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Abstract
Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive
integer. If for each subset Γ of Ω the size |Γg \ Γ| is bounded, for g ∈ G, we define the
movement of g as the max |Γg \ Γ| over all subsets Γ of Ω, and the movement of G is
defined as the maximum of move(g) over all non-identity elements of g ∈ G. In this paper
we classify all transitive permutation groups with bounded movement equal to m that are
not a 2-group, but in which every non-identity element has movement m or m − 2.
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1. Introduction
Let G be a permutation group on a set Ω with no fixed points in Ω. If for each subset

Γ of Ω and each element g ∈ G, the size |Γg \ Γ| is bounded, we define the movement
of Γ as move(Γ) = maxg∈G |Γg\Γ|. Let m be a positive integer. If move(Γ) 6 m for all
Γ ⊆ Ω, then G is said to have bounded movement and the movement of G is defined as
the maximum of move(Γ) over all subsets Γ. This notion was introduced in [9]. Similarly,
for each 1 6= g ∈ G, the movement of g is defined as the max |Γg \ Γ| over all subsets Γ
of Ω. If all non-identity elements of G have the same movement, then we say that G has
constant movement (see [3]).

It is obvious that every permutation group in which every non-identity element moves
by m or m − 2, is a permutation group with bounded movement equal to m. Moreover,
according to Theorem 1 of [9], if G has movement equal to m, then Ω is finite, and its size
is bounded by a function of m.

The intransitive permutation groups with bounded movement having maximum degree
were classified in [2]. For a transitive permutation group G on a set Ω with movement m,
where G is not a 2-group, the following bound on Ω was obtained in [9]. We note that for
x ∈ R, bxc is the integer part of x.
Lemma 1.1. ([9], Lemma 2.2) Let G be a transitive permutation group on a set Ω such
that G has movement equal to m. Suppose that G is not a 2-group and p is the least odd
prime dividing |G|, then |Ω| 6 b2mp/(p − 1)c.
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All transitive permutation groups G with bounded movement equal to m, such that G
is not a 2-group but in which every non-identity element has the movement m or m − 1
classified in [1]. There are several different kinds of transitive permutation groups that are
not a 2-group and have bounded movement equal to m, but in which every non-identity
element has the movement m or m−2. For example, it is easy to see that any non-identity
member of permutation group G = Z4p has the movement 2p or 2p − 2 on a set of size
n = 4p, where p is an odd prime (see Lemma 3.1).
This paper’s goal is to classify all transitive permutation groups with bounded move-
ment equal to m that are not 2-groups, but in which every non-identity element has the
movement m or m − 2.

We denote by K o P a semi-direct product of K by P with normal subgroup K. The
semi-direct product Zn o Z2 = 〈r, s|rn = s2 = 1, rs = sr−1〉 is known as Dihedral group
and it is denoted by D2n.
We now have the following main theorem.

Theorem 1.2. Let m be a positive integer and G be a transitive permutation group on
a set Ω with no fixed points in Ω and also with bounded movement equal to m, in which
every non-identity element has movement m or m − 2. Moreover, suppose that G is not a
2-group and p is the least odd prime dividing |G|. Then G is one of the following groups:

(1) G ∈ {S4,Z2 × S4,Z2 × A4, (Z2)3 o A4, (Z2)2 o S4, SL(2, 3)}, | Ω |= 8 and m = 4;
(2) G := (Z2)4 o Z5, | Ω |= 10 and m = 4;
(3) G ∈ {S4, S5, A4, A5,Z2 × S4,Z2 × S5,Z2 × A4,Z2 × A5, (Z4)2 o S3, (Z2)2 o S4}, |

Ω |= 12 and m = 6;
(4) G ∈ {F8, AΓL1(F8)}, | Ω |= 14 and m = 6;
(5) G ∈ {S3 × A5, PSL(2, 17)}, | Ω |= 18 and m = 8;
(6) G ∈ {(Z2)4 o Z5, (Z2)4 o D10,Z2 × F8}, | Ω |= 16 and m = 8;
(7) G := Z7 o Z3, | Ω |= 21 and m = 9;
(8) ∈ {(Z2)4 o D10, F5,Z2 × F5,Z4 × F5}, | Ω |= 20 and m = 10;
(9) G ∈ {(Z5)2 o Z3, (Z5)2 o Z5}, | Ω |= 25 and m = 10;

(10) G ∈ {Z25, D50,Z5 o D10, (Z5)2 o Q8, (Z5)2 o Z2, (Z5)2 o Z4, (Z5)2 o Z8, (F5)2}, |
Ω |= 25 and m = 12;

(11) G ∈ {Z4p,Z4 × D2p, Dicp = Zp o Z4, (Z2)2 × D2p,Z2 × Z2p, D4p}, | Ω |= 4p and
m = 2p;

(12) G ∈ {Z4 × Zp o Z4, (Z2)2 × Zp o Z4} where 4 | p − 1, | Ω |= 4p and m = 2p;
(13) G ∈ {Zq oZp, AGL(1, q),Zq oZ2p 6 AGL(1, q)}, where q = 4p + 1 is an odd prime

and Z2p generated by two cycles of length 2p, | Ω |= q and m = q − 1
2 ;

(14) G := K o P, | Ω |= 4p for p ≥ 5 and m = 2(p − 1), where K is a 2-group and
P = Zp is fixed point free on Ω, K has p orbits of length 4 and each element of K
moves at least 4(p − 2) and at most 4(p − 1) points of Ω.

Note that all groups in part (2) and part (14) of Theorem 1.2, have the maximum degree
mentioned in Lemma 1.1.

2. Preliminaries
Let G be a transitive permutation group on a finite set Ω. By Theorem 3.26 of [10],

often known as Burnside’s lemma, the average number of fixed points in Ω of elements
of G is equal to the number of G−orbits in Ω. Since 1G fixes |Ω| points and |Ω| > 1, it
follows that there is some element of G which has no fixed points in Ω. We shall say that
such elements are fixed point free on Ω.
Let 1 6= g ∈ G and suppose that g in its disjoint cycle representation has t non-trivial
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cycles of lengths l1, l2, . . . , lt, say. We might represent g as
g = (a1, a2, . . . , al1)(b1, b2, . . . , bl2) · · · (z1, z2, . . . , zlt).

Let Γ(g) denote a subset of Ω consisting of bli/2c points from the ith cycle, for each i,
chosen in such a way that Γ(g)g ∩ Γ(g) = ∅. For example we could choose

Γ(g) = {a2, a4, . . . , ak1 , b2, b4, . . . , bk2 , . . . , z2, z4, . . . , zkt},

where ki = li − 1 if li is odd and ki = li if li is even. Note that Γ(g) is not uniquely
determined as it depends on the way each cycle is written down. For any set Γ(g) of
this kind we say that Γ(g) consists of every second point of every cycle of g. From the
definition of Γ(g), we see that

|Γ(g)g \ Γ(g)| = |Γ(g)| =
t∑

i=1
bli/2c.

