının 

numunelerin sertliğini arttırıp gözenekliliğini azalttığı, 

sıcaklığın artmasının da gözeneklilik değerlerini 615°C'ye 

kadar azalttığı görülmüştür. Öte yandan, artan takviye 

miktarı gözenekliliği, özellikle ağırlıkça %2.5'in üzerinde, 

hacimce ~%10'a kadar artırmaktadır. Ancak daha sert tane 

takviye miktarı nedeniyle tufal miktarının artması sertlik 

değerlerini artırmakta ve numunelerin aşınma oranlarını 

düşürmektedir. 

Keywords: Aluminium matrix composites, Mill scale, High 

energy ball milling, Hardness, Wear 

 Anahtar kelimeler: Alüminyum matrisli kompozitler, 

Tufal, Yüksek enerjili bilyalı öğütme, Sertlik, Aşınma 

1 Introduction  

The requirements for high-strength properties in 

lightweight materials have led to the development of 

aluminum matrix composites (AMC) [1]. The reinforcement 

materials used in aluminum matrix composites can be in the 

form of fibers (carbon, glass, boron, etc.), short 

fibers/whiskers (graphite, mica, BN, TiB2, etc.), or particles 

(oxides, carbides, etc.) [2–5]. Fiber reinforcements 

positively affect many properties like tensile strength and 

elastic modulus, while ceramic particle reinforcement 

materials such as SiC, TiC, Al2O3, etc., which lead with their 

high melting points and high hardness, improve the 

properties of AMCs like hardness and resistance to wear 

[1,6,7]. The application of ceramic particles as reinforcement 

attracts more attention due to the adjustable distribution, 

fraction, and particle size of the reinforcements. This results 

with adjusting the microstructural and mechanical properties 

of the AMCs [8,9]. 

The increasing amount of agricultural and industrial 

waste arises problems related to environmental pollution. 

Therefore, the use of these wastes has great potential in 

solving these problems. Some industrial wastes are also used 

in the production of many advanced materials, especially 

metal matrix composites, with their excellent physical and 

mechanical properties [1,6,10]. These wastes are thermal 

power plant fly ashes [1,11–15], red mud, [1,6,16–21], 

varying organic waste ashes like rice husk ashes [22], 

bamboo leaf ash [23], etc., iron and steelmaking slags 

[24,25], or hybrid composites that contain a combination of 

varying wastes waste and/or ceramic particles [26–29]. 

On the other hand, AMCs containing iron oxide are a 

relatively new subject and there are many studies 

investigating the properties of AMCs containing iron oxide. 

https://orcid.org/0000-0001-6054-864X
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According to these studies, it was stated that iron oxide-

reinforced composite materials increased the mechanical 

properties of the matrix while adding magnetic properties 

[30–38]. 

In the present study, the utilization of iron oxide-

containing mill scales (MS) as reinforcement in 

commercially pure aluminum was investigated. To achieve 

this goal, initially, high-energy ball milling parameters of the 

MS were investigated. Subsequently, the finest particle size 

obtained MS was blended with aluminum between 1-10 wt. 

% in a high-energy ball mill. Then the mixtures were 

compacted and sintered under argon flow to determine the 

optimum parameters. The produced AMC products were 

characterized by optical microscopy. Additionally, the 

influence of reinforcing particle concentration on the AMCs' 

hardness and wear characteristics was examined. 

2 Material and methods  

2.1 Preparation of the samples  

To prepare the AMC samples, commercially pure 

aluminum with a particle size of less than 125 μm and MS 

containing 69.95 wt. % of total iron (FeT) were utilized as 

raw materials. The phases that are present in the MS were 

determined by a Panalytical X’PertPro XRD equipment with 

Cu-Kα radiation. The obtained raw materials were initially 

dried at 105 °C for 2 h. Then the MS was crushed and ground 

for 1 h in a conventional ball mill. The ground MS were 

sieved under 500 µm and to investigate the high energy ball 

milling properties, the sieved MS was placed in stainless 

steel vials containing stainless steel balls with 10 mm 

diameter (10:1 ball/powder ratio) and ground in a DECO-

PBMV-0.4 L planetary ball mill at 300, 500 and 800 r/min 

(RPM) velocities for 5, 10 and 20 h. To eliminate the 

overheating of the vials, the milling was paused for 5 min at 

30 min intervals. The particle size distribution after each 

milling process was determined by Malvern Hydro 2000MU 

Mastersizer. 

