

RESEARCH ARTICLE

Transitive permutation groups with elements of movement *m* **or** $m-2$

Mehdi Alaeiyan^{*}**D**, Murtadha Ali Shabeeb**D**, Masoumeh Akbarizadeh**D**

Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran

Abstract

Let *G* be a permutation group on a set Ω with no fixed points in Ω and let *m* be a positive integer. If for each subset Γ of Ω the size $|\Gamma^g \setminus \Gamma|$ is bounded, for $g \in G$, we define the movement of *g* as the max $|\Gamma^g \setminus \Gamma|$ over all subsets Γ of Ω , and the movement of *G* is defined as the maximum of move (g) over all non-identity elements of $g \in G$. In this paper we classify all transitive permutation groups with bounded movement equal to *m* that are not a 2-group, but in which every non-identity element has movement *m* or $m-2$.

Mathematics Subject Classification (2020). 20B05

K[e](#page-0-1)ywords. permutation group, transitive, movement, fixed point free element

1. Introduction

Let *G* be a permutation group on a set Ω with no fixed points in Ω . If for each subset Γ of Ω and each element g ∈ G , the size $|Γ^g \setminus Γ|$ is bounded, we define the movement of Γ as move $(\Gamma) = \max_{g \in G} |\Gamma^g \backslash \Gamma|$. Let *m* be a positive integer. If move $(\Gamma) \leq m$ for all $\Gamma \subset \Omega$, then *G* is said to have bounded movement and the movement of *G* is defined as the maximum of move (Γ) over all subsets Γ . This notion was introduced in [\[9\]](#page-15-0). Similarly, for each $1 \neq g \in G$, the movement of *g* is defined as the max $|\Gamma^g \setminus \Gamma|$ over all subsets Γ of Ω*.* If all non-identity elements of *G* have the same movement, then we say that *G* has constant movement (see [\[3\]](#page-15-1)).

It is obvious that every permutation group in which every non-identity element moves by *m* or *m* − 2*,* is a permutation group with bounded movement equal to *m*. Moreover, according to Theorem 1 of [\[9\]](#page-15-0), if *G* has movement equal to *m*, then Ω is finite, and its size is bounded by a function of *m.*

The intransitive permutation groups with bounded movement having maximum degree were classified in [\[2\]](#page-15-2). For a transitive permutation group *G* on a set Ω with movement *m*, where *G* is not a 2-group, the following bound on Ω was obtained in [\[9\]](#page-15-0). We note that for $x \in \mathbb{R}, |x|$ is the integer part of *x*.

Lemma 1.1. ([\[9\]](#page-15-0), Lemma 2.2) *Let G be a transitive permutation group on a set* Ω *such that G has movement equal to m. Suppose that G is not a* 2*-group and p is the least odd prime dividing* $|G|$ *, then* $|\Omega| \leq 2mp/(p-1)$.

[∗]Corresponding Author.

Email addresses: alaeiyan@iust.ac.ir (M. Alaeiyan), murtadha.alallaq@gmail.com (Murtadha A. Shabeeb), masoumeh.akbarizadeh@gmail.com (M. Akbarizadeh)

Received: 24.12.2022; Accepted: 21.09.2023

All transitive permutation groups *G* with bounded movement equal to *m*, such that *G* is not a 2-group but in which every non-identity element has the movement m or $m-1$ classified in [\[1\]](#page-15-3). There are several different kinds of transitive permutation groups that are not a 2-group and have bounded movement equal to m , but in which every non-identity element has the movement *m* or $m-2$. For example, it is easy to see that any non-identity member of permutation group $G = \mathbb{Z}_{4p}$ has the movement 2p or 2p − 2 on a set of size $n = 4p$, where *p* is an odd prime (see Lemma [3.1\)](#page-5-0).

This paper's goal is to classify all transitive permutation groups with bounded movement equal to *m* that are not 2-groups, but in which every non-identity element has the movement *m* or $m-2$.

We denote by $K \rtimes P$ a semi-direct product of K by P with normal subgroup K. The semi-direct product $\mathbb{Z}_n \rtimes \mathbb{Z}_2 = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$ is known as Dihedral group and it is denoted by D_{2n} .

We now have the following main theorem.

Theorem 1.2. *Let m be a positive integer and G be a transitive permutation group on a set* Ω *with no fixed points in* Ω *and also with bounded movement equal to m, in which every non-identity element has movement* m *or* $m-2$ *. Moreover, suppose that* G *is not a* 2*-group and p is the least odd prime dividing* |*G*|*. Then G is one of the following groups:*

- (1) $G \in \{S_4, \mathbb{Z}_2 \times S_4, \mathbb{Z}_2 \times A_4, (\mathbb{Z}_2)^3 \rtimes A_4, (\mathbb{Z}_2)^2 \rtimes S_4, SL(2,3)\}, |\Omega| = 8 \text{ and } m = 4,$
- (2) $G := (\mathbb{Z}_2)^4 \rtimes \mathbb{Z}_5$, $| \Omega | = 10$ *and* $m = 4$;
- (3) $G \in \{S_4, S_5, A_4, A_5, \mathbb{Z}_2 \times S_4, \mathbb{Z}_2 \times S_5, \mathbb{Z}_2 \times A_4, \mathbb{Z}_2 \times A_5, (\mathbb{Z}_4)^2 \times S_3, (\mathbb{Z}_2)^2 \times S_4\},$ $\Omega = 12$ *and* $m = 6$;
- (4) $G \in \{F_8, A\Gamma L_1(\mathbb{F}_8)\}, |\Omega| = 14$ *and* $m = 6$;
- (5) $G \in \{S_3 \times A_5, PSL(2, 17)\}, \ |\ \Omega \ |=18 \ and \ m=8;$
- (6) $G \in \{ (\mathbb{Z}_2)^4 \rtimes \mathbb{Z}_5, (\mathbb{Z}_2)^4 \rtimes D_{10}, \mathbb{Z}_2 \times F_8 \}, |\Omega| = 16 \text{ and } m = 8$
- (7) $G := \mathbb{Z}_7 \rtimes \mathbb{Z}_3$, $\mid \Omega \mid = 21$ *and* $m = 9$;
- $(8) \in \{ (\mathbb{Z}_2)^4 \rtimes D_{10}, F_5, \mathbb{Z}_2 \times F_5, \mathbb{Z}_4 \times F_5 \}, \mid \Omega \mid = 20 \text{ and } m = 10;$
- (9) $G \in \{ (\mathbb{Z}_5)^2 \rtimes \mathbb{Z}_3, (\mathbb{Z}_5)^2 \rtimes \mathbb{Z}_5 \}, |\Omega| = 25 \text{ and } m = 10;$
- (10) $G \in {\mathbb{Z}}_{25}, D_{50}, \mathbb{Z}_5 \rtimes D_{10}, (\mathbb{Z}_5)^2 \rtimes Q_8, (\mathbb{Z}_5)^2 \rtimes \mathbb{Z}_2, (\mathbb{Z}_5)^2 \rtimes \mathbb{Z}_4, (\mathbb{Z}_5)^2 \rtimes \mathbb{Z}_8, (F_5)^2$, $\Omega = 25$ *and* $m = 12$;
- (11) $G \in \{ \mathbb{Z}_{4p}, \mathbb{Z}_{4} \times D_{2p}, \text{Dic}_p = \mathbb{Z}_p \rtimes \mathbb{Z}_4, (\mathbb{Z}_2)^2 \times D_{2p}, \mathbb{Z}_2 \times \mathbb{Z}_{2p}, D_{4p} \}, | \Omega | = 4p$ and $m = 2p$;
- (12) $G \in {\mathbb{Z}_4 \times \mathbb{Z}_p \times \mathbb{Z}_4, (\mathbb{Z}_2)^2 \times \mathbb{Z}_p \times \mathbb{Z}_4}$ where $4 | p 1, |\Omega| = 4p$ and $m = 2p$;
- (13) $G \in \{ \mathbb{Z}_q \rtimes \mathbb{Z}_p^+, AGL(1,q), \mathbb{Z}_q \rtimes \mathbb{Z}_{2p} \leqslant AGL(1,q) \}$, where $q = 4p + 1$ *is an odd prime and* \mathbb{Z}_{2p} *generated by two cycles of length* $2p$, $\vert \Omega \vert = q$ *and* $m = \frac{q-1}{2}$ $\frac{1}{2}$;
- (14) $G := K \times P$, $\vert \Omega \vert = 4p$ *for* $p \geq 5$ *and* $m = 2(p 1)$ *, where* K *is* a 2-group and $P = \mathbb{Z}_p$ *is fixed point free on* Ω *, K has p orbits of length* 4 *and each element of K moves at least* $4(p-2)$ *and at most* $4(p-1)$ *points of* Ω *.*

Note that all groups in part (2) and part (14) of Theorem [1.2,](#page-1-0) have the maximum degree mentioned in Lemma [1.1.](#page-0-2)

2. Preliminaries

Let *G* be a transitive permutation group on a finite set Ω . By Theorem 3.26 of [\[10\]](#page-15-4), often known as Burnside's lemma, the average number of fixed points in Ω of elements of *G* is equal to the number of *G*−orbits in Ω . Since 1_G fixes $|\Omega|$ points and $|\Omega| > 1$, it follows that there is some element of *G* which has no fixed points in Ω . We shall say that such elements are fixed point free on Ω*.*

