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Abstract— Graph structure is widely used to describe problems in different fields. Problems in many areas, such 

as security and transportation, are among them. The problems can be solved using approaches similar to the graph 

structure. The independent set problem, which is NP-complete problem, is one of the main problems of graph 

theory and is used in modeling many problems. The implementation of the independent set problem with the most 

possible number of nodes in the graph is called Maximum Independent Set Problem. A lot of algorithm approach 

are proposed to solve the problem. This study proposes an effective approach for the maximum independent 

problem. This approach occurs two steps: computing Malatya centrality value and determining the maximum 

independent set. In the first step, centrality values are computed for the nodes forming the graph structure using 

Malatya centrality algorithm. Malatya centrality value of the nodes in any graph is the sum of the ratios of the 

node's degree to the neighboring nodes' degrees. The second step is to determine the nodes to be selected for the 

maximum independent set problem. Here, the node with the minimum Malatya centrality value is selected and 

added to the independent set. Then, the edges of this node, its adjacent nodes, and the edges of adjacent nodes are 

subtracted from the graph. By repeating the new graph structure calculations, all vertexes are deleted so that the 

maximum independent set is determined. It is observed on the sample graph that the proposed approach provides 

an efficient solution for the maximum independent set. Successful test results and analyzes demonstrate the 

effectiveness of the proposed approach. 
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1. Introduction 

The graph is a basic mathematical model and a data structure widely used in computer science (Cormen, 

Leiserson, Rivest, & Clifford, 2001). Graph structure models problems in many engineering fields, such as 

transportation, security, computer networks, bioinformatics, and chemistry. Thus, algorithms and solutions 

developed for the graph are expected to provide solutions to these problems (Uçkan & Karcı, 2020). However, 

many NP problems cannot be solved in polynomial time defined in the graph structure. The independent set 

problem is one of these problems. 

The Independent set problem is one of the NP-complete problems whose solution is studied in graphs 

(Thulasiraman & Swamy NS, 2011). The independent set problem is determining the nodes in a graph that do not 

have a neighborhood. For this process, different subsets of nodes in the graph can be determined. However, 

determining the maximum number of nodes found for the whole graph structure is called the Maximum 

Independent Set Problem (MISP). MISP is an NP-hard optimization problem that is difficult to solve in polynomial 

time. However, many real-life problems can be modeled and solved based on MISP (Li, He, Xu, & Wang, 2020). 

Approaches such as text summarizations (Uçkan & Karcı, 2020) and detecting fraudulent nodes in duplicate voting 

pools (Araujo, Farinha, Domingues, Silaghi, & Kondo, 2011) are examples of these problems. Therefore, the 

algorithms developed for MVCP and the solutions found can also be used for real-life problems. Many algorithms 

are proposed, and approaches are developed to solve this problem.  

Since MISP is an NP-complete optimization problem, no method provides a complete solution with polynomial 

time complexity. Algorithms that provide complete solutions either have exponential time complexity or provide 

solutions for some special graphs. Finding solutions close to the optimum solution set using heuristic and 

metaheuristic approaches is also a complex problem. However, these solutions are obtained under certain 
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constraints. There are different approaches and algorithms for MISP solutions in the literature. However, these 

approaches and algorithms are divided into two classes. These are the exact approaches that provide a complete 

solution; the other is heuristic approaches that enable finding solutions close to the optimum solution set.  

Exact approaches are approaches that offer solutions for a specific graph (for example, regular graphs) structure 

and with certain constraints. The exact approach proposed by Xiao and Nagommochi produces successful results 

for graphs with a certain degree (Xiao & Nagamochi, 2017). The approach proposed by Karcı is based on extracting 

the basic cut-sets values using special expansion trees (Karcı, 2020). Brandstadt and Mosca used the dynamic 

programming approach and solved it in polynomial time of the maximum weight-independent solution set for 

clawless graphs (Brandstädt & Mosca, 2018). By proposing two dynamic programming approaches, Wan et al. 

tried to solve the problem of independent sets and matches in given dimensions in graphs of order n and tree width 

at most p (Wan, Tu, Zhang, & Li, 2018). Lamm et al. have developed an exact solution for MISP with a branch-

and-reduce-based approach that can also yield results for large graphs (Lamm, Schulz, Strash, Williger, & Zhang, 

2019).  