The Al particles and high-energy ball-milled MS that has 

the finest average particle size (d(0.5)=1.553 μm) were 

blended with MS ratios of 1, 2.5, 5, and 10  wt. %. (MS1, 

MS2.5, MS5 and MS10, respectively) by a planetary ball-

mill at 300 RPM for 1, 3, and 5 h with a 10:1 ball-to-powder 

ratio. In order to prevent Al oxidation during the blending 

tests, 1 wt. % of stearic acid was used as a process 

controlling agent (PCA). 

Using a uniaxial die, 3 g of ball-milled specimens were 

compressed for 5 min at 575 MPa to obtain cylindrical 

agglomerates with a 15 mm diameter. Then, they were 

sintered to produce AMCs at 600, 615, 625, and 650 °C. The 

sintering process was carried out in a tube furnace under an 

argon atmosphere with a determined heating regime to 

remove the stearic acid and prevent cracking in the samples. 

For the initial heating, stearic acid was removed by heating 

the samples at a rate of 3 °C/min to 400 °C and holding it 

there for 30 min. The samples were then heated at a rate of 

5°C/min to sintering temperature and held for 2h at the 

sintering temperature and finally cooled in the furnace. 

2.2 Characterization of the AMCs 

Visual inspection, density measurements (ρm), and the 

porosity values (in vol. %) calculated using the Archimedes' 

principle as a mean of four measurements were used to 

evaluate the characteristics of the AMC samples. To be able 

to determine the porosity values, initially, theoretical density 

(ρT) was calculated with Equation 1 [4,39]. 

 

𝜌𝑇 = 𝑚𝐴𝑙 × 𝜌𝐴𝑙 + 𝑚𝑀𝑆 × 𝜌𝑀𝑆 (1) 

 

where, accordingly, m and ρ define the weight percentage 

and density of the components. The density of the mill scale 

(ρMS) was measured as 5.72 g/cm3 by a Quantachrome 

Ultrapyc 1200e helium pycnometer. The theoretical density 

of the aluminum (ρAl) was considered as 2.7 g/cm3. Equation 

2 was used to determine the AMCs' porosity [4,39]. 

 

Porosity (% vol. ) = 100 × (1 − (𝜌𝑇/𝜌𝑚)) (2) 

 

The BMS 200-RBOV Brinell hardness test apparatus, which 

has a 2.5 mm ball diameter and a 62.5 kgf force, was used to 

determine the hardness of the AMCs. 

Wear tests were applied to AMC samples by pin-on-disc 

wear equipment according to ASTM G133-05. A 100Cr6 

steel ball with an 840 HV hardness and of 10 mm diameter 

was used for the tests. The samples were subjected to a 10N 

force that was applied while sliding over a 300-meter 

distance at a speed of 0.05 m/s. Initially, volume loss (m3) 

was calculated from Equation 3. 

 

∆𝑉 = 1000 × (𝑊𝑖 − 𝑊𝑓)/𝜌 (3) 

 

∆V is the volume loss, Wi and Wf, are the initial, and final 

weight, and ρ is density of the sample. Then, a specific wear 

rate (kS) value (m3/N.m) was calculated by using Equation 4. 

 

𝑘𝑆 = ∆𝑉/(𝐿 × 𝑑) (4) 

 

Here, d is the sliding distance, and L is the standard load. A 

Jeol JSM 5410LV Scanning Electron Microscope (SEM) 

and a Nikon Eclipse MA100 Microscope were used for the 

microstructural characterization of the AMCs.  

3 Results and discussions  

3.1 Characterization of MS after high-energy ball-milling 

The XRD analysis of the MS is presented in Figure 1, 

where Fe2O3, Fe3O4, and FeO phases were observed. 