Let $1 \neq g \in G$ and suppose that *g* in its disjoint cycle representation has *t* non-trivial

cycles of lengths l_1, l_2, \ldots, l_t , say. We might represent *g* as

$$
g = (a_1, a_2, \dots, a_{l_1})(b_1, b_2, \dots, b_{l_2}) \cdots (z_1, z_2, \dots, z_{l_t}).
$$

Let $\Gamma(g)$ denote a subset of Ω consisting of $\lfloor l_i/2 \rfloor$ points from the *i*th cycle, for each *i*, chosen in such a way that $\Gamma(g)^g \cap \Gamma(g) = \emptyset$. For example we could choose

$$
\Gamma(g) = \{a_2, a_4, \ldots, a_{k_1}, b_2, b_4, \ldots, b_{k_2}, \ldots, z_2, z_4, \ldots, z_{k_t}\},\
$$

where $k_i = l_i - 1$ if l_i is odd and $k_i = l_i$ if l_i is even. Note that $\Gamma(g)$ is not uniquely determined as it depends on the way each cycle is written down. For any set $\Gamma(g)$ of this kind we say that Γ(*g*) consists of *every second point of every cycle of g.* From the definition of $\Gamma(q)$, we see that

$$
|\Gamma(g)^g \setminus \Gamma(g)| = |\Gamma(g)| = \sum_{i=1}^t \lfloor l_i/2 \rfloor.
$$

The next lemma shows that this quantity is an upper bound for $|\Gamma^g \setminus \Gamma|$ for an arbitrary subset Γ of Ω *.*

Lemma 2.1. ([\[7\]](#page-15-5), Lemma 2.1) Let G be a permutation group on a set Ω and suppose that $\Gamma \subseteq \Omega$. Then for each $g \in G$, $|\Gamma^g \setminus \Gamma| \leq \sum_{i=1}^t \lfloor l_i/2 \rfloor$ where l_i is the length of the *i*th cycle of *g and t is the number of non-trivial cycles of g in its disjoint cycle representation. This upper bound is attained for* $\Gamma = \Gamma(q)$ *defined above.*

Remark 2.2. Let $k > 1$ be a positive integer, and let f be a cycle of length pk for some odd prime integer p. We know that f^k is k cycles of length p. We consider two cases for *k*.

Case 1: *k* is odd. Thus $k = 2t + 1$, for some $t \ge 1$. So

move(f) =
$$
\lfloor \frac{kp}{2} \rfloor
$$
 = $\lfloor \frac{(2t+1)p}{2} \rfloor$ = $tp + \frac{p-1}{2}$,
move(f^k) = $k\lfloor \frac{p}{2} \rfloor$ = $(2t+1)\frac{p-1}{2}$ = move(f) - t.

Case 2: *k* is even. Thus $k = 2t$, for some $t \ge 1$. So

$$
\text{move}(f) = \lfloor \frac{kp}{2} \rfloor = \lfloor \frac{(2t)p}{2} \rfloor = tp,
$$

$$
\text{move}(f^k) = k\lfloor \frac{p}{2} \rfloor = (2t)\frac{p-1}{2} = \text{move}(f) - t.
$$

Therefore $\text{move}(f) - \text{move}(f^k) = \frac{k}{2}$ $\frac{1}{2}$.

Let *m* be a positive integer, and let *G* be a permutation group on a set Ω of size *n* with bounded movement equal to *m,* in which every non-identity element has the movement *m* or $m-2$. Then we have the following important result.

Proposition 2.3. *Let m be a positive integer, and let G be a permutation group on a set* Ω *of size n with bounded movement equal to m, in which every non-identity element has the movement m or m* − 2*. Further, suppose that* $1 \neq g \in G$ *and* $g = c_1 \cdots c_s$ *is the decomposition of g into its disjoint non-trivial cycles such that* $|c_i| = l_i$ for $1 \le i \le s$. *Then one of the following holds:*

(1) $l := l_1 = l_2 = \cdots = l_s$, where *l* is an odd prime or a power of 2;

(2) $s = 1$ *, such that q is one cycle of length* 25;

(3) $s = 1$, *such that g is one cycle of length* 4*p*, *where p is an odd prime*;

 (4) $s = 2$, *such that g has one cycle of length* 4 *and one cycle of length* 5;

- **(5)** $s = 2$, *such that g has one cycle of length* 20 *and one cycle of length* 5;
- **(6)** $s = 2$, *such that g has one cycle of length* 15 *and one cycle of length* 3;

(7) s = 2*, such that g has two cycles of length* 9;

(8) $s = 2$, *such that g has one cycle of length* 9 *and one cycle of length* 3;

(9) $s = 2$, *such that g has two cycles of length* 2*p*, *where p is an odd prime; (10) s* = 2*, such that g has one cycle of length* 2*, and and one cycle of length* 2*p where p is an odd prime; (11) s* = 3*, such that g has two cycles of length* 2 *and one cycle of length* 5; *(12) s* = 3*, such that g has two cycles of length* 3 *and one cycle of length* 4; *(13) s* = 3*, such that g has two cycles of length* 3 *and one cycle of length* 5; *(14) s* = 3*, such that g has two cycles of length* 3 *and one cycle of length* 12; (15) $s = 3$, *such that q has two cycles of length* 10 *and one cycle of length* 5; *(16) s* = 3*, such that g has one cycle of length* 10*, one cycle of length* 5 *and one cycle of length* 2; *(17) s* = 4*, such that g has two cycles of length* 2 *and two cycles of length* 3; *(18) s* = 4*, such that g has two cycles of length* 3 *and two cycles of length* 6; *(19) s* = 4*, such that g has one cycle of length* 6*, two cycles of length* 3 *and ane cycle of length* 2; *(20) g* has one cycle of length 4 and $(s - 1)$ -cycles of length a power of 2 for $s \geq 2$;

(21) *g* has two cycles of length 2 and $(s-2)$ -cycles of length a power of 2 for $s \geq 3$. *Moreover, the order of g is either* 6*,* 9*,* 10*,* 12*,* 15*,* 20*,* 25*, p,* 2*p,* 4*p or a power of* 2*.*

Proof. Let $1 \neq g \in G$, and let $\Gamma(g)$ be the subset consisting of every second point of every cycle of *g*. Then by Lemma [2.1,](#page-2-0) move $(g) = \sum_{i=1}^{s} \lfloor l_i/2 \rfloor$. For each $1 \leq i \leq s$, we consider the element $h := g^{l_i}$ of *G* and compare the movement of *h* with the movement of *g*. As above, we have

$$
\text{move}(h) \le \sum_{j \ne i} \lfloor \frac{l_j}{2} \rfloor < \sum_{j=1}^s \lfloor \frac{l_j}{2} \rfloor = \text{move}(g).
$$

We now consider the following two cases:

Case 1. Suppose move $(g) = m - 2$. Then $g^{l_t} = 1$, for all $1 \le t \le s$. Hence $l := l_1 =$ $l_2 = \cdots = l_s$. Suppose *l* is not a power of 2, and let *p* be an odd prime such that $l = pk$ for some positive integer k. Then by comparing the movement of g and its power g^k we obtain

$$
s\lfloor \frac{l}{2} \rfloor = \text{move}(g) = \text{move}(g^k) = sk\frac{p-1}{2}.
$$

It can be easily verified that $\frac{kp}{2}$ $\lfloor \frac{sp}{2} \rfloor = k(p-1)/2$ if and only if $k = 1$, and so $l = p$. **Case 2.** Let move $(g) = m$. Then move $(g^{l_t}) = m - 2$ or $g^{l_t} = 1$, for some $1 \le t \le s$. Assume that there exists a $1 \le t \le s$ such that move $(g^{l_t}) = m - 2$.

Since $g^{l_t} = c_1^{l_t} \cdots c_s^{l_t}$ and by Remark [2.2,](#page-2-1) $(l_t, l_i) = 1$, $1 \leq i \neq t \leq s$ and l_t is either 4, 5, or 2, 3. For the former case, g has just one cycle more than g^{l_t} . Then we can suppose that $l := l_1 = \cdots = l_{t-1} = l_{t+1} = \cdots = l_s$. Thus

$$
\text{move}(g) = (s-1)\lfloor \frac{l}{2} \rfloor + 2, \quad \text{move}(g^{l_t}) = (s-1)\lfloor \frac{l}{2} \rfloor.
$$

Since move (g) – move (g^l) = 2 and move (g^l) = move (c_t^l) , we have $(s-1) \lfloor \frac{l}{c} \rfloor$ $\frac{c}{2}$ = 2. Hence *g* is either one cycle of length 4 and one cycle of length 5*,* two cycles of length 3 and one cycle of length 4, two cycles of length 3 and one cycle of length 5 or two cycles of length 2 and one cycle of length 5*.*

For the latter, *g* has two cycles more than g^{l_t} . As above, we can conclude that *g* is either two cycles of length 2 and two cycles of length 3*,* two cycles of length 2 and one cycle of length 5*,* two cycles of length 3 and one cycle of length 4 or two cycles of length 3 and one cycle of length 5*.*

Now suppose that $g^{l_t} = 1$, for some $1 \le t \le s$. Then we must have two cases: $\mathbf{I}(\mathbf{I})$ $l_i | l_t$ for all $1 \leq i \leq s$ or $\mathbf{I}(\mathbf{I})$ $l := l_1 = l_2 = \cdots = l_s$.