The next lemma shows that this quantity is an upper bound for |Γg \Γ| for an arbitrary
subset Γ of Ω.

Lemma 2.1. ([7], Lemma 2.1) Let G be a permutation group on a set Ω and suppose that
Γ ⊆ Ω. Then for each g ∈ G, |Γg \ Γ| ≤

∑t
i=1bli/2c where li is the length of the ith cycle of

g and t is the number of non-trivial cycles of g in its disjoint cycle representation. This
upper bound is attained for Γ = Γ(g) defined above.

Remark 2.2. Let k > 1 be a positive integer, and let f be a cycle of length pk for some
odd prime integer p. We know that fk is k cycles of length p. We consider two cases for
k.
Case 1: k is odd. Thus k = 2t + 1, for some t ≥ 1. So

move(f) = bkp

2 c = b(2t + 1)p
2 c = tp + p − 1

2 ,

move(fk) = kbp

2c = (2t + 1)p − 1
2 = move(f) − t.

Case 2: k is even. Thus k = 2t, for some t ≥ 1. So

move(f) = bkp

2 c = b(2t)p
2 c = tp,

move(fk) = kbp

2c = (2t)p − 1
2 = move(f) − t.

Therefore move(f) − move(fk) = bk

2 c.

Let m be a positive integer, and let G be a permutation group on a set Ω of size n with
bounded movement equal to m, in which every non-identity element has the movement m
or m − 2. Then we have the following important result.

Proposition 2.3. Let m be a positive integer, and let G be a permutation group on a
set Ω of size n with bounded movement equal to m, in which every non-identity element
has the movement m or m − 2. Further, suppose that 1 6= g ∈ G and g = c1 · · · cs is the
decomposition of g into its disjoint non-trivial cycles such that |ci| = li for 1 ≤ i ≤ s.
Then one of the following holds:
(1) l := l1 = l2 = · · · = ls, where l is an odd prime or a power of 2;
(2) s = 1, such that g is one cycle of length 25;
(3) s = 1, such that g is one cycle of length 4p, where p is an odd prime;
(4) s = 2, such that g has one cycle of length 4 and one cycle of length 5;
(5) s = 2, such that g has one cycle of length 20 and one cycle of length 5;
(6) s = 2, such that g has one cycle of length 15 and one cycle of length 3;
(7) s = 2, such that g has two cycles of length 9;
(8) s = 2, such that g has one cycle of length 9 and one cycle of length 3;
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(9) s = 2, such that g has two cycles of length 2p, where p is an odd prime;
(10) s = 2, such that g has one cycle of length 2, and and one cycle of length 2p where p
is an odd prime;
(11) s = 3, such that g has two cycles of length 2 and one cycle of length 5;
(12) s = 3, such that g has two cycles of length 3 and one cycle of length 4;
(13) s = 3, such that g has two cycles of length 3 and one cycle of length 5;
(14) s = 3, such that g has two cycles of length 3 and one cycle of length 12;
(15) s = 3, such that g has two cycles of length 10 and one cycle of length 5;
(16) s = 3, such that g has one cycle of length 10, one cycle of length 5 and one cycle of
length 2;
(17) s = 4, such that g has two cycles of length 2 and two cycles of length 3;
(18) s = 4, such that g has two cycles of length 3 and two cycles of length 6;
(19) s = 4, such that g has one cycle of length 6, two cycles of length 3 and ane cycle of
length 2;
(20) g has one cycle of length 4 and (s − 1)-cycles of length a power of 2 for s ≥ 2;
(21) g has two cycles of length 2 and (s − 2)-cycles of length a power of 2 for s ≥ 3.
Moreover, the order of g is either 6, 9, 10, 12, 15, 20, 25, p, 2p, 4p or a power of 2.

Proof. Let 1 6= g ∈ G, and let Γ(g) be the subset consisting of every second point of every
cycle of g. Then by Lemma 2.1, move(g) = Σs

i=1bli/2c. For each 1 ≤ i ≤ s, we consider
the element h := gli of G and compare the movement of h with the movement of g. As
above, we have

move(h) ≤
∑
j 6=i

b lj
2 c <

s∑
j=1

b lj
2 c = move(g).

We now consider the following two cases:
Case 1. Suppose move(g) = m − 2. Then glt = 1, for all 1 ≤ t ≤ s. Hence l := l1 =
l2 = · · · = ls. Suppose l is not a power of 2, and let p be an odd prime such that l = pk
for some positive integer k. Then by comparing the movement of g and its power gk we
obtain

sb l

2c = move(g) = move(gk) = sk
p − 1

2 .

It can be easily verified that bkp
2 c = k(p − 1)/2 if and only if k = 1, and so l = p.

Case 2. Let move(g) = m. Then move(glt) = m − 2 or glt = 1, for some 1 ≤ t ≤ s.
Assume that there exists a 1 ≤ t ≤ s such that move(glt) = m − 2.
Since glt = clt

1 · · · clt
s and by Remark 2.2, (lt, li) = 1, 1 ≤ i 6= t ≤ s and lt is either 4, 5, or

2, 3. For the former case, g has just one cycle more than glt . Then we can suppose that
l := l1 = · · · = lt−1 = lt+1 = · · · = ls. Thus

move(g) = (s − 1)b l

2c + 2, move(glt) = (s − 1)b l

2c.

Since move(g) − move(gl) = 2 and move(gl) = move(cl
t), we have (s − 1)b l

2c = 2. Hence
g is either one cycle of length 4 and one cycle of length 5, two cycles of length 3 and one
cycle of length 4, two cycles of length 3 and one cycle of length 5 or two cycles of length
2 and one cycle of length 5.
For the latter, g has two cycles more than glt . As above, we can conclude that g is either
two cycles of length 2 and two cycles of length 3, two cycles of length 2 and one cycle of
length 5, two cycles of length 3 and one cycle of length 4 or two cycles of length 3 and one
cycle of length 5.