Heuristic approaches have been widely used to determine the maximum possible solution set for MISP. In the 

proposed deterministic greedy approach, an effective approach has been proposed for some graph types (Ballard-

myer, 2019). The efficiency of the Karcı algorithm is given in some special graphs, and the efficiency of the 

algorithm has been verified (Karcı, 2022). Großmann et al. used a memetic algorithm to obtain near-optimal results 

for MISP in complex and large graphs where data reduction is not possible (Großmann, Lamm, Schulz, & Strash, 

2022). The approach proposed by Alkhouri et al. is presented in large graphs using artificial neural networks 

without data (Alkhouri, Atia, & Velasquez, 2022). The distributed greedy approach was used to determine the 

maximum weighted independent set for fading channels in wireless networks (Joo, Lin, Ryu, & Shroff, 2016). Das 

et al. proposed a 2-approach that provides a solution in polynomial time for the maximum independent set problem 

for a unit disk graph (Das, De, Kolay, Nandy, & Sur-Kolay, 2015). 

In this study, an approach that offers an effective solution for MISP is proposed. This approach calculates 

Malatya centrality value using Malatya centrality algorithm. While computing Malatya centrality value of the 

nodes, the node's degree and neighboring node degrees are used together. For each vertex in the graph, Malatya 

centrality value is produced by summing the ratios of its degree with the neighboring vertex degrees. Determining 

the nodes to be selected for MISP consists of two steps. First, the node with the lowest calculated Malatya centrality 

values is selected, and the related vertex, edges, and adjacent nodes are removed from the graph. Then, Malatya 

centrality value is recalculated for the remaining graph structure, and the selection processes are repeated. When 

the process is completed, the solution set obtained becomes the maximum independent set for MISP.  

The rest of the article is organized as follows. Chapter 2 contains preliminary information about the proposed 

approach with preliminaries. In Chapter 3, the proposed method is discussed. Here, the calculation of the Malatya 

centrality value and the determination of the solution set for MISP was examined. Chapter 4 gives evaluations of 

the proposed algorithm and applications on sample graphs. Finally, in the conclusion part, the results related to the 

proposed algorithm were mentioned. 

 

2. Preliminaries 

With the proposed approach, a solution has been developed for the MISP solution by using the Malatya 

centrality value and vertexes. In order to understand this approach, it is necessary to examine and understand these 

concepts. These concepts are discussed later in the article.  

 

2.1.  Centrality 

Centrality is expressed as the assignment of values depending on the positions of vertexes in the graph 

(Borgatti, 2005). Centrality is widely used in many fields, especially in graph theory. These areas and the 

application used are intended to determine the effective node in the graph or application. Numerous approaches 

and algorithms have been proposed to identify central nodes. Of these approaches, vertex connections are one of 

the decisive parameters for measuring the centrality of the graph. This approach is expressed as degree centrality 

and is included in the structure of many algorithms, such as PageRank, which is widely used (Kumar, Duhan, & 

Sharma, 2011). 

  

2.2. Maximum Independent Set Problem 

The independent set problem consists of nodes in the graph structure that do not have an adjacent edge. There 

may be more than one set of solutions that meet these criteria. However, determining the independent solution set 

using the maximum number of vertexes is expressed as MISP. Determining this set is a strongly NP-hard 

optimization problem, and it is difficult to determine the optimum solution sets or solutions close to the optimum 
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solution. Many approaches are proposed to solve the problem, including exact approaches and optimization 

methods.  

 

3. Proposed Malatya Independent Set Algorithm 

The proposed approach to effectively solve MISP consists of two steps. These are calculating Malatya 

centrality values and determining the nodes to be selected to solve the independent set problem. First, Malatya 

centrality values are calculated for all nodes in the graph. For this calculation, the node's degree and the degrees 

of its neighboring nodes are used. Malatya centrality value is the sum of the values obtained by dividing the node's 

degree by the degree of each neighboring node (Karcı, Yakut, & Öztemiz, 2022).  

The general outlines of the proposed approach are given in Figure 1. In the figure, firstly, the edge and node 

data of the sample graph are taken, and Malatya centrality values of this graph are calculated. Then, to determine 

the independent set, the node with the minimum Malatya centrality value is choose and included in the independent 

set. With this selected node, the edges and vertexes coincident with this node are removed from the graph. For the 

new graph structure formed, Malatya centrality algorithm is applied again, and the vertex selection process is 

continued. This calculation and subtraction are continued until the nodes in the graph are exhausted. 