Figure 2 (a) illustrates the particle size distribution of MS 

after initial grinding and sieving, and high-energy ball-

milled products after 5, 10, and 20 h with 300, 500, and 800 

RPM velocities. d(0.1) and d(0.9) values which give an 

opinion about the fine and coarse particle size distribution, 

respectively, and d(0.5), which is the average particle size for 

all the ball-milling parameter variation are also given in 

Figure 2  (b). The conventional ball milling process for 1 h  
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Figure 1. XRD patterns of MS 

 

had particle sizes of d(0.1), d(0.5), and d(0.9) as 32.912, 

93.564, and 412,923 µm, respectively. Both increasing 

milling speed and time lowered all these values as shown in 

Figure 2. When 5 h of milling is examined in detail, 

increasing milling speed lowered the d(0.1) and d(0.9) 

proportionally. On the other hand, the average particle size 

(d(0.5)) did not change considerably and it can be deduced 

that milling speed does not significantly affect the average 

particle size. Additionally, 300 RPM and 500 RPM milling 

speeds resulted in a more homogenous particle size 

distribution after 5h of milling, but at 800 RPM speed most 

of the particles coagulated at nearly 100 µm, while very fine 

particles, which were not encountered at the lower milling 

velocities, also formed. 

After 10 and 20h of milling time at all velocities, the amount 

of bigger particles lowered and the number of particles less 

than 1 µm increased, especially at 800 RPM speed. Because 

the lowest particle size distribution was observed at 800 

RPM for 20 h of milling time, the AMCs were produced with 

the MS particles that were produced with these parameters. 

3.2 Investigation of the AMC production parameters 

To determine the optimum sintering temperature, composite 

powders were prepared by blending as obtained Al powder 

with 1 wt. % stearic acid addition and a reinforcement ratio 

of 1, 2.5, 5, and 10 wt. %. Blending was conducted in a 

planetary ball mill at 300 RPM speed for 3 hours with a 10:1 

ball-to-powder ratio. Then, pellets were pressed under 575 

MPa pressure for 5 min and then sintered for 2 hours at 600, 

615, 625, and 650 °C. Figure 3 (a) and (b), respectively, 

present the macrographs, theoretical density, observed 

density, and porosity values of the samples produced by 

Equations 1 and 2. 

 

 
Figure 2. (a) Particle Size Distribution and (b) the change of d(0.1), d(0.5), and d(0.9) of MS after ball milling for 1h and 

sieving and high-energy ball milled products after 5, 10, and 20h with 300, 500 and 800 RPM velocities 
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Figure 3. (a) The macrographs and (b) theoretical density, measured density, and determined porosity values of the samples 

containing 0, 1, 2.5, 5, and 10 wt. %. MS sintered at 600, 615, 625, and 650 °C 

 

The macrographs of the samples (Figure 3 (a)), which were 

sintered at 600, 615, and 625 °C, revealed a smooth metallic 

surface. However, when examined in detail, some black dots 

began to appear on the samples sintered at 625 °C. 

Additionally, on the samples that were sintered at 650 °C, 

metallic droplets were observed on the composite structure. 

Also, in Figure 3 (b), as the sintering temperature is raised, 

there is a slight decrease in porosity up to 615 °C, a slight 

rise at 625 °C, and a significant increase at 650 °C. The 

partial melting of the Al particles over 615 °C can explain 

this behavior. Due to the low wetting of molten Al, these 

molten particles penetrate through the structure and 

coalesces on the surface of the samples as droplets by 

evacuating the area they were present and increasing the 

porosity of the samples. Generally, the sintering was applied 

up to 615 °C in the literature, regardless of the sintering 

method (conventional, spark plasma, microwave sintering 

methods, etc.) and it was reported that increasing 

temperature increases the density and accordingly lowers the 

porosity of the AMC [40–47]. Especially at temperatures 

near the matrix metal's melting point, compact swelling of 

the matrix metal occurs and the liquid exudes from pores as 

explained by German et al. [48]. 

Figure 3 (b) also shows that as the amount of 

reinforcement rose, the range between theoretical and 

measured densities widened, which also affected the 

samples' porosity values for all the sintering temperatures. 

According to the literature, it is expected for the porosity to 

increase as the amount of reinforcement increases 

[4,6,49,50]. Birol et al. [4] and Maleki et al. [50] asserted 

that aggregation and uneven distribution of the reinforcing 

are responsible for the porosity increase. Additionally, Calin 

et al. [51] claim that the liquid aluminum does not wet the 

reinforcing surfaces and it is responsible for the 

development of porosity in stir-cast parts. The creation of 

porosity and clustering of the reinforcing material as a result 

of the hydrated oxide coating on metal powders was 

documented by Borgohain et al. [49]. 

