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Abstract

This research paper introduces and establishes the concept of compact operators in the
context of Riesz spaces, specifically considering statistical order convergence. We define
statistical order compact operators as operators that map statistical order bounded se-
quences to sequences with statistical order convergent subsequences. Additionally, we
define statistical M-weakly compact operators. By utilizing these non-topological con-
cepts, we derive some new results pertaining to these operators.
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1. Introduction

Fast [11] and Steinhaus [19] independently introduced the concept of statistical con-
vergence in 1951. Thereafter, it garnered the attention of numerous mathematicians and
became the focus of their studies (cf. [3,4,11,14,19]). On the other hand, Riesz initially
introduced the concept of vector lattice (or Riesz space) in 1921 [18], which has found
numerous applications in diverse disciplines such as economics, operator theory, and mea-
sure theory (cf. [1-6,13,22]). Convergences in Riesz spaces, such as order convergence
and statistical order convergence, are not topological in general (cf. [12, Thm.2]). How-
ever, certain types of continuous operators, such as statistical order continuous operators,
have been defined with respect to order convergence (cf. [6,8,16]). The aim of this study
is to introduce the notion of statistically compact operators on Riesz spaces, as there is
currently no comprehensive study of compact operators in the theory of Riesz space with
respect to statistical convergence.

Recall that an ordered vector space is referred to as a Riesz space if the infimum and
supremum of all pairs = and y exist. In this paper, unless stated otherwise, Riesz spaces
are denoted by the letters F and F'. In Riesz spaces, a sequence (z,,) is called;

- order bounded if |z,| < u holds for each n € N and for some positive elements
0 <.

- order Cauchy sequence if the inequality |z, — x| < gy, holds for all n, k € N and
for some sequences g, | 6.
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- order convergent to a vector x if the inequality |z, — x| < ¢, holds for a sequence
gn 1 0, denoted as z,, = .

Throughout this paper, operators are assumed to be linear, and vector spaces are consid-
ered real. The notation L(F, F') represents the collection of all operators from E to F.
Let T' € L(E, F) be an operator. The following definitions are used:

(a) T is termed sequentially order compact if the image of an order bounded sequence
possesses an order convergent subsequence.

(b) T is referred to as an order bounded operator if the range of each order bounded
set is order bounded.

(c) If zp S ¢ implies Tz, — Tz, then T is called a o-order continuous operator.

(d) T is called an order continuous operator if Tz = T holds for every z, — .

The collection L(E, F'), denoting all order bounded operators between E and F', forms
a vector space. Moreover, it follows from [2, Thm.1.18] that £;(E, F)) is also a Dedekind
complete Riesz space whenever F' possesses the Dedekind completeness property, i.e., every
order bounded subset has a supremum and infimum.

Let K be a subset of natural numbers. The asymptotic density of K, denoted as §(K),
is defined as the limit (if it exists):

1
N < -
Jim nﬂ(({kz <n:keK}),
where X represents the cardinality. Furthermore, a sequence (xj) in a Riesz space is said
to be statistically convergent to x if the following limit (if it exists) holds:

1
lim —K{k<n:|zg—2z|>c})=0

n—oo n,

for every € > 0.
Consider a sequence (x,) in a Riesz space. The following definitions are introduced
(refer to [3,4,20] for further details):

- Statistically order decreasing (denoted as x,, }5% 6) to 6 if there exists a set K C N
with §(K) = 1 such that x | 6 on K.

- Statistically order convergent (denoted as xy, LiZN x) tox € E if |z, — x| < g holds
for a sequence g, 5% 6 with a set K C N such that §(K) =1 and for all k € K.

- Statistically order bounded (denoted as st,-bounded) if there exists a positive vector
6 <u € E; and an index set K C N such that §(K) = 1 and |zi| < u for every
keK.

It should be noted that every statistically order convergent sequence and order bounded
sequence is st,-bounded. However, the converse is not generally true. Additionally, the
following notions from [8] are worth recalling. An operator T between Riesz spaces is
considered:

- Statistically o-order continuous if T'x, 2oy T2 holds in F whenever z,, oy in E.
- Statistically order bounded if it maps statistically order bounded sequences to sta-
tistically order bounded sequences.