Now suppose that glt = 1, for some 1 ≤ t ≤ s. Then we must have two cases:
(I) li

∣∣lt for all 1 ≤ i ≤ s or (II) l := l1 = l2 = · · · = ls.
In the case (I) we have (lt, li) 6= 1. First we suppose that p be an odd prime and lt = pk
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for some positive integer k > 1. If (p, k) 6= 1, then gk is a non-identity element of G and
move(g)−move(gk) = 0 or 2. Hence by Remark 2.2, move(g)−move(gk) = bk

2 c+e, where
e ≥ 0 is an integer. Therefore, bk

2 c = 1 or 2. If k is even, then bk
2 c = k

2 implies that
k = 2 or 4, which is a contradiction. Hence bk

2 c = k−1
2 = 1 or 2 implies that k = 3 or 5,

respectively. If k = 3, then g is product of a cycle of length 3 and a cycle of length 9. If
k = 5, then g is one cycle of length 25. Now we assume that (p, k) = 1 and g has A cycles
of length k, B cycles of length p and s − A − B cycles of length pk. Let cs be the cycle
of length pk. Since move(cs) − move(ck

s) = bk

2 c, one has bk

2 c = 1 or 2. If bk

2 c = 1, then
k = 2 or 3. Thus s − A − B = 1 or 2.
Let k = 2. If s − A − B = 1, since move(g) − move(gk) = A + 1 and A ≥ 0, then
move(g) − move(gk) = 2, so A = 1. move(g) − move(gp) = 2 implies that p = 5, B = 1
or p = 3, B = 2. Therefore g is either one cycle of length 2, one cycle of length 5 and
one cycle of length 10 or one cycle of length 2, two cycles of length 3 and one cycle of
length 6. If move(g) − move(gp) = 0, then B = 0 and g is one cycle of length 2 and one
cycle of length 2p. If s − A − B = 2, with similar discussion as above, we have A = 0, so
p = 3, B = 2, p = 5, B = 1 or B = 0, p > 3. Hence g is either two cycles of length 3 and
two cycles of length 6, one cycle of length 5 and two cycles of length 10 or two cycles of
length 2p.
Let k = 3. So p > 3. If s − A − B = 1, then g is one cycle of length 3 and one cycle of
length 15. If s − A − B = 2, then p = 3, a contradiction.
Let k = 4. Similarly we can conclude that g is either one cycle of length 5 and one cycle
of length 20 or two cycles of length 3 and one cycle of length 12.
If k = 5, then s−A−B = 1. So A = 0, and (B +1)(p−1) = 4. By (p, k) = 1, we conclude
that B = 1, p = 3. Therefore g is one cycle of length 3 and one cycle of length 15.

Now assume that lt = 2a. Thus li = 2bi such that bi < a. Since g2bi is non-identity,
g is either (s − 2)-cycles of length a power of 2 and two cycles of length 2 for s ≥ 3, or
(s − 1)-cycles of length a power of 2 and one cycle of length 4 for s ≥ 2. Finally, we now
suppose that lt = 2ak such that (2, k) = 1 and g has A cycles of length 2b, B cycles of
length k and s − A − B cycles of length 2ak for some integers b < a. Then by comparing
the movement of g and its power gk we obtain

move(g) = A2b−1 + Bbk

2 c + (s − A − B)2a−1k, move(gk) = A2b−1 + k(s − A − B)2a−1.

If k ≥ 6, then move(g) − move(gk) = Bbk

2 c implies that move(g) − move(gk) > 2 or
B = 0, move(g) − move(g2a) > 2, which is a contradiction. Therefore k = 3 or 5. With
similar discussion as above, we can conclude that g is either two cycles of length 2 and
(s − 2)-cycles of length a power of 2 for s ≥ 3, or (s − 1)-cycles of length a power of 2 and
one cycle of length 4 for s ≥ 2, two cycles of length 6 and two cycles of length 3, one cycle
of length 12 and two cycles of length 3, one cycle of length 20 and one cycle of length 5
or two cycles of length 10 and one cycle of length 5.

For the case (II), suppose that l is not a power of 2, and let p be an odd prime such
that l = pk for some positive integer k. Then we obtain that

move(g) = sbpk

2 c, move(gk) = sk
p − 1

2 , and move(gp) = spbk

2 c.

It is straightforward to verify that move(gk) < m − 2 for k ≥ 6, a contradiction. Hence
we may assume that k ≤ 5.
If k = 1, then we have move(g)=move(gk) and l = p.
If k = 2, then we have move(g) =move(gp) = sp and move(gk) = s(p − 1), this implies
that s = 2 and l = 2p, that is, g is two cycles of length 2p.
If k = 3 and p 6= 3, then move(gp) < m − 2, a contradiction. Thus p = 3. It follows that
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move(g) = 4s and move(gk) =move(gp) = 3s. This implies that s = 2 and l = 9, that is,
g is two cycles of length 9.
If k = 4, then we have move(g) =move(gp) = 2sp and move(gk) = 2s(p − 1), thus we must
have s = 1 and l = 4p, that is, g is one cycle of length 4p.
Finally, if k = 5, then move(gp) < m − 2 for p ≥ 7, a contradiction. For p = 3, we have
move(g) = 7s, move(gk) = 5s and move(gp) = 6s, where is a contradiction for every s. For
p = 5, we have move(g) = 12s and move(gk) =move(gp) = 10s. It follows that s = 1 and
l = 25, that is, g is one cycle of length 25.

Now suppose that l = 2k, for some positive integer k. If k be an odd integer, then
move(g) − move(g2) = sk − (sk − s) = s. This implies that s = 2. As gk is k cycles of
length 2, we have move(g) − move(gk) = k(s − 1). So s = k = 2, a contradiction. Thus k
is even. By comparing the movement of g and the movement of different powers of g, we
obtain g is either s cycles of order 2a, a ≥ 2, or one cycle of length 4p for some odd prime
integer p. �

Fein et al. proved the following theorem about the finite transitive groups.

Theorem 2.4. (Fein-Kantor-Schachers theorem )[5, Theorem 1] Let G be a finite group
acting transitively on a set Ω with | Ω |≥ 2. Then there exists an element of prime-power
order in G acting on Ω without fixed points.

3. Examples
Throughout this section, we assume that m is a positive integer and G is a transitive

permutation group on a set Ω of size n with bounded movement equal to m, such that G
is not a 2-group but in which every non-identity element has the movement m or m − 2.
If for every 1 6= g ∈ G, move(g) = m, then G has constant movement which is not the
purpose of this paper. So in the rest of this section we can assume that G has at least one
element of movement m − 2.

Lemma 3.1. The group G = Z4p acts transitively on a set of size n = 4p, where p is an
odd prime, and in this action every non-identity element has movement 2p or 2p − 2.