In the case (I) we have $(l_t, l_i) \neq 1$. First we suppose that *p* be an odd prime and $l_t = pk$

for some positive integer $k > 1$. If $(p, k) \neq 1$, then g^k is a non-identity element of *G* and move(*g*) – move(g^k) = 0 or 2. Hence by Remark [2.2,](#page-2-1) move(*g*) – move(g^k) = $\frac{k}{2}$ $\frac{k}{2}$ $+e$, where $e \geq 0$ is an integer. Therefore, $\frac{k}{2}$ $\frac{k}{2}$ = 1 or 2. If *k* is even, then $\lfloor \frac{k}{2} \rfloor$ $\frac{k}{2}$] = $\frac{k}{2}$ $\frac{k}{2}$ implies that $k = 2$ or 4, which is a contradiction. Hence $\lfloor \frac{k}{2} \rfloor$ $\left[\frac{k}{2}\right] = \frac{k-1}{2} = 1$ or 2 implies that $k = 3$ or 5, respectively. If $k = 3$, then g is product of a cycle of length 3 and a cycle of length 9. If $k = 5$, then *g* is one cycle of length 25. Now we assume that $(p, k) = 1$ and *g* has *A* cycles of length *k*, *B* cycles of length *p* and $s - A - B$ cycles of length *pk*. Let c_s be the cycle of length *pk*. Since move (c_s) – move (c_s^k) = $\lfloor \frac{k}{2} \rfloor$ $\frac{k}{2}$], one has $\lfloor \frac{k}{2}$ $\frac{k}{2}$] = 1 or 2. If $\lfloor \frac{k}{2} \rfloor$ $\frac{n}{2}$ = 1, then $k = 2$ or 3. Thus $s - A - B = 1$ or 2.

Let $k = 2$. If $s - A - B = 1$, since move (g) – move $(g^k) = A + 1$ and $A \geq 0$, then $\text{move}(g) - \text{move}(g^k) = 2$, so $A = 1$. $\text{move}(g) - \text{move}(g^p) = 2$ implies that $p = 5, B = 1$ or $p = 3, B = 2$. Therefore *g* is either one cycle of length 2, one cycle of length 5 and one cycle of length 10 or one cycle of length 2, two cycles of length 3 and one cycle of length 6. If move (g) – move (g^p) = 0, then $B = 0$ and g is one cycle of length 2 and one cycle of length 2*p*. If $s - A - B = 2$, with similar discussion as above, we have $A = 0$, so $p = 3, B = 2, p = 5, B = 1$ or $B = 0, p > 3$. Hence *g* is either two cycles of length 3 and two cycles of length 6, one cycle of length 5 and two cycles of length 10 or two cycles of length 2*p*.

Let $k = 3$. So $p > 3$. If $s - A - B = 1$, then *q* is one cycle of length 3 and one cycle of length 15. If $s - A - B = 2$, then $p = 3$, a contradiction.

Let $k = 4$. Similarly we can conclude that g is either one cycle of length 5 and one cycle of length 20 or two cycles of length 3 and one cycle of length 12.

If $k = 5$, then $s - A - B = 1$. So $A = 0$, and $(B+1)(p-1) = 4$. By $(p, k) = 1$, we conclude that $B = 1, p = 3$. Therefore g is one cycle of length 3 and one cycle of length 15.

Now assume that $l_t = 2^a$. Thus $l_i = 2^{b_i}$ such that $b_i < a$. Since $g^{2^{b_i}}$ is non-identity, *g* is either $(s-2)$ -cycles of length a power of 2 and two cycles of length 2 for $s \geq 3$, or (*s* − 1)-cycles of length a power of 2 and one cycle of length 4 for *s* ≥ 2. Finally, we now suppose that $l_t = 2^a k$ such that $(2, k) = 1$ and *g* has *A* cycles of length 2^b , *B* cycles of length *k* and $s - A - B$ cycles of length 2^ak for some integers $b < a$. Then by comparing the movement of g and its power g^k we obtain

move
$$
(g) = A2^{b-1} + B\lfloor \frac{k}{2} \rfloor + (s - A - B)2^{a-1}k
$$
, move $(g^k) = A2^{b-1} + k(s - A - B)2^{a-1}$.

If $k \geq 6$, then move (g) – move $(g^k) = B\left(\frac{k}{2}\right)$ $\frac{\kappa}{2}$ implies that move (g) – move (g^k) > 2 or $B = 0$, move (g) – move $(g^{2a}) > 2$, which is a contradiction. Therefore $k = 3$ or 5. With similar discussion as above, we can conclude that *g* is either two cycles of length 2 and $(s-2)$ -cycles of length a power of 2 for $s \geq 3$, or $(s-1)$ -cycles of length a power of 2 and one cycle of length 4 for *s* ≥ 2*,* two cycles of length 6 and two cycles of length 3*,* one cycle of length 12 and two cycles of length 3*,* one cycle of length 20 and one cycle of length 5 or two cycles of length 10 and one cycle of length 5*.*

For the case **(II)**, suppose that *l* is not a power of 2*,* and let *p* be an odd prime such that $l = pk$ for some positive integer k. Then we obtain that

$$
\text{move}(g) = s \lfloor \frac{pk}{2} \rfloor, \quad \text{move}(g^k) = sk \frac{p-1}{2}, \text{ and } \text{move}(g^p) = sp \lfloor \frac{k}{2} \rfloor.
$$

It is straightforward to verify that move $(g^k) < m - 2$ for $k \geq 6$, a contradiction. Hence we may assume that $k \leq 5$.

If $k = 1$, then we have move (g) =move (g^k) and $l = p$.

If $k = 2$, then we have move (g) =move (g^p) = *sp* and move $(g^k) = s(p-1)$, this implies that $s = 2$ and $l = 2p$, that is, *q* is two cycles of length 2*p*.

If $k = 3$ and $p \neq 3$, then move $(q^p) < m - 2$, a contradiction. Thus $p = 3$. It follows that

 $\text{move}(g) = 4s$ and $\text{move}(g^k) = \text{move}(g^p) = 3s$. This implies that $s = 2$ and $l = 9$, that is, *g* is two cycles of length 9*.*

If $k = 4$, then we have move $(g) = \text{move}(g^p) = 2sp$ and $\text{move}(g^k) = 2s(p-1)$, thus we must have $s = 1$ and $l = 4p$, that is, g is one cycle of length 4p.

Finally, if $k = 5$, then move $(g^p) < m - 2$ for $p \ge 7$, a contradiction. For $p = 3$, we have $\text{move}(g) = 7s, \text{ move}(g^k) = 5s \text{ and } \text{move}(g^p) = 6s, \text{ where is a contradiction for every } s. \text{ For } s \geq 0.$ $p = 5$, we have move $(g) = 12s$ and move $(g^k) = \text{move}(g^p) = 10s$. It follows that $s = 1$ and $l = 25$, that is, *q* is one cycle of length 25.

Now suppose that $l = 2k$, for some positive integer k. If k be an odd integer, then $\text{move}(g) - \text{move}(g^2) = sk - (sk - s) = s$. This implies that $s = 2$. As g^k is k cycles of length 2, we have move (g) – move $(g^k) = k(s-1)$. So $s = k = 2$, a contradiction. Thus k is even. By comparing the movement of *g* and the movement of different powers of *g*, we obtain *g* is either *s* cycles of order $2^a, a \ge 2$, or one cycle of length 4*p* for some odd prime integer p .

Fein et al. proved the following theorem about the finite transitive groups.

Theorem 2.4. (Fein-Kantor-Schachers theorem)[\[5,](#page-15-6) Theorem 1] *Let G be a finite group acting transitively on a set* Ω *with* $|\Omega| \geq 2$. Then there exists an element of prime-power *order in G acting on* Ω *without fixed points.*

3. Examples

Throughout this section, we assume that *m* is a positive integer and *G* is a transitive permutation group on a set Ω of size *n* with bounded movement equal to *m*, such that *G* is not a 2-group but in which every non-identity element has the movement m or $m-2$. If for every $1 \neq g \in G$, move $(g) = m$, then *G* has constant movement which is not the purpose of this paper. So in the rest of this section we can assume that *G* has at least one element of movement $m-2$.

Lemma 3.1. *The group* $G = \mathbb{Z}_{4p}$ *acts transitively on a set of size* $n = 4p$ *, where* p *is an odd prime, and in this action every non-identity element has movement* $2p$ *or* $2p-2$ *.*

Proof. Let $1 \neq q \in G$. Then it can be easily shown that *q* has order 2, 4, *p*, 2*p* or 4*p*. Suppose that $\Gamma(g)$ consists of every second point of every cycle of *g*. If $o(g) = 2$, then *g* has 2*p* cycles of length 2 and hence $|\Gamma(g)^g \setminus \Gamma(g)| = 2p$, that is, move $(g) = 2p$. If $o(g) = 4$, then *g* has *p* cycles of length 4 and hence $|\Gamma(g)^g \setminus \Gamma(g)| = 2p$, that is, move $(g) = 2p$. If $o(g) = p$, then *g* has 4 cycles of length *p* and hence $|\Gamma(g)^g \setminus \Gamma(g)| = 4^{\frac{p-1}{2}} = 2p-2$, that is, move $(g) = 2p - 2$. Finally, if $o(g) = 2p$ or $4p$ then *g* has 2 cycles of length 2*p* and a cycle of length $4p$, respectively. As above it is easy to see that move $(q) = 2p$. It follows that every non-identity element of *G* has movement $2p$ or $2p-2$.