Lastly, it is worth mentioning that a positive vector v > 0 in a Riesz space is termed an
atom if x Ay implies either x = 0 or y = 6 for each pair x,y € [0, u].

2. Statistical order compact operators

Recall that an operator T' defined between normed spaces is called compact if the image
of the unit ball under T is relatively compact, or equivalently, if every norm-bounded
sequence has a subsequence whose image under T' converges. Now, let’s define compact
operators with respect to statistical order convergence among Riesz spaces.
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Definition 2.1. Let T' € L(E, F). T is called statistically order compact (or st,-compact)
if every statistically order bounded sequence (x,) in E has a subsequence (x;,) such that

sto

T(xj,) =z
holds in F for some z € F.

Note that 1" is st,-compact if and only if there exists a further subsequence (x;, ) of

(zj,) such that T'(zj, ) % 2. In this paper, we denote Ly, (FE,F) as the set of all st,-
compact operators between E and F.

Remark 2.2. It can be easily observed that a sequentially order compact operator is
statistically order compact because an order-convergent sequence is statistically order
convergent.

Since a statistically order convergent sequence is not order convergent in general (see
for example [20, Exam.3]), the converse of Remark 2.2 does not hold in general. Now, let’s
prove that L (E, F) is a vector space.

Lemma 2.3. The set Lg, (E, F) is a vector space.

Proof. Suppose S,T € L4 (E,F) and (x,) is an st,-bounded sequence in E. Then,
there exist subsequences (z;)ic; and (x;)jes of (z,,) with subsets 6(I) = 6(J) = 1 such
that T'(x;) oy y and S(xj) oy 2 for some y,z € F. By applying [20, Thm.6], we have
(T + S)(wm)St—°>y + z for m € M := I NJ, where (M) = 1. Thus, we have shown

the st,-compactness of T'+ S. Similarly, we can prove the case of multiplication by a
scalar. O

Proposition 2.4. Take three operators R, S € L(E) and T € L4, (E).

(i) SoT € Lg,(E) holds whenever S is statistical o-order continuous.
(ii) T o P € Lg (F) holds if P is st,-bounded.

Proof. (i) Assume that S is a statistically o-order continuous operator and (z,) is an
sto-bounded sequence. Then, by using the st,-compactness of T', we have a subsequence
(zk)kex of (zy) such that T'(xy) oy y for some y € E and some index set 0(K)=1. Now,
by applying st,-continuity of S, we have S(T'(z)) 22 S(y), i.e., (SoT)(zx) 22 S(y). So,
we get the desired result.

(13) Suppose that P is an st,-bounded operator and (x,) is an st,-bounded sequence.
Then, (Pxy) is also an st,-bounded sequence. So, we have a subsequence (Pxy)kecx of
(Pxy,) such that T'(Rxy) oy y for some y € E and for an index set §(K) = 1 because T
is st,-compact operator. Therefore, we obtain that 7" o P is an st,-compact operator. [

Proposition 2.5. Every operator T' € L(E, F) is st,-compact if T is st,-bounded and F
is an atomic K B-space.

Proof. Assume (z,) is an st,-bounded sequence in E. Since T is st,-bounded, T'(x,) is
an st,-bounded sequence in F. Thus, there exists an index set K with 6(K) = 1 such
that |T'(zx)| < u for all k € K and for some u € Fy, ie., T'(zy) has an order bounded
subsequence (T'(xy))kerx with §(K) = 1. According to [7, Rem.6], there exists a further
subsequence (T(z.m))men of (T(x1))rex such that T(x,,) =y for the same vector y € F.
Since 0(M) = 1, we conclude that T € L4 (E, F). O

Theorem 2.6. Fvery statistically order compact operator is statistically order bounded.

Proof. Assume T € L4 (E,F) is not statistically order bounded. By contradiction,
we can find a sequence (z,) that is statistically order bounded in E, but (T'z,) is not
statistically order bounded in F'. Since every order bounded sequence is statistically order
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bounded, this implies that (T'z,) is not order bounded. Therefore, for all positive elements
win Fy = {x € F : 0 <z}, there exist some indexes n,, € N such that

| T2, | ﬁ w.