Proof. Let 1 6= g ∈ G. Then it can be easily shown that g has order 2, 4, p, 2p or 4p.
Suppose that Γ(g) consists of every second point of every cycle of g. If o(g) = 2, then g
has 2p cycles of length 2 and hence |Γ(g)g \ Γ(g)| = 2p, that is, move(g) = 2p. If o(g) = 4,
then g has p cycles of length 4 and hence |Γ(g)g \ Γ(g)| = 2p, that is, move(g) = 2p. If
o(g) = p, then g has 4 cycles of length p and hence |Γ(g)g \ Γ(g)| = 4p−1

2 = 2p − 2, that is,
move(g) = 2p − 2. Finally, if o(g) = 2p or 4p then g has 2 cycles of length 2p and a cycle
of length 4p, respectively. As above it is easy to see that move(g) = 2p. It follows that
every non-identity element of G has movement 2p or 2p − 2. �

Lemma 3.2. The group G = Z2 ×Z2p acts transitively on a set of size n = 4p, where p is
an odd prime, and in this action every non-identity element has movement 2p or 2p − 2.

Proof. Let 1 6= g ∈ G. Then g is either 2 cycles of length 2p, 4 cycles of length p or
2p cycles of length 2. Suppose that Γ(g) consists of every second point of every cycle
of g. Therefore |Γ(g)g \ Γ(g)| = 2p, 2p − 2, or 2p, respectively. This implies that every
non-identity element of G has movement 2p or 2p − 2. �

Let H be cyclic of order n and K = 〈k〉 be cyclic of order m and suppose r is an integer
such that rm ≡ 1(mod n). For i = 1, ..., m, let (ki)θ : H → H be defined by h(ki)θ = hri

for h in H. It is straightforward to verify that each (ki)θ is an automorphism of H, and
that θ is a homomorphism from K to Aut(H). Hence the semi-direct product G = H oK
(with respect to θ) exists and if H = 〈h〉, then G is given by the defining relations:

hn = 1, km = 1, k−1hk = hr, with rm ≡ 1(mod n).
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Here every element of G is uniquely expressible as hikj , where 0 ≤ i ≤ n−1, 0 ≤ j ≤ m−1.
Certain semi-direct products of this type (as a permutation group on a set Ω of size n) also
provide examples of transitive permutation groups where every non-identity element has
the movement m or m − 2, and the bound in Lemma 1.1 is not attained (as the following
lemma shows). We note that, if n = q, a prime, then by Theorem 3.6.1 of [11], this group
G is a subgroup of the Frobenius group AGL(1, q) = Zq o Zq−1.

Lemma 3.3. Let G = Zq o Zq−1 be the group defined as above of order q(q − 1), where
q := 4p + 1 is an odd prime. Then G acts transitively on a set of size n = q and in this
action every non-identity element has movement 2p or 2p − 2.

Proof. By the above statement, the group G is a Frobenius group and has up to per-
mutational isomorphism a unique transitive representation of degree q on a set Ω. Let
g ∈ G, o(g) = q. If Γ(g) consists of every second point of the unique cycle of g, then
move(g) = q−1

2 = 2p. Since the order of each element of G is either 2, 4, p, q, 2p or 4p, so
by Lemma 3.1, every non-identity element has movement 2p or 2p − 2. �

Corollary 3.4. Let G 6 AGL(1, q) be a semi-direct product Zq oZ2p, where p, q = 4p + 1
are odd primes and Z2p generated by two cycles of length 2p. Then G acts transitively on a
set of size n = q and in this action every non-identity element has movement 2p or 2p−2.

Lemma 3.5. Let G be a semi-direct product Z7 o Z3. Then G acts transitively on a set
of size n = 21 and in this action every non-identity element has movement 7 or 9.

Proof. Let G be a semi-direct product G = Zq o Zp, where p, q are odd primes and
q = 2p + 1. Then as an immediate consequence of the above statement of Lemma 3.3, G
acts transitively on a set Ω of size pq whenever p | (q − 1). Let 1 6= g ∈ G. So the order of
g is either p or q. If o(g) = q, then g is p cycles of length q. Hence move(g) = p

q − 1
2 = p2.

If o(g) = p, then g is q cycles of length p. Hence move(g) = q
p − 1

2 . These are hold if and
only if p = 3, since every non-identity element has the movement m or m − 2. It follows
that m = 9. �

Lemma 3.6. Let G be a semi-direct product Zq o Zp, where p, q = 4p + 1 are prime
integers. Then G acts transitively on a set of size n = q and in this action every non-
identity element has movement 2p or 2p − 2.
Proof. Let G be a semi-direct product G = Zq o Zp where, p, q are odd primes and
q = 4p + 1, then G acts transitively on a set Ω of size q. Let 1 6= g ∈ G. Then the order of
g is either p or q. If o(g) = q, then g is a cycle of length q. So move(g) = q − 1

2 = 2p. If

o(g) = p, then g is a product of 4 disjoint cycles of length p. So move(g) = 4p − 1
2 = 2p−2.

Thus every non-identity element of G has movement 2p or 2p − 2. �

Lemma 3.7. The groups Z25 and G = D50 act transitively on a set of size n = 25 and in
this action every non-identity element has movement 12 or 10.

Proof. Let M := 〈α〉 and N := 〈β〉 be two cyclic permutation groups on the set
Ω = {1, 2, . . . , 25}, where α = (1 2 · · · 25) and β = (1 3)(4 25)(5 24) · · · (14 15). It is
straightforward to verify that M ∼= Z25 and D50 ∼= 〈M, N〉. Since M 6 G acts transitively
on a set Ω, so G is a transitive permutation group on a set Ω. Let 1 6= g ∈ M, then it is
easy to see that g has order 5 or 25. Suppose that Γ(g) consists of every second point of
every cycle of g. If o(g) = 25 then g is a cycle of length 25 and hence |Γ(g)g \ Γ(g)| = 12,
that is, move(g) = 12. Now, if o(g) = 5 then g has 5 cycles of length 5 and hence
|Γ(g)g \ Γ(g)| = 5b5

2c = 10, that is, move(g) = 10. Let 1 6= g ∈ 〈M, N〉, g /∈ M and g /∈ N.
Then g has 12 cycles of length 2 and similarly, move(g) = 12. This implies that every
non-identity element of G has movement 12 or 10. �



Transitive permutation groups with elements of movement m or m − 2 1109

Lemma 3.8. The group G = D2n, where n = 2p, acts transitively on a set of size 4p and
in this action every non-identity element has movement 2p or 2p − 2.

Proof. Let Z2p := 〈(1 2 ... 2p)(1′ 2′ ... 2p′)〉 and Z2 := 〈(1 1′)(2 2′)...(2p 2p′)〉 be two
cyclic permutation groups on the set Ω = {1, 2, ..., 2p, 1′, 2′, ..., 2p′}. Then it can be easily
shown that the group G = D4p

∼= Z2p o Z2 acts transitively on a set Ω of size 4p and in
this action every non-identity element of G has movement 2p or 2p − 2. �

Lemma 3.9. Let p be an odd prime.The Dicyclic group Dicp = Zp o Z4 acts transitively
on a set of size 4p and in this action every non-identity element has movement 2p or
2p − 2.