Lemma 3.2. *The group* $G = \mathbb{Z}_2 \times \mathbb{Z}_{2p}$ *acts transitively on a set of size* $n = 4p$ *, where* p *is an odd prime, and in this action every non-identity element has movement* $2p$ *or* $2p-2$ *.*

Proof. Let $1 \neq g \in G$. Then *g* is either 2 cycles of length 2*p*, 4 cycles of length *p* or 2*p* cycles of length 2. Suppose that Γ(*g*) consists of every second point of every cycle of *g*. Therefore $|\Gamma(g)^g \setminus \Gamma(g)| = 2p, 2p - 2$, or 2*p*, respectively. This implies that every non-identity element of *G* has movement $2p$ or $2p-2$.

Let *H* be cyclic of order *n* and $K = \langle k \rangle$ be cyclic of order *m* and suppose *r* is an integer such that $r^m \equiv 1 \pmod{n}$. For $i = 1, ..., m$, let $(k^i)\theta : H \to H$ be defined by $h^{(k^i)\theta} = h^{r^i}$ for *h* in *H*. It is straightforward to verify that each $(k^{i})\theta$ is an automorphism of *H*, and that θ is a homomorphism from K to Aut(H). Hence the semi-direct product $G = H \rtimes K$ (with respect to θ) exists and if $H = \langle h \rangle$, then *G* is given by the defining relations:

 $h^n = 1$, $k^m = 1$, $k^{-1}hk = h^r$, with $r^m \equiv 1 \pmod{n}$.

Here every element of *G* is uniquely expressible as $h^{i}k^{j}$, where $0 \leq i \leq n-1$, $0 \leq j \leq m-1$. Certain semi-direct products of this type (as a permutation group on a set Ω of size *n*) also provide examples of transitive permutation groups where every non-identity element has the movement *m* or $m-2$, and the bound in Lemma [1.1](#page-0-2) is not attained (as the following lemma shows). We note that, if $n = q$, a prime, then by Theorem 3.6.1 of [\[11\]](#page-15-7), this group *G* is a subgroup of the Frobenius group $AGL(1,q) = \mathbb{Z}_q \rtimes \mathbb{Z}_{q-1}$.

Lemma 3.3. *Let* $G = \mathbb{Z}_q \rtimes \mathbb{Z}_{q-1}$ *be the group defined as above of order* $q(q-1)$ *, where* $q := 4p + 1$ *is an odd prime. Then G acts transitively on a set of size* $n = q$ *and in this action every non-identity element has movement* $2p$ *or* $2p-2$ *.*

Proof. By the above statement, the group *G* is a Frobenius group and has up to permutational isomorphism a unique transitive representation of degree q on a set Ω . Let $g \in G$, $o(g) = q$. If $\Gamma(g)$ consists of every second point of the unique cycle of *g*, then $\text{move}(g) = \frac{q-1}{2} = 2p$. Since the order of each element of *G* is either 2, 4*, p, q, 2p* or 4*p*, so by Lemma [3.1,](#page-5-0) every non-identity element has movement $2p$ or $2p-2$.

Corollary 3.4. Let $G \leq AGL(1,q)$ be a semi-direct product $\mathbb{Z}_q \rtimes \mathbb{Z}_{2p}$, where $p, q = 4p+1$ *are odd primes and* \mathbb{Z}_{2p} generated by two cycles of length 2p. Then G acts transitively on a *set of size* $n = q$ *and in this action every non-identity element has movement* 2*p or* 2*p* − 2*.*

Lemma 3.5. Let *G* be a semi-direct product $\mathbb{Z}_7 \rtimes \mathbb{Z}_3$. Then *G* acts transitively on a set *of size n* = 21 *and in this action every non-identity element has movement* 7 *or* 9*.*

Proof. Let *G* be a semi-direct product $G = \mathbb{Z}_q \rtimes \mathbb{Z}_p$, where p, q are odd primes and $q = 2p + 1$. Then as an immediate consequence of the above statement of Lemma [3.3,](#page-6-0) *G* acts transitively on a set Ω of size pq whenever $p \mid (q-1)$. Let $1 \neq g \in G$. So the order of

g is either *p* or *q*. If $o(g) = q$, then *g* is *p* cycles of length *q*. Hence move $(g) = p\frac{q-1}{q}$ $\frac{1}{2} = p^2.$

If $o(g) = p$, then *g* is *q* cycles of length *p*. Hence move $(g) = q \frac{p-1}{q}$ $\frac{1}{2}$. These are hold if and only if $p = 3$, since every non-identity element has the movement *m* or $m - 2$. It follows that $m = 9$.

Lemma 3.6. Let G be a semi-direct product $\mathbb{Z}_q \rtimes \mathbb{Z}_p$, where $p, q = 4p + 1$ are prime integers. Then G acts transitively on a set of size $n = q$ and in this action every non*identity element has movement* $2p$ *or* $2p - 2$ *.*

Proof. Let *G* be a semi-direct product $G = \mathbb{Z}_q \rtimes \mathbb{Z}_p$ where, p, q are odd primes and $q = 4p + 1$, then *G* acts transitively on a set Ω of size *q*. Let $1 \neq g \in G$. Then the order of *g* is either *p* or *q*. If o(*g*) = *q*, then *g* is a cycle of length *q*. So move(*g*) = $\frac{q-1}{2}$ = 2*p*. If $\alpha(g) = p$, then *g* is a product of 4 disjoint cycles of length *p*. So move(*g*) = $4\frac{p-1}{2} = 2p-2$. Thus every non-identity element of *G* has movement $2p$ or $2p-2$.

Lemma 3.7. *The groups* \mathbb{Z}_{25} *and* $G = D_{50}$ *act transitively on a set of size* $n = 25$ *and in this action every non-identity element has movement* 12 *or* 10*.*

Proof. Let $M := \langle \alpha \rangle$ and $N := \langle \beta \rangle$ be two cyclic permutation groups on the set $\Omega = \{1, 2, \ldots, 25\}$, where $\alpha = (1 \ 2 \ \cdots \ 25)$ and $\beta = (1 \ 3)(4 \ 25)(5 \ 24) \cdots (14 \ 15)$ *.* It is straightforward to verify that $M \cong \mathbb{Z}_{25}$ and $D_{50} \cong \langle M, N \rangle$. Since $M \leq G$ acts transitively on a set Ω , so *G* is a transitive permutation group on a set Ω . Let $1 \neq g \in M$, then it is easy to see that *q* has order 5 or 25. Suppose that $\Gamma(q)$ consists of every second point of every cycle of *g*. If $o(g) = 25$ then *g* is a cycle of length 25 and hence $|\Gamma(g)^g \setminus \Gamma(g)| = 12$, that is, move $(g) = 12$. Now, if $o(g) = 5$ then *g* has 5 cycles of length 5 and hence $|\Gamma(g)^g \setminus \Gamma(g)| = 5\left|\frac{5}{2}\right|$ $\frac{5}{2}$] = 10, that is, move (g) = 10. Let $1 \neq g \in \langle M, N \rangle$, $g \notin M$ and $g \notin N$. Then *g* has 12 cycles of length 2 and similarly, move $(q) = 12$. This implies that every non-identity element of *G* has movement 12 or 10*.* **Lemma 3.8.** *The group* $G = D_{2n}$ *, where* $n = 2p$ *, acts transitively on a set of size* 4*p and in this action every non-identity element has movement* $2p$ *or* $2p-2$ *.*

Proof. Let $\mathbb{Z}_{2p} := \langle (1 \ 2 \ ... \ 2p)(1' \ 2' \ ... \ 2p') \rangle$ and $\mathbb{Z}_2 := \langle (1 \ 1')(2 \ 2')...(2p \ 2p') \rangle$ be two cyclic permutation groups on the set $\Omega = \{1, 2, ..., 2p, 1', 2', ..., 2p'\}$. Then it can be easily shown that the group $G = D_{4p} \cong \mathbb{Z}_{2p} \rtimes \mathbb{Z}_2$ acts transitively on a set Ω of size 4*p* and in this action every non-identity element of *G* has movement $2p$ or $2p - 2$.

Lemma 3.9. Let p be an odd prime. The Dicyclic group $\text{Dic}_p = \mathbb{Z}_p \rtimes \mathbb{Z}_4$ acts transitively *on a set of size* 4*p and in this action every non-identity element has movement* 2*p or* $2p - 2$.