On the other hand, using the st,-compactness of T', we have a subsequence (x)rer of

() such that T'(xy) oy » for some 2 € F because (z,,) is a statistically order bounded
sequence in F. Therefore, there exists a further sequence g |5 @ in F with an index
subset J C K such that 6(J) =1 and

[Ty — 2| < g

for each j € J. This implies that (T'z;) is order bounded in F since ¢; | 6 on J. However,
there exists u € Fy such that

Taj| £ u

for some j, € J, which contradicts the assumption. Hence, every statistically order
compact operator must be statistically order bounded. ]

In general, the converse of Theorem 2.6 may not hold. The following example illustrates
that both st,-bounded and statistically o-order continuous operators may not be st,-
compact.

Example 2.7. Consider the Riesz space L;[0,1]. It can be observed that the identity
operator I on L1[0, 1] is both statistically order bounded and statistically o-order contin-
uous. However, I is not statistically order compact. To see this, let (r,) be the sequence
of Rademacher functions defined on [0, 1] as r,(t) := sgn(sin(2"nt)) for each n € N and
t € [0, 1]. Since |r,| = 1 for every n € N, (1) is statistically order bounded. Suppose that
(ri)kek is a subsequence of (1) such that ry oy f for some f in L,[0,1]. This implies
that there exists a further subsequence (1) ;e of (rk)rex with §(J) =1 and r; = f. Let
jo € J be fixed. Then, for every j > jo, we have fol rj,ridp = 0. Since rjorjgrjor, we
have the following convergence:

1 1 1
/ rirdu —>/ rrdu :/ 7“2d,u.
0 0 0

By utilizing the order continuity of the integral, we conclude that fol rjrdp = 0. Thus,
we obtain fol r?dy = 0. However, this contradicts the fact that |r| = 1. Hence, we
demonstrate that (r,) does not have any st,-convergent subsequence, and therefore, I is
not st,-compact.

Example 2.8. Not every statistically order compact operator is order bounded. An
example illustrating this fact can be found in [10, Exam.6|, where the given operator is
sequentially order compact. Thus, by applying Remark 2.2, it is also statistically order
compact. However, it is not an order bounded operator.

Consider [15, Exam.4.2| for the following example.

Example 2.9. A statistically order compact operator may not be statistically o-order
continuous. Consider any ultrafilter U on the Boolean algebra B consisting of the Borel
subsets of [0, 1] modulo null sets. The operator Ty from Lo [0, 1] to R defined by

. 1

is statistically order compact but not statistically o-order continuous.
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3. More results of st,-compact operators

We remind that a lattice norm on Riesz spaces as a norm ||| that satisfies ||z| < |y||
for all vectors |z| < |y].
Theorem 3.1.

(i) If T € L(E,F) is a compact operator, where E is a normed lattice and F is a Banach
lattice, then T 1is st,-compact.

(i) If T € L, (E,F) is an operator, where E is an AM-space (i.e., x Ny = 0 implies
leVyl| =llz||V|y||) with a strong norm unit and F is an order continuous normed
lattice, then T is compact.

Proof. (i) Let (zy) be an st,-bounded sequence in E. This means there exists an index
set K and some positive element u € E such that |x;| < u for all k£ € K, which implies
that (zy)gex is order bounded. Since E is a normed lattice, we have ||zy|| < [Jul| for all

k € K. Thus, (zx)kek is a norm bounded sequence in E. By the compactness of T', we

have T'(z,) A, y for some subsequence (Z,)men of (xx)rex and y € F. Applying a

result from [21, Thm.VIL.2.1], there exists a further subsequence (z;)ier of (Zm)men such
that T'(x;) >y because F is a Banach lattice. Therefore, since (z)rex is order bounded
and the subsequence (;);cr of (zx)rer satisfies T'(x;) >y, we obtain 6(I) = 1, which
means T is st,-compact.

(74) Consider an arbitrary norm bounded sequence (x,,) in E. Since F satisfies the AM-
property with a strong norm unit, according to [22, p.490], (x,) is also order bounded.
Thus, (z,) is an st,-bounded sequence. By using the st,-compactness of T', we have

Ty, 22 y for some subsequence (xk)kex of (x,) with 6(K) = 1 and for some y € F. This

implies that there is a further subsequence (x,,)menr of (zx)kex satisfying Tz, 2y with

the index set §(M) = 1. The convergence of Tz, LR y can be obtained from the order

continuous lattice norm. Therefore, T is compact. ]

Consider an operator T defined on E as T'(z) = f(x)u, where = belongs to E, f is an
order bounded linear functional on F, and w is a fixed vector in F'. This defines an operator
T belonging to L,(F, F), which is referred to as a rank one operator (cf. [2, p.64]).