Proof. Let a be a positive integer and p be an odd prime. Then the Frobenius group
G = Zp oZ2a acts transitively on a set Ω of size p2a. Every non-identity element of g ∈ G

has order 2, p or 2i(1 < i ≤ a). Hence move(g) = p2a−1b2
2c = p2a−1, 2abp

2c = 2a−1p−2a−1

or p2a−ib2i

2 c = 2a−1p. Therefore, a = 2 and m = 2p. �

Lemma 3.10. Let p be an odd prime. Then The group G = Z4 × D2p acts transitively on
a set Ω of size n = 4p, and in this action every non-identity element has movement 2p or
2p − 2.

Proof. Let 1 6= g ∈ G. Then g is either one cycle of length 4p, two cycles of length 2p,
four cycles of length p, p cycles of length 4, 2p − 2 cycles of length 2 or 2p cycles of length
2. Therefore every non-identity element of G has movement 2p or 2p − 2. �

Lemma 3.11. Let p be an odd prime. Then The group G = (Z2)2 × D2p acts transitively
on a set Ω of size n = 4p, and in this action every non-identity element has movement 2p
or 2p − 2.

Proof. Let 1 6= g ∈ G. Then g is either two cycles of length 2p, four cycles of length p,
2p − 2 cycles of length 2 or 2p cycles of length 2. Therefore every non-identity element of
G has movement 2p or 2p − 2. �

Lemma 3.12. Let p be an odd prime such that 4|p − 1. Then G = Z4 × Zp o Z4 and
T = (Z2)2 × Zp o Z4 act transitively on a set of size 4p and every non-identity element
has movement 2p or 2p − 2.

Proof. Since 4|p − 1, Zp o Z4 acts transitively on a set of size p. Hence G and T are
transitive groups on 4p points. Let 1 6= g ∈ G. Then g is either 2p cycles of length 2,
(2p−2) cycles of length 2, p cycles of length 4, (p−1) cycles of length 4, 2 cycles of length
2 and (p − 1) cycles of length 4, 4 cycles of length p, two cycles of length 2p, or one cycle
of length 4p.
Every non-identity element t ∈ T is either 2p cycles of length 2, (2p − 2) cycles of length
2, (p − 1) cycles of length 4, 2 cycles of length 2 and (p − 1) cycles of length 4, 4 cycles of
length p, or two cycles of length 2p. Therefore every non-identity element of G and T has
movement 2p or 2p − 2. �

Let N := 〈(i i′)|i = 1, 2, ..., p〉 be a permutation group of degree 2p on the set

Ω = {1, 1′
, 2, 2′

, ..., p, p
′}.

Moreover, suppose that
M := (Z2)p−1 = 〈zi = (i i

′)(i + 1 i
′ + 1)|1 ≤ i ≤ p − 1〉,

is the subgroup of N of even permutations in N. Set
g = (12...p)(1′2′...p′).
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Then g normalizes M and we consider the permutation group
G := M o Zp = 〈z1, z2, ..., zp−1〉 o 〈g〉

on Ω. Now zg
i = zi+1, for 1 ≤ i < p − 1, and zg

p−1 = z1z2...zp−1. This group G provides
an example of transitive permutation group in which every non-identity element has the
movement m or m − 2, and the bound in Lemma 1.1 is attained.
As the group M is a 2-group, so by definition there is an element of movement equal to
2 in M. Also, the group Zp = 〈g〉 has constant movement equal to p − 1. Now, if every
non-identity element of G has movement m = p − 1 or m − 2, then m = 4 and p = 5.
Consequently, the group G = (Z2)4 o Z5 acts transitively on a set of size 10, and in this
action every non-identity element has movement 4 or 2. Therefore, we can conclude the
following lemma.
Lemma 3.13. Let G be a semi-direct product G = (Z2)4 o Z5, as above. Then G acts
transitively on a set of size n = 10 and in this action every non-identity element has
movement 2 or 4.

Example 3.14. Let G = (Z5)2oZk acts transitively on a set Ω of size 25, where k ∈ {3, 5}
and in this action every non-identity element has movement 8 or 10.

Proof. Let 1 6= g ∈ G. If k = 3, then g has order 3 or 5. Therefore, move(g) = 8b3
2c = 8

or 5b5
2c = 10. If k = 5, then the order of g is 5 and move(g) = 5b5

2c = 10, or 4b5
2c = 8. �

Example 3.15. In [4] the transitive groups of degree up to 31 has been listed. So, we
know that there are more transitive groups on 25 points. By using Gap [6], we list the
ones in which every non-identity element has movement m or m − 2 in Table 1.

Table 1. Transitive action on 25 points

Number of points = 25
Group: Z5 o D10 Movement= 12

Element Description Movement of Elements
12 cycles of length 2 12
5 cycles of length 5 10
Group: (Z5)2 o Q8 Movement= 12

Element Description Movement of Elements
12 cycles of length 2 12
6 cycles of length 4 12
5 cycles of length 5 10

Group: (Z5)2 o (Z4)2 Movement= 12
Element Description Movement of Elements

12 cycles of length 2 12
10 cycles of length 2 10
6 cycles of length 4 12
5 cycles of length 4 10

2 cycles of length 2 and 5 cycles of length 4 12
5 cycles of length 5 10

one cycle of length 5 and 2 cycles of length 10 12
one cycle of length 5 and one cycle of length 20 12

Group: (Z5)2 o Z2 Movement= 12
Element Description Movement of Elements

10 cycles of length 2 10
5 cycles of length 5 10

one cycle of length 5 and 2 cycles of length 10 12
Group: (Z5)2 o Z4 Movement= 12

Element Description Movement of Elements
12 cycles of length 2 12
6 cycles of length 4 12
5 cycles of length 5 10
Group: (Z5)2 o Z8 Movement= 12

Element Description Movement of Elements
12 cycles of length 2 12
6 cycles of length 4 12
5 cycles of length 5 10
3 cycles of length 8 12
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Example 3.16. Let G ∈ {Z2 × S4, Z2 × A4}. If G acts transitively on a set of size n = 8,
then every non-identity element has movement 4 or 2.

Proof. Let 1 6= g ∈ G. If G = Z2 × S4, then g is either a product of 4 disjoint cycles
of length 2 or 2 disjoint cycles of length 2, a product of 2 disjoint cycles of length 3, a
product of 2 disjoint cycles of length 4, a product of two disjoint cycles, one cycle of length
2 and one cycle of length 6. If G = Z2 × A4, then g is either a product of 4 disjoint cycles
of length 2, a product of 2 disjoint cycles of length 3, a product of two disjoint cycles, one
cycle of length 2 and one cycle of length 6. Therefore, every non-identity element of G
has movement 4 or 2. �

Example 3.17. Let G be a transitive group on 8 points which every non-identity element
has movement m or m − 2. By using [4] and Gap [6], all these groups and their elements
are described in Table 2.