Proof. Let *a* be a positive integer and *p* be an odd prime. Then the Frobenius group $G = \mathbb{Z}_p \rtimes \mathbb{Z}_{2^a}$ acts transitively on a set Ω of size $p2^a$. Every non-identity element of $g \in G$ has order 2, *p* or $2^{i} (1 \lt i \leq a)$. Hence move $(g) = p2^{a-1} \Big|_{\alpha}^{\alpha}$ $\frac{2}{2}$] = $p2^{a-1}$, $2^a \lfloor \frac{p}{2} \rfloor$ $\frac{p}{2}$] = 2^{*a*−1}*p*−2^{*a*−1} or $p2^{a-i} \left[\frac{2^i}{2} \right]$ $\frac{2}{2}$ = 2^{*a*-1}*p*. Therefore, *a* = 2 and *m* = 2*p*.

Lemma 3.10. *Let p be an odd prime. Then The group* $G = \mathbb{Z}_4 \times D_{2p}$ *acts transitively on a* set Ω *of size* $n = 4p$ *, and in this action every non-identity element has movement* 2*p or* $2p - 2$.

Proof. Let $1 \neq g \in G$. Then *g* is either one cycle of length 4*p*, two cycles of length 2*p*, four cycles of length *p*, *p* cycles of length 4, $2p - 2$ cycles of length 2 or $2p$ cycles of length 2. Therefore every non-identity element of *G* has movement $2p$ or $2p - 2$.

Lemma 3.11. Let p be an odd prime. Then The group $G = (\mathbb{Z}_2)^2 \times D_{2p}$ acts transitively *on a set* Ω *of size* $n = 4p$ *, and in this action every non-identity element has movement* 2*p or* $2p - 2$ *.*

Proof. Let $1 \neq g \in G$. Then *g* is either two cycles of length 2*p*, four cycles of length *p*, 2*p* − 2 cycles of length 2 or 2*p* cycles of length 2. Therefore every non-identity element of *G* has movement $2p$ or $2p-2$.

Lemma 3.12. Let *p* be an odd prime such that $4|p-1$. Then $G = \mathbb{Z}_4 \times \mathbb{Z}_p \rtimes \mathbb{Z}_4$ and $T = (\mathbb{Z}_2)^2 \times \mathbb{Z}_p \rtimes \mathbb{Z}_4$ act transitively on a set of size 4*p* and every non-identity element *has movement* $2p$ *or* $2p-2$ *.*

Proof. Since $4|p-1, \mathbb{Z}_p \rtimes \mathbb{Z}_4$ acts transitively on a set of size p. Hence *G* and *T* are transitive groups on 4*p* points. Let $1 \neq g \in G$. Then *g* is either 2*p* cycles of length 2, $(2p-2)$ cycles of length 2, *p* cycles of length 4, $(p-1)$ cycles of length 4, 2 cycles of length 2 and (*p* − 1) cycles of length 4, 4 cycles of length *p*, two cycles of length 2*p*, or one cycle of length 4*p*.

Every non-identity element $t \in T$ is either 2*p* cycles of length 2, $(2p-2)$ cycles of length 2, $(p-1)$ cycles of length 4, 2 cycles of length 2 and $(p-1)$ cycles of length 4, 4 cycles of length *p*, or two cycles of length 2*p*. Therefore every non-identity element of *G* and *T* has movement $2p$ or $2p-2$.

Let $N := \langle (i \ i') | i = 1, 2, ..., p \rangle$ be a permutation group of degree 2*p* on the set

$$
\Omega = \{1, 1^{'}, 2, 2^{'}, ..., p, p^{'}\}.
$$

Moreover, suppose that

$$
M := (\mathbb{Z}_2)^{p-1} = \langle z_i = (i \ i')(i+1 \ i'+1)|1 \leq i \leq p-1 \rangle,
$$

is the subgroup of *N* of even permutations in *N.* Set

$$
g = (12...p)(1'2'...p').
$$

Then *g* normalizes *M* and we consider the permutation group

$$
G:=M\rtimes\mathbb{Z}_p=\langle z_1,z_2,...,z_{p-1}\rangle\rtimes\langle g\rangle
$$

on Ω*.* Now $z_i^g = z_{i+1}$, for $1 \le i < p-1$, and $z_{p-1}^g = z_1z_2...z_{p-1}$. This group *G* provides an example of transitive permutation group in which every non-identity element has the movement *m* or $m-2$, and the bound in Lemma [1.1](#page-0-2) is attained.

As the group *M* is a 2-group, so by definition there is an element of movement equal to 2 in *M*. Also, the group $\mathbb{Z}_p = \langle g \rangle$ has constant movement equal to $p-1$. Now, if every non-identity element of *G* has movement $m = p - 1$ or $m - 2$, then $m = 4$ and $p = 5$. Consequently, the group $G = (\mathbb{Z}_2)^4 \rtimes \mathbb{Z}_5$ acts transitively on a set of size 10, and in this action every non-identity element has movement 4 or 2*.* Therefore, we can conclude the following lemma.

Lemma 3.13. Let G be a semi-direct product $G = (\mathbb{Z}_2)^4 \rtimes \mathbb{Z}_5$, as above. Then G acts *transitively on a set of size n* = 10 *and in this action every non-identity element has movement* 2 *or* 4*.*

Example 3.14. Let $G = (\mathbb{Z}_5)^2 \rtimes \mathbb{Z}_k$ acts transitively on a set Ω of size 25, where $k \in \{3, 5\}$ and in this action every non-identity element has movement 8 or 10.

 Ω

Proof. Let
$$
1 \neq g \in G
$$
. If $k = 3$, then g has order 3 or 5. Therefore, $move(g) = 8\lfloor \frac{5}{2} \rfloor = 8$ or $5\lfloor \frac{5}{2} \rfloor = 10$. If $k = 5$, then the order of g is 5 and $move(g) = 5\lfloor \frac{5}{2} \rfloor = 10$, or $4\lfloor \frac{5}{2} \rfloor = 8$. \Box

Example 3.15. In [\[4\]](#page-15-8) the transitive groups of degree up to 31 has been listed. So, we know that there are more transitive groups on 25 points. By using Gap [\[6\]](#page-15-9), we list the ones in which every non-identity element has movement *m* or *m* − 2 in Table [1.](#page-8-0)

Number of points $= 25$	
Group: $\mathbb{Z}_5 \rtimes \mathbf{D}_{10}$	$Momentum = 12$
Element Description	Movement of Elements
12 cycles of length 2	12
5 cycles of length 5	$\overline{10}$
Group: $(\mathbb{Z}_5)^2 \rtimes \mathbf{Q}_8$	$Momentum = 12$
Element Description	Movement of Elements
12 cycles of length 2	12
6 cycles of length 4	12
5 cycles of length 5	$\overline{10}$
$\rm \bf Group:~~({\mathbb Z}_5)^2\rtimes ({\mathbb Z}_4)^2$	$Momentum = 12$
Element Description	Movement of Elements
12 cycles of length 2	12
10 cycles of length 2	10
6 cycles of length 4	12
5 cycles of length 4	10
2 cycles of length 2 and 5 cycles of length 4	12
5 cycles of length 5	10
one cycle of length 5 and 2 cycles of length 10	12
one cycle of length 5 and one cycle of length 20	12
Group: $(\mathbb{Z}_5)^2 \rtimes \mathbb{Z}_2$	$Movement = 12$
Element Description	Movement of Elements
10 cycles of length 2	10
5 cycles of length 5	10
one cycle of length 5 and 2 cycles of length 10	12
Group: $(\mathbb{Z}_5)^2 \rtimes \mathbb{Z}_4$	$Momentum = 12$
Element Description	Movement of Elements
12 cycles of length 2	12
6 cycles of length 4	12
5 cycles of length 5	10
Group: $(\mathbb{Z}_5)^2 \rtimes \mathbb{Z}_8$	$Momentum = 12$
Element Description	Movement of Elements
12 cycles of length 2	12
6 cycles of length 4	12
5 cycles of length 5	10
3 cycles of length 8	12

Table 1. Transitive action on 25 points

Example 3.16. Let $G \in \{ \mathbb{Z}_2 \times S_4, \mathbb{Z}_2 \times A_4 \}$. If *G* acts transitively on a set of size $n = 8$, then every non-identity element has movement 4 or 2.

Proof. Let $1 \neq g \in G$. If $G = \mathbb{Z}_2 \times S_4$, then *g* is either a product of 4 disjoint cycles of length 2 or 2 disjoint cycles of length 2, a product of 2 disjoint cycles of length 3, a product of 2 disjoint cycles of length 4, a product of two disjoint cycles, one cycle of length 2 and one cycle of length 6. If $G = \mathbb{Z}_2 \times A_4$, then g is either a product of 4 disjoint cycles of length 2, a product of 2 disjoint cycles of length 3, a product of two disjoint cycles, one cycle of length 2 and one cycle of length 6. Therefore, every non-identity element of *G* has movement 4 or 2.