 

Figure 4. (a) Theoretical density, measured density, 

determined porosity values, and (b) hardness of the 

samples containing 0, 1, 2.5, 5, and 10% wt. MS, blended 

with high energy ball milling at 300 RPM for 1, 3, and 5 

h and sintered at 615 °C 
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Figure 4 (a) illustrates the porosity and Brinell hardness 

variation of the samples blended in a planetary ball mill at 

300 RPM for 1, 3, and 5 h and sintered at 615 °C. According 

to the results, the porosity values are strongly influenced by 

the blending time. Up to 2.5 % of the reinforcement amount 

increasing blending time from 1h to 3h, a nearly 25 – 40 % 

of porosity reduction was obtained. However, higher 

reinforcement amounts resulted with a porosity reduction of 

nearly 4 %. On the other hand, a slight decrease in the 

porosity (~4 %) for all the MS amounts was observed when 

the blending time was expanded from 3 to 5 h. As given in 

Figure 4 (b) increasing the reinforcement amount increased 

the hardness of the specimens, however, milling time 

exclusively played an important role in the hardness values. 

Extending the milling period from 1 to 3 h resulted with a 

significant increment in hardness where 5 h of milling time 

displayed a minor effect, just as observed in the porosity 

values.  

An akin phenomenon was noted by Cabeza et al. [52] 

where work hardening of aluminum occurred after 3 h of 

milling and the hardness value of pure aluminum had risen 

from 31.1 to 34.5 HB. However, after 5 h of milling, the 

hardness had only increased to 35.1 HB. Moreover, the 

addition of only 1 % of MS to the AMC, elevated the 

hardness values for 1, 3, and 5 h of milling, 39.6, 47.4, and 

47.6 HB, respectively. This significant increment was 

obtained due to the work hardening of aluminum, especially 

for 3h and 5 h milling, and grain refinement of the matrix 

due to interactions between reinforcement particles and 

grain boundaries acting as pinning points, delaying, or 

preventing grain growth. This results in fine matrix grain 

microstructure and higher mechanical properties as 

mentioned in the literature [3,53–55]. Additionally, the 

increasing amount of hard reinforcement particles in a 

composite material is well known to increase its hardness 

[4]. There is a linear increase with increasing reinforcing 

amount, as seen in Figure 4 (b).  

3.3 Investigation of the MS amount influence on the 

microstructural and wear properties 

Figure 5 exhibits the micrographs of the samples 

containing MS0, MS2.5, MS5, and MS10 blended at 300 

RPM for 3h and sintered at 615 °C. The light grey areas are 

the Al matrix, the darker areas are the MS reinforcements, 

and the black areas are the voids. The porosity was examined 

between the Al grain boundaries in the sample MS0. 

Additionally, in sample MS2.5, the voids were discernible at 

the interface of the Al matrix and the reinforcing particles; 

as a result, no appreciable increase in porosity was found. On 

the other hand, the samples MS5 and MS10 demonstrate an 

elevation in the clustering of the particles in samples having 

more than 2.5% MS. This also increased the number of 

spaces between the reinforcing particles, which explains the 

marked increase in porosity values. 

The wear data measured and obtained by Equations (3) 

and (4) are presented in Table 1 and Figure 6, respectively. 

According to the wear test results, which were carried out 

under a 10N load for 300 m, the sample without MS had the 

greatest volume loss and specific wear rate values (MS0). A 

significantly lower kS was found for the sample (MS1) which 

included 1 wt. % of MS. A linear decrease with the 

increasing MS amount was observed. Coefficient of friction 

(CoF) changes with the sliding distance reveal that 

especially over 200 m, the wear properties of the samples 

reached a steady-state condition and severe deformation was 

not observed. The lowest CoF values were obtained from the 

samples containing the highest MS amount. Moreover, 

according to Ozturk et al. [56] and Li et al. [57], hardness 

and wear resistance have a direct correlation, which was also 

observed in the current study.  