Table 2. Transitive action on 8 points

Number of points = 8
Group: S4 Movement= 4

Element Description Movement of Elements
4 cycles of length 2 4
2 cycles of length 3 2
2 cycles of length 4 4

Group: SL2(3) Movement= 4
Element Description Movement of Elements

4 cycles of length 2 4
2 cycles of length 3 2
2 cycles of length 4 4

one cycle of length 2 and one cycle of length 6 4
Group: (Z2)3 o A4 Movement= 4

Element Description Movement of Elements
4 cycles of length 2 4
2 cycles of length 2 2
2 cycle of length 3 2
2 cycles of length 4 4

one cycle of length 2 and one cycle of length 6 4
Group: (Z2)2 o S4 Movement= 4

Element Description Movement of Elements
4 cycles of length 2 4
2 cycles of length 2 2
2 cycle of length 3 2
2 cycles of length 4 4

Example 3.18. From [4], all transitive groups on 12 points were determined. By using
Gap[6], we list the cases in which every non-identity element has movement 6 or 4 In the
Table 3.
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Table 3. Transitive action on 12 points

Number of points = 12
Group: S4 Movement= 6

Element Description Movement of Elements
4 cycles of length 2 4
6 cycles of length 2 6
4 cycles of length 3 4

2 cycles of length 2 and 2 cycles of length 4 6
Group: A4 Movement= 6

Element Description Movement of Elements
6 cycles of length 2 6
4 cycles of length 3 4

Group: S5 Movement= 6
Element Description Movement of Elements

6 cycle of length 2 6
4 cycles of length 2 4
4 cycles of length 3 4

2 cycle of length 2 and 2 cycles of length 4 6
2 cycles of length 5 4
2 cycles of length 6 6

Group: A5 Movement= 6
Element Description Movement of Elements

6 cycle of length 2 6
4 cycles of length 3 4
2 cycles of length 5 4
Group: (Z4)2 o S3 Movement= 6

Element Description Movement of Elements
4 cycles of length 2 4
4 cycle of length 3 4
2 cycles of length 4 4

2 cycles of length 2 and 2 cycles of length 4 6
one cycle of length 4 and one cycle of length 8 6

Group: (Z2)2 o S4 Movement= 6
Element Description Movement of Elements

6 cycles of length 2 6
4 cycles of length 2 4
4 cycle of length 3 4

2 cycles of length 2 and 2 cycles of length 4 6
Group: Z2 × S4 Movement= 6

Element Description Movement of Elements
6 cycles of length 2 6
4 cycles of length 2 4
4 cycle of length 3 4

2 cycles of length 2 and 2 cycles of length 4 6
2 cycle of length 6 6
6 cycles of length 2 6
4 cycles of length 2 4
4 cycle of length 3 4

2 cycles of length 2 and 2 cycles of length 4 6
2 cycle of length 4 4
2 cycle of length 5 4
2 cycle of length 6 6

one cycle of length 2 and one cycle of length 10 6
Group: Z2 × A4 Movement= 6

Element Description Movement of Elements
6 cycles of length 2 6
4 cycles of length 2 4
4 cycle of length 3 4
2 cycle of length 6 6
Group: Z2 × A5 Movement= 6

Element Description Movement of Elements
6 cycles of length 2 6
4 cycles of length 2 4
4 cycle of length 3 4
2 cycle of length 5 4
2 cycle of length 6 6

one cycle of length 2 and one cycle of length 10 6

Example 3.19. From [4], all transitive groups on 14, 16 and 18 points were determined.
By using Gap[6], we list the cases in which every non-identity element has movement m
or m − 2 in the Tables 4, 5 and 6, respectively.
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Table 4. Transitive action on 14 points

Number of points = 14
Group: AΓL1(F8) Movement= 6

Element Description Movement of Elements
4 cycles of length 2 4
4 cycles of length 3 4
2 cycles of length 7 6

one cycle of length 2 and two cycles of length 3 and
one cycle of length 6 6

Group: (Z2)3 o Z7 = F8 Movement= 6
Element Description Movement of Elements

4 cycles of length 2 4
2 cycles of length 7 6

Table 5. Transitive action on 16 points

Number of points = 16
Group: (Z2)4 o D10 Movement= 8

Element Description Movement of Elements
8 cycles of length 2 8
6 cycles of length 2 6
4 cycles of length 4 8
3 cycles of length 5 6

Group: Z2 × F8 (F8 = (Z2)3 o Z7) Movement= 8
Element Description Movement of Elements

8 cycles of length 2 8
2 cycles of length 7 6

one cycle of length 2 and one cycle of length 14 8
Group: (Z2)4 o Z5 Movement= 8

Element Description Movement of Elements
8 cycles of length 2 8
3 cycles of length 5 6

Table 6. Transitive action on 18 points

Number of points = 18
Group: S3 × A5 Movement= 8

Element Description Movement of Elements
8 cycles of length 2 8
6 cycles of length 2 6
6 cycles of length 3 6
3 cycles of length 5 6

2 cycles of length 3 and 2 cycles of length 6 8
One cycle of length 2 and One cycle of length 5 and

One cycle of length 10 8
One cycle of length 3 and One cycle of length 15 8

Group: PSL(2, 17) Movement= 8
Element Description Movement of Elements

8 cycles of length 2 8
6 cycles of length 3 6
4 cycles of length 4 8
2 cycles of length 8 8
2 cycles of length 9 8

One cycle of length 17 8

Example 3.20. By Lemma 3.9, [4] and Gap [6], we can describe all transitive group on
20 points which every non-identity element has movement m or m − 2 in the Table 7.
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Table 7. Transitive action on 20 points

Number of points = 20
Group: Z5 o Z4 Movement= 10

Element Description Movement of Elements
10 cycles of length 2 10
5 cycles of length 4 10
4 cycles of length 5 8

Group: Z2 × F5 (F5 := Z5 o Z4) Movement= 10
Element Description Movement of Elements

10 cycles of length 2 10
8 cycles of length 2 8
5 cycles of length 4 10
4 cycles of length 5 8
2 cycles of length 10 10

Group: Z4 × F5 (F5 := Z5 o Z4) Movement= 10
Element Description Movement of Elements

10 cycles of length 2 10
8 cycles of length 2 8
5 cycles of length 4 10
4 cycles of length 4 8