Example 3.17. Let G be a transitive group on 8 points which every non-identity element has movement *m* or $m-2$. By using [\[4\]](#page-15-8) and Gap [\[6\]](#page-15-9), all these groups and their elements are described in Table [2.](#page-9-0)

Number of points $= 8$		
Group: S_4	Movement $= 4$	
Element Description	Movement of Elements	
4 cycles of length 2	4	
2 cycles of length 3	$\overline{2}$	
2 cycles of length 4	4	
Group: $SL_2(3)$	$Movement = 4$	
Element Description	Movement of Elements	
4 cycles of length 2	4	
2 cycles of length 3	$\overline{2}$	
2 cycles of length 4	4	
one cycle of length 2 and one cycle of length 6		
Group: $(\mathbb{Z}_2)^3 \rtimes \mathbf{A}_4$	$Movement = 4$	
Element Description	Movement of Elements	
4 cycles of length 2	$\overline{4}$	
2 cycles of length 2	$\overline{2}$	
2 cycle of length 3	$\overline{2}$	
2 cycles of length 4	$\overline{4}$	
one cycle of length 2 and one cycle of length 6	4	
Group: $(\mathbb{Z}_2)^2 \rtimes \mathbf{S}_4$	$Movement = 4$	
Element Description	Movement of Elements	
4 cycles of length 2	4	
2 cycles of length 2	$\overline{2}$	
2 cycle of length 3	$\overline{2}$	

Table 2. Transitive action on 8 points

Example 3.18. From [\[4\]](#page-15-8), all transitive groups on 12 points were determined. By using Gap $[6]$, we list the cases in which every non-identity element has movement 6 or 4 In the Table [3.](#page-10-0)

Number of points $= 12$	
Group: S_4	$Movement = 6$
Element Description	Movement of Elements
4 cycles of length 2	$\overline{4}$
6 cycles of length 2	6
4 cycles of length 3	$\overline{4}$
2 cycles of length 2 and 2 cycles of length 4	6
	$Momentum = 6$
Group: A_4	Movement of Elements
Element Description	
6 cycles of length 2	6
4 cycles of length 3	4
Group: S_5	$Momentum = 6$
Element Description	Movement of Elements
6 cycle of length 2	6
4 cycles of length 2	4
4 cycles of length 3	$\overline{4}$
2 cycle of length 2 and 2 cycles of length 4	6
2 cycles of length 5	$\overline{4}$
2 cycles of length 6	6
Group: A ₅	$\overline{\mathbf{M}}$ ovement= 6
Element Description	Movement of Elements
6 cycle of length 2	6
4 cycles of length 3	$\overline{4}$
2 cycles of length 5	$\overline{4}$
Group: $(\mathbb{Z}_4)^2 \rtimes \mathbf{S}_3$	$Momentum = 6$
Element Description	Movement of Elements
4 cycles of length 2	4
4 cycle of length 3	$\overline{4}$
2 cycles of length 4	$\overline{4}$
2 cycles of length 2 and 2 cycles of length 4	6
one cycle of length 4 and one cycle of length 8	6
	$Momentum = 6$
Group: $(\mathbb{Z}_2)^2 \rtimes \mathbf{S}_4$ Element Description	Movement of Elements
6 cycles of length 2	6
4 cycles of length 2	$\overline{4}$
4 cycle of length 3	$\overline{4}$
2 cycles of length 2 and 2 cycles of length 4	6
Group: $\mathbb{Z}_2 \times \mathbf{S}_4$	$Movement = 6$
Element Description	Movement of Elements
6 cycles of length 2	6
4 cycles of length 2	
	$\overline{4}$
$\overline{4}$ cycle of length 3	$\overline{4}$
2 cycles of length 2 and 2 cycles of length 4	6
2 cycle of length $6\,$	6
6 cycles of length 2	6
4 cycles of length 2	$\overline{4}$
4 cycle of length 3	$\overline{4}$
2 cycles of length 2 and 2 cycles of length 4	6
2 cycle of length 4	4
2 cycle of length 5	$\overline{4}$
2 cycle of length 6	6
one cycle of length 2 and one cycle of length 10	6
Group: $\mathbb{Z}_2 \times \mathbf{A}_4$	$Momentum=6$
Element Description	Movement of Elements
6 cycles of length 2	6
4 cycles of length 2	$\overline{4}$
4 cycle of length 3	$\overline{4}$
2 cycle of length 6	6
Group: $\mathbb{Z}_2 \times \mathbf{A}_5$	$Momentum=6$
Element Description	Movement of Elements
6 cycles of length 2	6
4 cycles of length 2	$\overline{4}$
4 cycle of length 3	$\overline{4}$
2 cycle of length 5	4
2 cycle of length 6	6

Table 3. Transitive action on 12 points

Example 3.19. From [\[4\]](#page-15-8), all transitive groups on 14*,* 16 and 18 points were determined. By using Gap[\[6\]](#page-15-9), we list the cases in which every non-identity element has movement *m* or $m-2$ in the Tables [4,](#page-11-0) [5](#page-11-1) and [6,](#page-11-2) respectively.

Number of points $= 14$	
Group: $\text{A}\Gamma\text{L}_1(\mathbb{F}_8)$	Movement= 6
Element Description	Movement of Elements
4 cycles of length 2	
4 cycles of length 3	
2 cycles of length 7	6
one cycle of length 2 and two cycles of length 3 and	
one cycle of length 6	
Group: $(\mathbb{Z}_2)^3 \rtimes \mathbb{Z}_7 = \mathbb{F}_8$	$Movement = 6$
Element Description	Movement of Elements
4 cycles of length 2	
2 cycles of length 7	

Table 4. Transitive action on 14 points

Table 6. Transitive action on 18 points

Number of points $= 18$	
Group: $S_3 \times A_5$	$Momentum = 8$
Element Description	Movement of Elements
8 cycles of length 2	8
6 cycles of length 2	6
6 cycles of length 3	6
3 cycles of length 5	6
2 cycles of length 3 and 2 cycles of length 6	8
One cycle of length 2 and One cycle of length 5 and	
One cycle of length 10	8
One cycle of length 3 and One cycle of length 15	8
Group: $PSL(2,17)$	$Movement = 8$
Element Description	Movement of Elements
8 cycles of length 2	8
6 cycles of length 3	6
4 cycles of length 4	8
2 cycles of length 8	8
2 cycles of length 9	8
One cycle of length 17	8

Example 3.20. By Lemma [3.9,](#page-7-0) [\[4\]](#page-15-8) and Gap [\[6\]](#page-15-9), we can describe all transitive group on 20 points which every non-identity element has movement m or $m-2$ in the Table [7.](#page-12-0)

Number of points $= 20$	
Group: $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$	$Movement = 10$
Element Description	Movement of Elements
10 cycles of length 2	10
5 cycles of length 4	10
4 cycles of length 5	8
Group: $\mathbb{Z}_2 \times \mathbf{F}_5$ ($\mathbf{F}_5 := \mathbb{Z}_5 \rtimes \mathbb{Z}_4$)	$Momentum = 10$
Element Description	Movement of Elements
10 cycles of length 2	10
8 cycles of length 2	8
5 cycles of length 4	10
$\overline{4}$ cycles of length 5	8
2 cycles of length 10	10
Group: $\mathbb{Z}_4 \times \mathbf{F}_5$ ($\mathbf{F}_5 := \mathbb{Z}_5 \rtimes \mathbb{Z}_4$)	$Movement = 10$
Element Description	Movement of Elements
10 cycles of length 2	10
8 cycles of length 2	8
5 cycles of length 4	10
4 cycles of length 4	8
2 cycles of length 2 and 4 cycles of length 4	10
4 cycles of length 5	8
2 cycles of length 10	10
one cycle of length 20	10
Group: $(\overline{\mathbb{Z}}_2)^4 \rtimes \mathbf{D}_{10}$	$Movement = 10$
Element Description	Movement of Elements
8 cycles of length 2	8
2 cycles of length 2 and 4 cycles of length 4	10

Table 7. Transitive action on 20 points

4. Proof of Theorem [1.2](#page-1-0)

Now, we are ready to complete the proof of Theorem [1.2:](#page-1-0)

Let *G*, Ω and *m* be as in Theorem [1.2,](#page-1-0) with $n := |\Omega|$ and move(*G*) = *m*. We consider the following two possibilities:

Case 1: *n* is the maximum possible degree as in Lemma [1.1.](#page-0-2)

A transitive permutation group of degree $3m$ (which is the bound of Lemma [1.1,](#page-0-2) for $p = 3$) with bounded movement equal to *m*, were classified in [\[8\]](#page-15-10) and the examples are as follows: (a) $G := S_3, m = 1;$

(b) $G := A_4$ or A_5 , $m = 2$;

(c) *G* is a 3-group of exponent 3*.*

It can be easily verified that the movement of all of these groups are not $m \text{ or } m-2$, which is a contradiction.

But for $p \geq 5$, by Theorem 1.2 of [\[7\]](#page-15-5), one of the following holds:

 $(1) |\Omega| = p$, $m = (p-1)/2$ and $G := \mathbb{Z}_p \rtimes \mathbb{Z}_{2^a}$, where $2^a |(p-1)$ for some $a \geq 1$.

 $(2) |\Omega| = 2^{s}p$, $m = 2^{s-1}(p-1)$, $1 < 2^{s} < p$, and $G := K \rtimes P$ with *K* a 2-group and $P = \mathbb{Z}_p$ is fixed point free on Ω ; *K* has *p*-orbits of length 2^s , and each element of *K* moves at most $2^{s}(p-1)$ points of Ω .

(3) *G* is a *p*-group of exponent bounded in terms of *p* only.