 

Stage 3

Select Node with MMC Value

Stage 4

Independent Members

Stage 2

Calculate Malatya Centrality

Stage 1

Any Input Graph

 

Figure 1. General structure of the proposed algorithm 

 

The approach to MISP consists of the steps given below.  

1 Malatya centrality value of the nodes in the graph is calculated using Malatya centrality algorithm. This value 

is the distinguishable node number and is denoted by (v) for a node v. 

2 The node with the minimum (v) value is selected.  

3 Along with the selected node, vertexes coincide with this node, and their connections are extracted from the 

graph. 

4 The algorithm is complete when all nodes are deleted; otherwise, it is returned to the first step with the new 

graph structure. 

The algorithm given in Equation 1 is used to calculate Malatya centrality algorithm node (v) values. In this 

equation, n is the number of nodes in the graph; d(vi) denotes the degree of nodes, and N(vi) the set of adjacent 

nodes. 

 

(𝑣𝑖) = ∑
𝑑(𝑣𝑖)

𝑑(𝑣𝑗)∀𝑣𝑗∈𝑁(𝑣𝑖)    (1) 

 

The pseudocode Algorithm 1 of the proposed approach for MISP is given. The given codes contain the 

operations of the proposed algorithm. Lines 1-10 contain the codes of Malatya centrality algorithm. In rows 11-

21, the vertexes to be selected are determined and deleted from the graph together with the edges. Then, the nodes 

adjacent to this vertex and their incident edges are extracted from the graph. When all vertexes in the graph are 

deleted, the processes are terminated. Otherwise, the centrality value is recalculated for the new graph, and the 

operations are continued. Next to this piece of code, the descriptions give explanations about the codes. 
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Algorithm 1. Proposed Algorithm Pseudocode 

Proposed Algorithm 

1.  G:(V,E)                                                       // G graph 

2.  MalatyaCentralityMethod <- function(g){                                   // Malatya Algorithm is defined 

3.      VertexList <- c(V(g))                    // Throw vertex from graph to array 

4.      for (i in VertexList)                                                                        // Work as many vertexes in the array  

5.            Vdegree <-degree(g,v = V(g)[i])                                                        // Calculate the node degree of the corresponding vertex  

6.            AdjacentDegree <- degree(g,v = neighbors(g,v = V(g)[i]))           // Calculate the node degree of the neighbors of the relevant node  

7.            Value <- Vdegree/AdjacentDegree                                                            // Degree of related node / degree of adjacent node  

8.            MalatyaCentralityValue <- print(paste(V(g)[i],sum(Value)),digits = 3)       // New centrality value results 

9.      return(MalatyaCentralityValue)                                                                         // Returns Malatya Centrality Value  

10. } 

11. FindMinMalatyaCentralityValue <-function(g){                                    // Method that returns vertex name with minimum centrality  

12.          minVertex <- FindMinVertex(MalatyaCentralityMethod(g));            // Calculates the minimum vertex degree 

13.          V <- minVertex; 

14.           neighborsVertex <- neighbors(g,v = minVertex)        

15.           DeleteEdges(minVertex);                                                  // The edges of the selected minimum vertex are deleted  

16.           DeleteEdges(neighborsVertex);      // The connections of the neighbors of the minimum vertex are deleted  

17.      return (V);            } 

18. FindMaxIndependentSet <- function(g){                                             // Detects maximum independent members 

19.          while(Edge.Count != 0)                                                // It works as long as there is an unreached edge in the graph. 

20.                      FindMinMalatyaCentralityValue(g);       

21.                                     print(minVertex);                          // Print the maximum independent members 

22. } 

 

The operations of the proposed approach in Algorithm 2 are given in mathematical expressions. Here, Malatya 

centrality values are calculated using Malatya centrality algorithm, and the maximum independent set is 

determined. In the given approach, the solution set is initially empty. Then Malatya centrality values are calculated 

and added to the independent set. When all the nodes in the graph are deleted, the solution set is obtained. 𝜓(𝑣𝑖) 

used in this approach is Malatya centrality value, 𝑉𝑐 solution set, 𝑑(𝑣𝑖), 𝑣𝑖. the degree of the node, |𝑉| shows the 

number of nodes in the graph.  