Theorem 3.2. Every st,-bounded finite rank operator is st,-compact.

Proof. Let u be a fixed vector in F'. Without loss of generality, assume that 7" is defined
as T'(x) = f(z)u for all z € E, where f : E — R is an st,-bounded functional. For an
arbitrary st,-bounded sequence (z,,) in E, f(zy) is st,-bounded in R because f is an st,-
bounded functional. Hence, there exists a subsequence (x)rerx of (z,) such that f(xy)
is bounded in R and §(K) = 1. By applying the Bolzano-Weierstrass Theorem, we obtain
a further subsequence (z,)menr of (k)rer such that f(z,,) — a for some a € R, where
0(M) = 1. Thus, we observe the following inequality:

T(wm) — aul = | f(zm)u — au| = | f(zm) = af|u] = 0.

This is due to the Archimedean property of F' and the fact that |f(zy,)—a| — 0. Therefore,
we conclude that T' is st,-compact. ]

Example 3.3. The space L4, (E, F) is not necessarily order closed. To illustrate this,
consider an operator T defined as T'(e,) = ()", where e, denotes the standard unit
basis in ¢; and (r,) represents the Rademacher function as given in Example 2.7. Let 7,
be a projection and (S,) be a sequence defined by Sy(z) := (T o m,)(z) = Yj_; xxri for
all x € £1. It is evident that each S, is a finite rank one operator. By applying Theorem
3.2, we deduce that (S,) is a sequence in L, (¢1,L1). However, it is clear that S, > T.
Example 2.7 shows that (r,,) does not possess any st,-convergent subsequence. Hence, we
conclude that T is not st,-compact.
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Remind that an operator T' € L(E, F') satisfying the property T'(z V y) = T(z) V T(y)
for each pair z and y in E is called Riesz homomorphism (or lattice homomorphism) (cf.

[1, Def.1.30)).

Proposition 3.4. Let T be a Riesz homomorphism in Lg, (E, F), where F is an order
complete Riesz space. If 8 < S < T holds for some operator S € L(E,F), then S is
sto-compact.

Proof. Suppose that (z,,) is an st,-bounded sequence in E. By selecting a subsequence,

we assume that (T'xy) o, y for some y € F, and consider a subsequence (xg, )k, cx of (zn)
with §(K) = 1. By utilizing [13, Thm.18.2], we have the following inequality:

|Szy, — Sz, | < S|k, — vk, |) < T(|7k, — ko |) = [Tk, — Tvg,, |

for all k,, € K, as T is a Riesz homomorphism and S is a positive operator. Consequently,
we deduce from the last inequality that (Sxy, )k, cx is a statistical order Cauchy sequence

due to (Txg, — Ty, ) oy g, By utilizing the order completeness of F', we obtain Sz, = z

for some z € F. Applying [20, p.7], we further conclude that Sxy, o, - since I(K)=1.
Hence, S is an st,-compact operator, which completes the proof. O

Theorem 3.5. Let E be a Dedekind complete Riesz space, and T be a positive, statistically
o-order continuous, and st,-compact operator on E. Then, T o Sy, oy T 6 S holds for
any sequence (Sy) of statistically o-order continuous and decreasing operators on E with

Sh oy g for some operator S on E.

Proof. Suppose that T and (.S,,) satisfy the assumptions of the theorem. It follows from
the statistically o-order continuity of 7" and S for each n that T o S,, is a statistically o-
order continuous operator for every n. Moreover, since Sy, oy S holds for some operator
S on E, we have a subsequence (Sy)xer of (S,) with §(K) = 1 such that Sy = S. Thus,
by considering [21, Thm.VIIL.2.3], we obtain Sz % Sz for all vectors = in E. Therefore,
Spa 225 Sz for every z € E. This implies that T(Spz) SJD.")T(Sx) or (T o S,)(x) St.">(T o
S)(z) holds for each = € E since T is statistically o-order continuous. Additionally, since
(Sp) is decreasing and T is positive, then (T o Si) forms a decreasing sequence. Therefore,

by applying [21, Thm.VIIL.2.4], we obtain T'o S, 2 T'0 S, ie., T o S, 25T o S. O

Theorem 3.6. Let (T}) be a sequence of statistically o-order compact operators in Ly(E, F),
where F is Dedekind complete. If (Tj) is statistically o-order convergent to T' € Ly(E, F),
then T € Lost,(E, F).