By Theorem 1.1 of $[3]$, all groups in part (1) and part (3) are examples in which every non-identity element has the same movement equal to *m*. In part (2), suppose that each element of *K* moves at least $2^{s}k$ points of Ω , where $k \leq p-1$ is an integer. Now, if every non-identity element of *G* has movement $m = 2^{s-1}(p-1)$ or $m-2 = 2^{s-1}k$, then $2^{s-1}(p-1-k) = 2$. Hence $s \leq 2$. According to Lemma [3.13,](#page-8-1) we have $G = (\mathbb{Z}_2)^4 \rtimes \mathbb{Z}_5$ for $s = 1$. If $s = 2$, then we have $k = p - 2$ but we do not know any examples.

Case 2: *n* is not the maximum possible degree as in Lemma [1.1.](#page-0-2)

Let $1 \neq g \in G$. Then by Proposition [2.3,](#page-2-2) *g* in its disjoint cycle representation has either one cycle of length 4*p,* one cycle of length 25*,* one cycle of length 4 and one cycle of length 5*,* two cycles of length 9*,* one cycle of length 20 and one cycle of length 5*,* two cycles of length 2*p,* one cycle of length 2 and one cycle of length 2*p,* two cycles of length 2 and one cycle of length 5*,* two cycles of length 3 and one cycle of length 4*,* two cycles of length 3 and one cycle of length 5*,* two cycles of length 3 and one cycle of length 12*,* two cycles of length 10 and one cycle of length 5*,* two cycles of length 2 and two cycles of length 3*,* two cycles of length 3 and two cycles of length 6*,* one cycle of length 15 and one cycle of length 3, the disjoint product of three cycles, one cycle of length 2, one cycle of length 5 and one cycle of length 10, the disjoint product of four cycles, one cycle of length 2, two cycles of length 3 and one cycle of length 6, (*s* − 1)−cycles of length a power of 2 and one cycle of length 4 for $s > 2$, $(s - 2)$ –cycles of length a power of 2 and two cycles of length 2 for $s \geq 3$, multiple cycles of length q (for some prime q) or multiple cycles of length a power of 2, say g_{4p} , g_{25} , $g_{4,5}$, $g_{9,9}$, $g_{20,5}$, $g_{2p,2p}$, $g_{2,2p}$, $g_{2,2,5}$, $g_{3,3,4}$, $g_{3,3,5}$, $g_{3,3,12}$, $g_{10,10,5}$, $g_{2,3,2,3}, g_{3,6,3,6}, g_{3,15}, g_{2,5,10}, g_{3,2,3,6}, g_{2^a,4}^*, g_{2^a,2,2}^*, g_q^*, g_{2^a}^*$, respectively.

Let *G* be a transitive permutation group on a set Ω and move $(G) = m$. By definition of move (G) and Proposition [2.3,](#page-2-2) we have,

$$
m \in \{2, 4, 6, 8, 12, 2p, p+1, 2+(s-1)2^{a-1}, 2+(s-2)2^{a-1}, \frac{s(q-1)}{2}, s2^{a-1}\}.
$$

First suppose that $m = 12$. Then $g_{25}, g_{20,5}, g_{10,10,5}, g_3^*(s = 12), g_2^*(s = 12)$ or $g_{4,2,2}^*(s = 7)$ could belong to *G*. If $g_3^*(s = 12) \in G$, sine *G* is transitive, then *G* must have an element whose form is a cycle of length 36, say g' , hence move $(g') = 18$, which is a contradiction. Hence from Lemma [1.1,](#page-0-2) $\vert \Omega \vert \leq 2 \times 12 \times 5/(5-1)\vert = 30$. Therefore, by Lemma [3.7](#page-6-1) and Example [3.15](#page-8-2) $G = \mathbb{Z}_{25}$, D_{50} or G is one of groups listed in Table [1.](#page-8-0)

Let $m = 10$. Then $g_{20}, g_2 * (s = 10), g_3 * (s = 10), g_{10,10}, g_4^*(s = 5), g_{4,2,2}^*(s = 6)$ could belong to *G*. Thus by Lemma [1.1](#page-0-2) | Ω | is at most 30. Therefore, by Lemmas [3.1,](#page-5-0) [3.8,](#page-7-1) and [3.10,](#page-7-2) Examples [3.14](#page-8-3) and [3.20](#page-11-3) *G* is \mathbb{Z}_{20} , D_{2n} , $n = 10$, $\mathbb{Z}_{4} \times D_{10}$, $(\mathbb{Z}_{5})^{2} \rtimes \mathbb{Z}_{k}$ where $k = 3, 5$ and one of groups listed in Table [7,](#page-12-0) respectively.

Let $m = 8$. Then $g_{9,9}, g_{3,3,12}, g_{3,6,3,6}, g_{3,15}, g_{2,5,10}, g_{2,14}$ could belong to *G*. Sine the least odd prime dividing |*G*| is either 3,5 or 7, by lemma [1.1,](#page-0-2) $|\Omega|$ is at most 24. Thus by [\[4\]](#page-15-8) and $[6]$, G is one of the groups listed in Tables [5](#page-11-1) and [6.](#page-11-2)

Let $m = 6$. Then $g_{6,6}, g_{12}, g_{2,10}, g_{3,2,3,6}, g_{2,2,4,4}, g_{4,8}, g_2^*(s=6), g_7^*(s=2), g_{13}^*(s=1)$ could belong to *G*. Hence *G* is a transitive group on 12*,* 13 or 14 points and the least odd prime dividing $|G|$ is 3 or 5. So by lemma [1.1,](#page-0-2) $|\Omega| \le 18$. Therefore by Lemmas [3.1](#page-5-0) - [3.10](#page-7-2) and Examples [3.18](#page-9-1) and [3.19,](#page-10-1) *G* is \mathbb{Z}_{12} , $\mathbb{Z}_{13} \rtimes \mathbb{Z}_{12}$, $\mathbb{Z}_{13} \rtimes \mathbb{Z}_6$, $\mathbb{Z}_{13} \rtimes \mathbb{Z}_3$, D_{12} , $\mathbb{Z}_4 \times D_6$ or one of the groups listed in Tables [3](#page-10-0) and [4.](#page-11-0)

Let $m = 5$. Then $g_{9,3} \in G$ and $\vert \Omega \vert \leq 15$. However, by [\[4\]](#page-15-8) there is not such a group *G*.

Let $m = 4$. Then $g_{4,4}, g_{4,5}, g_{2,6}, g_{2,2,5}, g_{3,3,4}, g_{3,3,5}, g_{2,2,3,3}, g_{4,2,2}^*(s=3), g_2^*(s=4), g_5^*(s=2)$ could belong to *G*. If $g_{4,5}, g_{2,2,5} \in G$, since *G* is transitive, then by Theorem [2.4](#page-5-1) *G* must have an element whose form is a cycle of length 9, say \hat{g} , hence move $(\hat{g}^3) = 3$, which is a contradiction. Therefore *G* is either transitive on 10 points and by Lemma [3.13,](#page-8-1) $G = (\mathbb{Z}_2)^4 \rtimes \mathbb{Z}_5$, or *G* is transitive on 8 points and *G* is one of the groups in Examples [3.16](#page-9-2) and [3.17.](#page-9-3)

If $m = s2^k$ ($s \geq 1$) and *G* consists precisely of the elements of the form $g_{2^a}^*$, then *G* is a 2-group, which is not included in our classification. Since every non-identity element of *G* has the movement *m* or $m-2$, *s* must be a prime integer and $| \Omega | = 2^{k+1} s$. Therefore by case 1 (2), $k = 0, s = 5$ and $G = (\mathbb{Z}_2)^4 \rtimes \mathbb{Z}_5$.

Let $m = \frac{s(q-1)}{2}$ $\frac{(-1)^{n}}{2}$ and $g_q^* \in G$, then *G* is transitive on *sq* points. Let *G* is not a *q*group. If *G* has an element whose form is a cycle of length *sq*, say g' , then $(g')^q$ is a product of *q* disjoint cycles of length *s*, and move $((g')^q) = q \frac{1}{q}$ $\frac{1}{2}$. If *s* is even, then $|\text{move}(g') - \text{move}((g')^q)| = \frac{s}{2}$ $\frac{3}{2}$. Thus $s = 4$ and by Lemma 4.7 of [\[3\]](#page-15-1), *n* is the maximum possible degree and the groups satisfying in this case are those mentioned in Case 1. If *s* is odd, then $\vert \text{move}(g') - \text{move}((g')^q) \vert = \vert \text{move}(g') - \text{move}((g')^s) \vert = 2$ implies that $s = p = 5$, which is a contradiction. Let $g' \notin G$ and $g_q^*, g_s^* \in G$. Then by Lemmas [3.5](#page-6-2) and [3.6,](#page-6-3)

 $G = \mathbb{Z}_7 \rtimes \mathbb{Z}_3$ and $\mathbb{Z}_q \rtimes \mathbb{Z}_p$ where $p, q = 4p + 1$ are prime integers.