2 cycles of length 2 and 4 cycles of length 4 10
4 cycles of length 5 8
2 cycles of length 10 10

one cycle of length 20 10
Group: (Z2)4 o D10 Movement= 10

Element Description Movement of Elements
8 cycles of length 2 8

2 cycles of length 2 and 4 cycles of length 4 10
4 cycles of length 5 8

4. Proof of Theorem 1.2
Now, we are ready to complete the proof of Theorem 1.2:

Let G, Ω and m be as in Theorem 1.2, with n := |Ω| and move(G) = m. We consider the
following two possibilities:
Case 1: n is the maximum possible degree as in Lemma 1.1.
A transitive permutation group of degree 3m (which is the bound of Lemma 1.1, for p = 3)
with bounded movement equal to m, were classified in [8] and the examples are as follows:
(a) G := S3, m = 1;
(b) G := A4 or A5, m = 2;
(c) G is a 3-group of exponent 3.
It can be easily verified that the movement of all of these groups are not m or m − 2,
which is a contradiction.
But for p ≥ 5, by Theorem 1.2 of [7], one of the following holds:
(1) |Ω| = p, m = (p − 1)/2 and G := Zp o Z2a , where 2a|(p − 1) for some a ≥ 1.
(2) |Ω| = 2sp, m = 2s−1(p − 1), 1 < 2s < p, and G := K o P with K a 2-group and
P = Zp is fixed point free on Ω; K has p-orbits of length 2s, and each element of K moves
at most 2s(p − 1) points of Ω.
(3) G is a p-group of exponent bounded in terms of p only.
By Theorem 1.1 of [3], all groups in part (1) and part (3) are examples in which every
non-identity element has the same movement equal to m. In part (2), suppose that each
element of K moves at least 2sk points of Ω, where k ≤ p − 1 is an integer. Now, if
every non-identity element of G has movement m = 2s−1(p − 1) or m − 2 = 2s−1k, then
2s−1(p − 1 − k) = 2. Hence s ≤ 2. According to Lemma 3.13, we have G = (Z2)4 o Z5 for
s = 1. If s = 2, then we have k = p − 2 but we do not know any examples.
Case 2: n is not the maximum possible degree as in Lemma 1.1.
Let 1 6= g ∈ G. Then by Proposition 2.3, g in its disjoint cycle representation has either
one cycle of length 4p, one cycle of length 25, one cycle of length 4 and one cycle of length
5, two cycles of length 9, one cycle of length 20 and one cycle of length 5, two cycles of
length 2p, one cycle of length 2 and one cycle of length 2p, two cycles of length 2 and one
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cycle of length 5, two cycles of length 3 and one cycle of length 4, two cycles of length 3
and one cycle of length 5, two cycles of length 3 and one cycle of length 12, two cycles
of length 10 and one cycle of length 5, two cycles of length 2 and two cycles of length 3,
two cycles of length 3 and two cycles of length 6, one cycle of length 15 and one cycle of
length 3, the disjoint product of three cycles, one cycle of length 2, one cycle of length 5
and one cycle of length 10, the disjoint product of four cycles, one cycle of length 2, two
cycles of length 3 and one cycle of length 6, (s − 1)−cycles of length a power of 2 and one
cycle of length 4 for s ≥ 2, (s − 2)−cycles of length a power of 2 and two cycles of length
2 for s ≥ 3, multiple cycles of length q (for some prime q) or multiple cycles of length
a power of 2, say g4p, g25, g4,5, g9,9, g20,5, g2p,2p, g2,2p, g2,2,5, g3,3,4, g3,3,5, g3,3,12, g10,10,5,
g2,3,2,3, g3,6,3,6, g3,15, g2,5,10, g3,2,3,6, g∗

2a,4, g∗
2a,2,2, g∗

q , g∗
2a , respectively.

Let G be a transitive permutation group on a set Ω and move(G) = m. By definition of
move(G) and Proposition 2.3, we have,

m ∈ {2, 4, 6, 8, 12, 2p, p + 1, 2 + (s − 1)2a−1, 2 + (s − 2)2a−1,
s(q − 1)

2 , s2a−1}.
First suppose that m = 12. Then g25, g20,5, g10,10,5, g∗

3(s = 12), g∗
2(s = 12) or g∗

4,2,2(s = 7)
could belong to G. If g∗

3(s = 12) ∈ G, sine G is transitive, then G must have an element
whose form is a cycle of length 36, say g

′ , hence move(g′) = 18, which is a contradiction.
Hence from Lemma 1.1, | Ω |6 b2 × 12 × 5/(5 − 1)c = 30. Therefore, by Lemma 3.7 and
Example 3.15 G = Z25, D50 or G is one of groups listed in Table 1.
Let m = 10. Then g20, g2 ∗ (s = 10), g3 ∗ (s = 10), g10,10, g∗

4(s = 5), g∗
4,2,2(s = 6) could

belong to G. Thus by Lemma 1.1 | Ω | is at most 30. Therefore, by Lemmas 3.1, 3.8, and
3.10, Examples 3.14 and 3.20 G is Z20, D2n, n = 10, Z4 × D10, (Z5)2 o Zk where k = 3, 5
and one of groups listed in Table 7, respectively.
Let m = 8. Then g9,9, g3,3,12, g3,6,3,6, g3,15, g2,5,10, g2,14 could belong to G. Sine the least
odd prime dividing |G| is either 3, 5 or 7, by lemma 1.1, | Ω | is at most 24. Thus by [4]
and [6], G is one of the groups listed in Tables 5 and 6.
Let m = 6. Then g6,6, g12, g2,10, g3,2,3,6, g2,2,4,4, g4,8, g∗

2(s = 6), g∗
7(s = 2), g∗

13(s = 1) could
belong to G. Hence G is a transitive group on 12, 13 or 14 points and the least odd prime
dividing |G| is 3 or 5. So by lemma 1.1, | Ω |6 18. Therefore by Lemmas 3.1 - 3.10 and
Examples 3.18 and 3.19, G is Z12,Z13 oZ12,Z13 oZ6,Z13 oZ3, D12,Z4 × D6 or one of the
groups listed in Tables 3 and 4.
Let m = 5. Then g9,3 ∈ G and | Ω |6 15. However, by [4] there is not such a group G.
Let m = 4. Then g4,4, g4,5, g2,6, g2,2,5, g3,3,4, g3,3,5, g2,2,3,3, g∗

4,2,2(s = 3), g∗
2(s = 4), g∗

5(s = 2)
could belong to G. If g4,5, g2,2,5 ∈ G, since G is transitive, then by Theorem 2.4 G must
have an element whose form is a cycle of length 9, say ĝ, hence move(ĝ3) = 3, which
is a contradiction. Therefore G is either transitive on 10 points and by Lemma 3.13,
G = (Z2)4 o Z5, or G is transitive on 8 points and G is one of the groups in Examples
3.16 and 3.17.
If m = s2k (s ≥ 1) and G consists precisely of the elements of the form g∗

2a , then G is a
2-group, which is not included in our classification. Since every non-identity element of G
has the movement m or m − 2, s must be a prime integer and | Ω |= 2k+1s. Therefore by
case 1 (2), k = 0, s = 5 and G = (Z2)4 o Z5.