Proof. Assume that (z,) is a statistically o-order bounded sequence in E. This means
that there exist an index set I and a positive element w > 0 in E such that |z;| < u holds
for each i € I. Using a standard diagonal argument, we can find a subsequence (Z,)men
of (z,,) such that zjmm%oyj for any j € N and for some y; € F with §(M) = 1 as
m — 0o, because Tj is statistically o-order compact for each j. Since (7}) is statistically
o-order convergent to T', we have a subsequence (Tj, );,cx of (1) with index set 6(K) =1
such that Tj, =T as ji — co. It can be observed that T, xm i>yjk as m — oo for each
Jk € K.

Now, we will show that (y;, ), ck is a statistically o-order Cauchy sequence in F'. Firstly,
we observe the following inequality:

for every jn,jr € K. Then, we obtain that both the first and third terms in the last
inequality converge to zero in the statistical o-order as j, — co and jp — oo, respectively.
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Using the Dedekind completeness of F', we can apply Theorem 1.18 from [2], and thus we
have

T wm — Tjwm| < T, = Tii|(|em]) < |Tj, — Ty [ (u)
for all m € I. Considering [21, Thm.VIII.2.3], it follows from T}, =T in Ly(FE, F) that
Ty, — Tj.|(u) >0 in F as jp — oo. Thus, it follows from (x) that |y;, — y;.| =0 in F
as jn,jr — 0o. Therefore, (y;,) is a statistically o-order Cauchy sequence in F'. Using
Remark 7.2 from [17], we know that Dedekind completeness implies order completeness.

Therefore, F' is order complete, and thus (y;, ) is order convergent to some element y in F
as jr — oo. Hence, using [2, Thm.1.14], we have

< Ty, = T|(lzml) + [ Tjpxm — 5] + [y5 —
Fixing ji, we take m — oo to obtain
limsup |Tzy, —y| < |Tj, — T'|(uw) + |yj, — yl-

m—r0o0
Since j, is arbitrary, we have limsup |Tx,, — y| = 0. Therefore, we have |Txz,, — y| 0,
m—0o0

ie., Txy, Sto, y. Thus, T is statistically o-order compact as desired. ]

Theorem 3.7. Let T € L5, (E,F) and S € L(E, F) be a Riesz homomorphism. If F is
an order continuous Banach lattice, then SoT € Lyg, (E, F).

Proof. Suppose that (z,,) is a statistically o-order bounded sequence in E. Then, there

exists a subsequence (zy)kex of (z,) with §(K) = 1 such that T'(zy) oy y for some y € F,

because T € Ly, (F, F). Thus, there exist a further sequence g %% 0 in F such that

T (xm) — yl < gm
for each m € M, where M is an index set with 6(M) = 1. Since ¢, J 0 holds and F
has an order continuous lattice norm, it follows that ||g,|| J 0. On the other hand, by
applying [2, Thm.4.3], we have ||S(¢gn)|| | because every Riesz homomorphism is a positive
operator. Now, by using [21, Thm.VII.2.1}, there exists a subsequence (g;);ecs of (gm)menm

such that S(g;) =0, i.e., S(g;) } 0 because of the positivity of S, where §(J) = 1 by our
assumption in this paper. Therefore, by considering [2, Thm.2.14], we have

(S 0 T)(xj) = S(y)l = S(T(x5) — yl) < S5(g5)

for all j € J. Hence, we have (SoT)(z;) = S(y), i.e., (SoT)(zn) LIEN S(y). Therefore, we
obtain the statistically o-order compactness of S oT. U

Proposition 3.8. Let E be a Banach lattice and F be a o-order continuous Banach
lattice. Then an st,-compact operator from E to F is norm bounded.