Let $m = 2p$. If $g_{4p} \in G$, then with this guess that *G* is a cyclic group we have $G = \mathbb{Z}_{4p}$. Otherwise, *G* must consists precisely of those elements whose forms are $g_{2p,2p}, g_p^*(s=4)$ and $g_2^*(s=2p)$ and it also has a subgroup isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_p$. Hence by Lemmas [3.10](#page-7-2) and [3.12](#page-7-3) $G = \mathbb{Z}_4 \times D_{2p}$ and $\mathbb{Z}_4 \times \mathbb{Z}_p \rtimes \mathbb{Z}_4$, respectively.

If $g_q^* \in G$, where $q = 4p + 1$ is prime, then *G* is transitive on $4p + 1$ points and by Lemma [3.3,](#page-6-0) Corollary [3.4](#page-6-4) and Lemma [3.6,](#page-6-3) we have $G = \mathbb{Z}_q \rtimes \mathbb{Z}_{q-1}, \mathbb{Z}_q \rtimes \mathbb{Z}_{2p}, \mathbb{Z}_q \rtimes \mathbb{Z}_p$ (4 | $p-1$), respectively. If $g_{4p}, g_{4p+1} \notin G$, then $g_{2p,2p} \in G$ and by Lemmas [3.2,](#page-5-2) [3.8,](#page-7-1) [3.9,](#page-7-0) [3.11](#page-7-4) and [3.12](#page-7-3) $G = \mathbb{Z}_2 \times \mathbb{Z}_{2p}$, $D_{2n} (n = 2p)$, $\mathbb{Z}_p \rtimes \mathbb{Z}_4$, $(\mathbb{Z}_2)^2 \times D_{2p}$ and $(\mathbb{Z}_2)^2 \times \mathbb{Z}_p \rtimes \mathbb{Z}_4$ $(4 | p-1)$, respectively. Now suppose that $g_{4p}, g_{4p+1}, g_{2p,2p} \notin G$. Then $g_p^*(s=4), g_2^*(s=2p), g_{2^2}(s=p) \in G$, and by Lemma [3.9,](#page-7-0) $G = \mathbb{Z}_q \rtimes \mathbb{Z}_4$.

If $m = p + 1$, where p is prime, then $|\Omega| = 2p + 2$ or $2p + 3$. By Theorem [2.4,](#page-5-1) there exists an element $g \in G$ of prime-power order without fixed points. First suppose that $|\Omega| = 2p + 2$. From Proposition [2.3,](#page-2-2) we have $o(g) = 9,25$ or q, where q is an odd prime. Therefore $2p + 2 = 18,25$ or *sq* for some $s > 0$, respectively. Since *p* is prime, $2p + 2 \neq 18,25.$ Hence $2p + 2 = sq$ and move $(g) = s\frac{q-1}{q}$ $\frac{1}{2}$. As *s* > 0, move(*g*) \neq *p* + 1. So

 $s\frac{q-1}{\Omega}$ $\frac{1}{2} = p - 1$. This implies that $s = 4$. Hence $p = 5, q = 3$ and *G* is one of the groups listed in Table [3,](#page-10-0) or from the previous case, we have $G = \mathbb{Z}_{4q}$, $\mathbb{Z}_q \rtimes \mathbb{Z}_4$ or D_{2n} , where $n = 2q$. Suppose now that $\vert \Omega \vert = 2p + 3$. By the same argument there exists an element $q \in G$ of prime-power order without fixed points. So $o(q) = 9,25$ or *q* and $2p + 3 = 18,25$ or *sq* for some $s > 0$. Clearly, $2p + 3 \neq 18$. if $2p + 3 = 25$, then $m = 12$ and the argument given above for $m = 12$ implies that $G = \mathbb{Z}_{25}$, D_{50} or one of the groups in Table [3.](#page-10-0) If $2p + 3 = sq$, where *q* is an odd prime, then move(*g*) = $s\frac{q-1}{q}$ $\frac{1}{2}$. If move $(g) = p + 1$, then $s = 1$ and $o(g) = 2p + 3$ is prime. However, by **case 1** (1) every non-identity element has the same movement equal to $p + 1$. Therefore move $(g) = s \frac{q-1}{q}$ $\frac{1}{2} = p - 1$. This implies that $s = 5$. Since $4 | 2p + 2$, we can assume $q - 1 = 2^a$ $(a \ge 2)$ and *G* has an element *g* as a product of *k* disjoint cycles of length $q-1$. So $k = \frac{5q-1}{1}$ $\frac{5q-1}{q-1} = 5 + \frac{4}{q-1}$ $\frac{1}{q-1}$. This implies that $q-1 \mid 4$. Therefore $q=5$ and G is a transitive group on 25 points, which is classified in the case $m = 12$.

Let $m = 2 + (s - 1)2^{a-1}$ and $g_{2^a,4}^* \in G$ ($s > 1, a > 2$). Since *G* is not a 2-group, there is a prime number *p* and an element $h \in G$ such that $p|o(h)$. By Proposition [2.3,](#page-2-2) *h* can be one of the elements $g_{2p,2p}, g_{2,2p}$ or g_p^* . Since we have already checked the assumption that move $(h) = m$, we only deal with move $(h) = m - 2$. If $h = g_{2n,2p}, g_{2,2p}$ then $m - \text{move}(h^2) = 4$, which is a contradiction. Thus let *h* be the product of *A* disjoint cycles of length *p*. So move $(h) = A\frac{p-1}{2} = m - 2 = (s - 1)2^{a-1}$. By Theorem [2.4,](#page-5-1) we have $Ap \leq |\Omega| = 4 + (s-1)2^a$. If $Ap = |\Omega| = 4 + (s-1)2^a$, then

$$
Ap = |\Omega| = 4 + (s - 1)2^a = 4 + A(p - 1) \implies A = 4 \implies m = 2p.
$$

If $Ap < |\Omega| = 4 + (s - 1)2^a$, then $A < 4$.

Let $A = 1$, then $|\Omega| = p + 3, m = \frac{p+3}{2}$ $\frac{+3}{2}$ and $G = \langle g_p, g_{2^a,4}^* \rangle$, where $2^a | p - 1$. Now let *A* = 2. Then $|\Omega| = 2p + 2, m = p + 1$, which has already been discussed. If *A* = 3, then $|\Omega| = 3p + 1, m = \frac{3p+1}{2}$ $\frac{p+1}{2}$ and $G = \langle g_p^*(s=3), g_{2^a,4}^*\rangle$, where $2^a|p-1, 3|s-1$.

Let $m = 2 + (s - 2)2^{a-1}$ and $g_{2^a,2,2}^* \in G$ $(s > 2, a > 1)$. A similar argument to the above paragraph implies that $|\Omega| = 4p, m = 2p$, or $|\Omega| < 4p$. The former case has been checked. In the latter case, we have $Ap < |\Omega| = 4 + (s - 2)2^a = 4 + A(p - 1)$. therefore $A < 4$. If $A = 1$, then $|\Omega| = p + 3, m = \frac{p+3}{2}$ $\frac{13}{2}$ and $G = \langle g_p, g_{2^a,2,2}^* \rangle$, where $2^a | p - 1$. If $A = 2$, then $|\Omega| = 2p + 2, m = p + 1, G = \langle g_{p,p}, g_{2^a,2,2}^* \rangle$ and $g_{2p} \notin G$, Finally, if $A = 3$, then

 $|\Omega| = 3p + 1, m = \frac{3p+1}{2}$ $\frac{p+1}{2}$, $G = \langle g_p^*(s=3), g_{2^a,2,2}^*\rangle$ where $2^a|p-1,3|s-2$ and $g_{3p} \notin G$. This completes the proof of Theorem [1.2.](#page-1-0)

References

- [1] M. Alaeiyan and B. Askari, *Transitive permutation groups with elements of movement m or m-1*, Math. Reports **14** (64), 4 , 317-324, 2012.
- [2] M. Alaeiyan and M. Rezaei, *Intransitive permutation groups with bounded movement having maximum degree*, Math. Rep. **13** (63), 109-115, 2011.
- [3] M. Alaeiyan and H. Tavallaee, *Permutation groups with the same movement*, Carpathian J. Math., 147-156, 2009.
- [4] T. Dokchitser, *Transitive groups of degree up to 31*, accessed on 27 july 2022. URL: GroupNames.org.https://people.maths.bris.ac.uk/ matyd/Group-Names/T31.htmltml.
- [5] B. Fein, W. M. Kantor, and M. Schacher, *Relative brauer groups ii*, J. reine angew. Math **328**, 39-57, 1981.
- [6] G. Group, *Gap-groups, algorithms, and programming*, version 4.11. 1, 2021. URL: https://www. gap-system. org.
- [7] A. Hassani, M. Alaeiyan(Khayaty), E. Khukhro, and C. E. Praeger, *Transitive permutation groups with bounded movement having maximal degree*, J. Algebra **214** (1), 317-337, 1999.
- [8] A. Mann and C. E. Praeger, *Transitive permutation groups of minimal movement*, J. Algebra **181**(3), 903-911, 1996.
- [9] C. E. Praeger, *On permutation groups with bounded movement*, J. Algebra **144** (2), 436-442, 1991.
- [10] J. J. Rotman, *An introduction to the theory of groups*, Number 3rd ed. Allyn and Bacon, Boston, 1984.
- [11] T. Tsuzuku, *Finite groups and finite geometries*, volume 78, Cambridge University Press, 1982.