Let m = s(q − 1)
2 and g∗

q ∈ G, then G is transitive on sq points. Let G is not a q-
group. If G has an element whose form is a cycle of length sq, say g

′ , then (g′)q is
a product of q disjoint cycles of length s, and move((g′)q) = qbs

2c. If s is even, then

|move(g′) − move((g′)q)| = s

2. Thus s = 4 and by Lemma 4.7 of [3], n is the maximum
possible degree and the groups satisfying in this case are those mentioned in Case 1. If s is
odd, then |move(g′) − move((g′)q)| = |move(g′) − move((g′)s)| = 2 implies that s = p = 5,
which is a contradiction. Let g

′
/∈ G and g∗

q , g∗
s ∈ G . Then by Lemmas 3.5 and 3.6,
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G = Z7 o Z3 and Zq o Zp where p, q = 4p + 1 are prime integers.
Let m = 2p. If g4p ∈ G, then with this guess that G is a cyclic group we have G = Z4p.
Otherwise, G must consists precisely of those elements whose forms are g2p,2p, g∗

p(s = 4)
and g∗

2(s = 2p) and it also has a subgroup isomorphic to Z4 ×Zp. Hence by Lemmas 3.10
and 3.12 G = Z4 × D2p and Z4 × Zp o Z4, respectively.
If g∗

q ∈ G, where q = 4p + 1 is prime, then G is transitive on 4p + 1 points and by Lemma
3.3, Corollary 3.4 and Lemma 3.6, we have G = Zq o Zq−1,Zq o Z2p,Zq o Zp (4 | p − 1),
respectively. If g4p, g4p+1 /∈ G, then g2p,2p ∈ G and by Lemmas 3.2, 3.8, 3.9, 3.11 and 3.12
G = Z2×Z2p, D2n (n = 2p), ZpoZ4, (Z2)2×D2p and (Z2)2×ZpoZ4(4 | p−1), respectively.
Now suppose that g4p, g4p+1, g2p,2p /∈ G. Then g∗

p(s = 4), g∗
2(s = 2p), g∗

22(s = p) ∈ G, and
by Lemma 3.9, G = Zq o Z4.
If m = p + 1, where p is prime, then | Ω |= 2p + 2 or 2p + 3. By Theorem 2.4, there
exists an element g ∈ G of prime-power order without fixed points. First suppose that
| Ω |= 2p + 2. From Proposition 2.3, we have o(g) = 9, 25 or q, where q is an odd
prime. Therefore 2p + 2 = 18, 25 or sq for some s > 0, respectively. Since p is prime,
2p + 2 6= 18, 25. Hence 2p + 2 = sq and move(g) = s

q − 1
2 . As s > 0, move(g) 6= p + 1. So

s
q − 1

2 = p − 1. This implies that s = 4. Hence p = 5, q = 3 and G is one of the groups
listed in Table 3, or from the previous case, we have G = Z4q, Zq o Z4 or D2n, where
n = 2q. Suppose now that | Ω |= 2p + 3. By the same argument there exists an element
g ∈ G of prime-power order without fixed points. So o(g) = 9, 25 or q and 2p + 3 = 18, 25
or sq for some s > 0. Clearly, 2p + 3 6= 18. if 2p + 3 = 25, then m = 12 and the argument
given above for m = 12 implies that G = Z25, D50 or one of the groups in Table 3. If
2p + 3 = sq, where q is an odd prime, then move(g) = s

q − 1
2 . If move(g) = p + 1, then

s = 1 and o(g) = 2p + 3 is prime. However, by case 1 (1) every non-identity element has
the same movement equal to p + 1. Therefore move(g) = s

q − 1
2 = p − 1. This implies

that s = 5. Since 4 | 2p + 2, we can assume q − 1 = 2a (a ≥ 2) and G has an element g

as a product of k disjoint cycles of length q − 1. So k = 5q − 1
q − 1 = 5 + 4

q − 1. This implies
that q − 1 | 4. Therefore q = 5 and G is a transitive group on 25 points, which is classified
in the case m = 12.
Let m = 2 + (s − 1)2a−1 and g∗

2a,4 ∈ G (s > 1, a > 2). Since G is not a 2−group,
there is a prime number p and an element h ∈ G such that p|o(h). By Proposition
2.3, h can be one of the elements g2p,2p, g2,2p or g∗

p. Since we have already checked the
assumption that move(h) = m, we only deal with move(h) = m − 2. If h = g2p,2p, g2,2p,
then m − move(h2) = 4, which is a contradiction. Thus let h be the product of A disjoint
cycles of length p. So move(h) = Ap−1

2 = m − 2 = (s − 1)2a−1. By Theorem 2.4, we have
Ap ≤ |Ω| = 4 + (s − 1)2a. If Ap = |Ω| = 4 + (s − 1)2a, then

Ap = |Ω| = 4 + (s − 1)2a = 4 + A(p − 1) =⇒ A = 4 =⇒ m = 2p.

If Ap < |Ω| = 4 + (s − 1)2a, then A < 4.
Let A = 1, then |Ω| = p + 3, m = p+3

2 and G = 〈gp, g∗
2a,4〉, where 2a|p − 1. Now let

A = 2. Then |Ω| = 2p + 2, m = p + 1, which has already been discussed. If A = 3, then
|Ω| = 3p + 1, m = 3p+1

2 and G = 〈g∗
p(s = 3), g∗

2a,4〉, where 2a|p − 1, 3|s − 1.
Let m = 2 + (s − 2)2a−1 and g∗

2a,2,2 ∈ G (s > 2, a > 1). A similar argument to the above
paragraph implies that |Ω| = 4p, m = 2p, or |Ω| < 4p. The former case has been checked.
In the latter case, we have Ap < |Ω| = 4 + (s − 2)2a = 4 + A(p − 1). therefore A < 4.
If A = 1, then |Ω| = p + 3, m = p+3

2 and G = 〈gp, g∗
2a,2,2〉, where 2a|p − 1. If A = 2,

then |Ω| = 2p + 2, m = p + 1, G = 〈gp,p, g∗
2a,2,2〉 and g2p /∈ G, Finally, if A = 3, then
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|Ω| = 3p + 1, m = 3p+1
2 , G = 〈g∗

p(s = 3), g∗
2a,2,2〉 where 2a|p − 1, 3|s − 2 and g3p /∈ G. This

completes the proof of Theorem 1.2.
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