Proof. Suppose that T is not norm bounded. So, there exists a norm bounded sequence
(z5,) in E such that ||z,| < 3= and (Tz,) is not norm bounded in F. It is clear that
(zn,) is also st,-bounded. Then, it follows from st,-compactness of T' that (z,) has a
subsequence (zy)kerx with 0(K) = 1 such that Tz oy y for some y € F. Thus, there

exists a further subsequence (2,)menr with §(M) = 1 of (2x)rex such that Ty > y. It

follows from o-order continuity norm on F' that Txy M> y, which is contradicting with

|T2y|| — oco. Thus, T is norm bounded. O

Proposition 3.9. Let T € Lg, (E, F) and G be a regular, majorizing and order complete
sublattice of F. If T(E) is a subspace of G, then T : E — G is sto,-compact.



Statistically order compact operator 635

Proof. Assume that (z,) is an st,-bounded sequence in E. Then, there exists a subse-
quence (zj)pex of (z,) with 6(K) = 1 such that T(x),) 22y for some y € F because of
T € Lsto(E,F). Also, it follows from Theorem 2.6 that T': E — F is an st,-bounded
operator. Thus, since (x,) is st,-bounded in E, (T'z,) is an st,-bounded sequence in F'.
Then, (x,) has a further subsequence (z,)menr of (x,) with §(M) = 1 such that (T'z,)
is order bounded in F. Moreover, the subsequence (T'z,,) is order bounded in G because
G is majorizing and T'(E) is a subspace of G. Now, by applying [9, Lem.27], we obtain

that Tx,, >y in G, i.e., Tz, o, y in G. Thus, we get the desired result. O

4. Statistical M-weakly compact operators

Remind that any two elements x and y in Riesz spaces are called disjoint whenever
|z| A ly] = 0. A norm-bounded operator from a normed lattice to a normed space is said
to be M-weakly compact if the image of each disjoint norm-bounded sequence under this
operator is norm convergent to zero. Motivated by this, we give the following notions.

Definition 4.1. An operator 7' € L(E, F) is said to be statistical M -weakly compact (or
shortly st-M,,-compact) if Tx,, —— 0 holds for all disjoint st,-bounded sequences (z,).

Proposition 4.2. A statistically o-order continuous operator is st-M,,-compact.

Proof. Suppose that T € L(E, F) is a statistically o-order continuous operator. Take a
disjoint st,-bounded sequence (z,,) in E. Then, (z,) has an order-bounded subsequence
(zx)rex with 6(K) = 1. Tt follows from [6, Rem.10] that x —> 0 because (z}) is also a
disjoint subsequence. Thus, we have z,, — 0 in E. By using the st,-continuity of T, we
have T'z,, — 0 in F. Therefore, T is st-M,-compact. O

In the following work, we show that the domination property holds for st-M,,-compact
operators.

Proposition 4.3. If S,T € L(E, F) satisfy 0 < S < T and T is st-M,,-compact, then S
is st-M,,-compact.

Proof. Suppose that (x,) is a disjoint st,-bounded sequence in E. By applying the st-
M,,-compactness of T', we have T'z,, — 0 in F. Thus, there exists a subsequence (k) keK
of (x,) with §(K) = 1 such that Txp — 0. Since 0 < S|zy| < T|xg| for all k € K, we
have Sz —2+ 0 because the inequality |Szy| < S|xx| holds for each k € K. Therefore,
Sz, — 0, and thus, S is st-M,,-compact. O

Proposition 4.4. Fvery st,-bounded and M -weakly compact operator from a o-order
continuous normed lattice to an atomic normed lattice is st-M,,-compact.

Proof. Suppose that T' € L(E, F') satisfies the conditions of the proposition. Let (z,) be

a disjoint st,-bounded sequence in E. Then, it has an order-bounded subsequence (xj)rcx

with 6(K) = 1. Thus, (z)kex is norm-bounded in E. Therefore, klim |Txr| = 0 because
— 00

T is M-weakly compact and (x)rex is a disjoint sequence. On the other hand, since
(zk)kex is order-bounded, it is also st,-bounded. Therefore, (T'zk )k is an st,-bounded
sequence in F because T is an st,-bounded operator. Hence, it has an order-bounded
subsequence (T'xy,)men with 6(M) = 1. Take any atom a € F. Then, we have the
following inequality:

[fa(Tzm)| < [ falllT2m — 0

Thus, we obtain Tx,, — 0 because F is atomic, and therefore, we have T'z,, — 0.
Consequently, T is st-M,,-compact. ]
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