 

Algorithm 2. Mathematical representation of Malatya Algorithm 

Mathematical Representation of Proposed Algorithm 

Input: Adjacency matrix of G is A and G=(V,E)                                        // G graph 

Output: VcV, Vc is a set of nodes and it is a solution for independent set problem 

1. Vc 

2. While E do 

3.        i1, …, |V| 

4.             𝜓(𝑣𝑖) = ∑
𝑑(𝑣𝑖)
𝑑(𝑣𝑗)∀𝑣𝑗∈𝑁(𝑣𝑖)

 

5.        𝑉𝑐 = 𝑉𝑐 ∪ {min (𝜓(𝑣𝑖))} 
6.        V=V-{vi}, and E=E-(vi,vj)E 
7. Output=Vc 
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4. Experimental Results 

An essential advantage of the proposed approach is that it provides a robust solution in polynomial time for the 

NP-complete problem MISP. In general, the heuristic solutions proposed for MISP yield near-optimal results under 

certain constraints. In the exact approaches recommended for MISP, it offers solutions in some special graphs and 

under certain constraints. Furthermore, the proposed approach includes a new structure that can be applied to 

graphs without restrictions. In order to determine the effectiveness of the proposed approach, the results obtained 

on the graphs should be examined. Therefore, the proposed approach in this study was run step by step on the 

sample graphs, and the results were shown in detail. This graph used Malatya centrality algorithm for MISP, and 

the independent set containing the minimum number of nodes was determined.  

In Figure 2, the details of the sample graph used to show the effectiveness of Malatya centrality algorithm are 

given. The nodes and edges of the graph are detailed in the figure. In the graph, the connections of each node and 

Malatya centrality values of all nodes are given in Table 1. This graph calculates Malatya centrality value using 

Malatya centrality algorithm, and a suitable graph model is presented for determining inclusive nodes. 

 

 

Figure 2. Graph model used in calculation 

Table 1. The graph's Malatya Centrality Values 
 

Vertex 

Name 

Centrality 

Value 

Vertex 

Name 

Centrality 

Value 

1 2.500000 10 4.000000 

2 4.666667 11 4.000000 

3 4.666667 12 4.666667 

4 2.500000 13 2.500000 

5 4.000000 14 2.500000 

6 4.000000 15 4.666667 

7 4.000000 16 4.666667 

8 4.666667 17 2.500000 

9 4.000000 18 2.500000 

          

The sample graph structure gives Malatya centrality values calculated using the proposed method in Figure 3. 

In this graph, nodes with high Malatya centrality values are shown with a larger circle, while those with low 

centrality are shown with a small circle. For example, when Table 1. is examined, with Malatya centrality value 

of 2.5, node 1, 4, 13, 14, 17, and 18 has the smallest centrality values. In the case of equality, choosing any of these 

nodes is sufficient. In this example, node 1 is selected by selecting the index order.  

 

 

Figure 3. Graph structure according to Malatya centrality value 
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Using the algorithm proposed for the independent set problem in Figure 4, node 1 was selected as the first 

member of the independent set, and the related graph structure was given. After the selection process performed 

using the algorithm, we suggested node 1 and node 1 are deleted from the graph with their adjacent node 2, 3, and 

4 edge connections. Then, the graph is updated and prepared for selecting the second independent set member.  

 

 

Figure 4. Example structure where the most ineffective node is determined 

 

The proposed algorithm continues to run until no nodes are left in the graph. The graph structure formed after 

selecting the last independent set member is given in Figure 5. Nodes marked in orange in the figure represent 

independent set members. The solution set produced by the algorithm we presented for the dependent set problem 

consists of nodes 1, 5, 9, 11, 13, and 17. For the example graph consisting of 18 nodes and 33 edge relations, the 

number of elements of the independent set is determined as 6. This value also represents the maximum independent 

set value for this graph. 

 

 

Figure 5. Vertex set used for maximum independent set 
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5. Conclusion 

This study presents a robust algorithm for MISP, one of the crucial problems of graph theory. This algorithm 

is a polynomial algorithm, unlike solutions from the literature, and offers an effective solution. In the proposed 

algorithm, Malatya centrality value of the nodes is calculated using Malatya centrality algorithm. While calculating 

Malatya centrality values, the node's degree is used from the degree of its neighboring nodes. Then, independent 

set members are selected by prioritizing the minor node from Malatya centrality values obtained. The presented 

method is an effective method for the selection of independent set members. Although it gives near-optimal results, 

it detects the maximum independent set members in many graph types. The efficiency of the proposed approach 

and Malatya centrality algorithm for MISP has been tested on sample graphs. The successful test results and 

analysis demonstrated the effectiveness of the proposed Malatya centrality algorithm and the independent set 

solutions. 
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