 

 

Figure 5. The micrographs of the samples containing MS 

with 0, 2.5, 5, and 10 wt. %. amounts blended at 300 RPM 

for 3h and sintered at 615 °C 

 

Additionally, Figure 7 reveals the SEM micrographs of the 

worn surfaces of MS1, MS2.5, MS5, and MS10, 

respectively. On the worn surfaces of MS1 and MS2.5 

(Figure 7 (a) and (b)), mainly delamination and plastic 

deformation were observed. Although some grooves and 

defragmented particles were present in both of these 

samples, the main wear mechanism can be accounted as 

adhesive wear [4,52].  

 

 

Table 1 Wear data of the samples 

  MS0 MS1 MS2.5 MS5 MS10 

Initial Weight, Wi, g 2.8239 2.4699 2.3792 2.3149 2.8844 

Final Weight, Wf, g 2.7853 2.4461 2.3609 2.3022 2.8801 

Weight Loss, ∆W, g 0.0386 0.0238 0.0183 0.0127 0.0043 

Density, ρ, kg/m3 2629 2656 2678 2651 2703 

Volume Loss, ∆V, m3 x 10-9 14.682 8.961 6.833 4.791 1.591 

Specific Wear Rate, kS, m
3/N.m x 10-12 4.894 2.987 2.278 1.597 0.530 
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Figure 6. (a) Specific wear rate and (b) coefficient of 

friction (CoF) values of the samples 

Additionally, the samples containing 5% and 10% MS, 

exhibit higher amounts of defragmented particles and deeper 

grooves as well as accumulated oxide particles throughout 

the worn surfaces as shown in Figure 7 (c) and (d). Thus, it 

may be claimed that these formations are indicative of 

abrasive wear as Mazahery et al. [58] explained. The harder 

reinforcement particles protrude out from the surface of the 

soft matrix as it wears. As the wear process progressed, some 

of these fragmented particles were re-embedded inside the 

soft matrix, but the rest were caught between the sample and 

the pin. As a result, there is abrasive activity between these 

broken-up and protruded particles. As a result, the wear rate 

lowers as the number of protruded particles (reinforcement 

particles) increases [1,4,58]. 

4 Conclusions  

It was intended for the current study to examine the 

usability of mill scale, which is a waste obtained during the 

forming process of steel and mainly composed of iron 

oxides. To accomplish this goal, the mill scale obtained was 

ball milled and blended with commercially pure aluminum 

by using a planetary high-energy ball mill with different 

milling parameters. Then pressed and sintered at varying 

temperatures.  

 

 

Figure 7 SEM micrographs of worn surfaces obtained from (a) M1, (b) M2.5, (c) M5, and (d) M10 with a magnification of 

50x and 200x 
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Finally, the produced AMCs were characterized by 

Archimedes’ principle, hardness, and wear tests. Depending 

on the results, the following statements were concluded; 

1. Increasing ball milling rate and time, lowers the 

median particle size (d(0.5)) of the MS particles. At 

800 RPM, lower milling times produce a non-

homogenous particle size distribution where both 

bigger and very small particle sizes are present.  

However, increasing milling time grinds the bigger 

particles to obtain a final d(0.5) of 1.553 µm. 

1. The sintering temperature has a positive role in the 

densification of the samples up to 615 °C. Over this 

temperature the aluminum particles begin to 

partially melt, leaving their original places into 

porosity and therefore densification lowers. 

2. With the increasing blending time of ball-milled 

MS and aluminum at 300 RPM, increases the 

densification and hardness of all the samples. On 

the other hand, no significant differences were 

encountered between 180 and 300 min of milling 

time. It can be explained by the work hardening of 

aluminum and this mechanism affects the 

properties of the samples up to 180 min 

significantly, where the effectiveness of this 

mechanism is lower at blending times over 180 min. 

3. The density of the samples is negatively impacted 

by the reinforcement amount, and the porosity rises 

with the increment of the reinforcement amount, 

due to the coagulation of the fine MS particles. On 

the other hand, reinforcement amount increment 

results in higher hardness values and wear 

resistance.  

4. The wear resistance experiments reveal that up to 

2.5% of reinforcement addition, the adhesive wear 

mechanism is dominant, while over this ratio 

abrasive wear mechanism is more prevailing. 
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