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A Note on Quasi-Metrizable Spaces
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Abstract. In a previous paper on quasi-uniformizable spaces related to statistical metric spaces [2] it was
determined three conditions to obtain a first countable T1-topology. In this paper, we determine two conditions to
define a quasi-metrizable topological space. Namely, we determine the conditions to obtain both a quasi-metric and
a quasi-uniform topology coincides with a quasi-metrizable topological space.
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1. Introduction

Throughout this paper X is a nonempty set, D is the diagonal set, namely, D = {(x, x) : x ∈ X} and P(X) is the
collection of all subset of X. Recall that for J,K ∈ P(X × X),

J−1 = {(s, p) | (p, s) ∈ J},

J ◦ K = {(p, s) : there exists r ∈ X such that (p, r) ∈ K and (r, s) ∈ J}
and that a sub-family I of P(X) is said to be a filter on X if the following are satisfied:

(i) ∅ < I,

(ii) The intersection of finitely many elements of I belongs to I,

(iii) Any element of P(X) containing an element of I belongs to I.

The notion of ”semi-uniform space” was introduced by Nachbin in 1948 [5]. In 1960, it was called as ”quasi-uniform
space” by Császár [1].

Recall that a filter I on X × X is said to be a quasi-uniformity, if each element of I contains the diagonal and for each
J ∈ I, there exists K ∈ I satisfying K ◦ K ⊆ J. In this case, the couple (X,I) is called a quasi-uniform space. It is
well-known that if I is a quasi-uniformity on X then the collection τI = {R ⊆ X : for each r ∈ R there exists J ∈
I such that J(r) ⊆ R} is a topology on X generated by I, where J(r) = {s ∈ X : (r, s) ∈ J}. The first direct topological
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proof of the converse, that is, there is a quasi-uniformity for a given topology compatible with the topology, was proved
by Pervin [6] by using a result of Kelley [4].

Definition 1.1. A subcollection E of I in a quasi-uniform space (X,I) is said to be a basis for I, if for any J ∈ I there
exists K ∈ E such that K ⊆ J.

Theorem 1.2 ( [3]). Let E be a subcollection of P(X × X). Then, there exists a quasi-uniformity I having E as a basis
if and only if E is a filter basis for which each element of it contains D, and for each element J of E there exists K ∈ E
satisfying K ◦ K ⊆ J .

At this point we state some basic notions of statistical metric spaces.

Definition 1.3. A function ϕ : [−∞,∞] → R is said to be a distribution function if the following two conditions are
satisfied;
(i) ϕ is monotone increasing,
and
(ii) ϕ(−∞) = 0 and ϕ(∞) = 1.
If in addition ϕ(0) = 0, then ϕ is called a distance function.

Example 1.4. The function from [0,∞] to [0,1]

ϱ0(r) =
{

0 : r ≤ 0
1 : r > 0

is a left-continuous distance function which is called an unit step function.

By Ω and ΩL, we denote the collection of all distance functions and all left-continuous distance functions respec-
tively.
Recall that, a functionϖ : X × X → [0,∞[ is said to be a quasi-metric, ifϖ(r, r) = 0 andϖ(r, s) ≤ ϖ(r, t) +ϖ(t, s) for
all r, s, t ∈ X.
Remark that if ϖ is a quasi-metric on X, then the collection

{G ⊆ X | for each r ∈ G there exists µ > 0 such that Bµ(r) ⊆ G}

is a topology on X, where Bµ(r) = {s ∈ X : ϖ(r, s) < µ}.

Definition 1.5. Letϖ be a quasi-metric on X. Then, we say that X is quasi-metrizable if the collection S (r) = {Bη(r) :
η > 0} is a local basis at each r ∈ X.

The main goal of this paper is to determine the conditions to obtain a quasi-metric and a quasi-uniform topology
coincides with quasi-metrizable topological space.
For the terminology of quasi-uniform spaces and statistical metric spaces we refer to [3] and [7] respectively.

2. Results

Let F : X × X → Ω be a function and δ : [0, 1] × [0, 1] → [0, 1] a function satisfying δ ≥ δ0, where δ0(u, v) =
max{u + v − 1, 0}, and δ(u1, v1) ≤ δ(u2, v2) for u1 ≤ u2 and v1 ≤ v2 for all u, v, u1, v1, u2, v2 ∈ [0, 1]. We consider the
space (X, F, δ).
Let η > 0. Put Aη = {(u, v) ∈ X × X : Fuv(η) > 1 − η}, where Fuv denotes the value of F at (u, v). We also consider the
function ρ : X × X → R, defined by, for u, v ∈ X

ρ(u, v) = in f {1 − Fuv(η) + η : η > 0},

Proposition 2.1. Let F : X × X → Ω be a function. Then, for each u, v ∈ X and η, η1, η2 > 0.
(i) (u, v) ∈ Aη =⇒ ρ(u, v) < 2η,
(ii) ρ(u, v) < η =⇒ (u, v) ∈ Aη,
(iii) If η1 ≤ η2, then Aη1 ⊆ Aη2 .

Proof. (i) Let (u, v) ∈ X and η > 0. If (u, v) ∈ Aη, then ρ(u, v) ≤ 1 − Fuv(η) + η < 2η.
(ii) Suppose that ρ(u, v) < η. Then, there exists µ > 0 such that 1−Fuv(µ)+µ < η and, 0 ≤ Fuv(µ) ≤ 1, µ < η. It follows
from here that, since Fuv is monotone increasing, Fuv(η) ≥ Fuv(µ) > 1 − (η − µ) > 1 − η. Thus, by very definition of
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Aη, we get (u, v) ∈ Aη.
(iii) It is trivial. □

Proposition 2.2. Consider the space (X, F, δ). If Fuv(a + b) ≥ δ(Fuw(a), Fwv(b)) for all a, b positive numbers and
u, v,w ∈ X, then the function ρ satisfies the triangle inequality.

Proof. Let ϵ > 0. Since ρ(u,w) = in f {1 − Fuw(η) + η : η > 0} and ρ(w, v) = in f {1 − Fwv(η) + η : η > 0}, there exist
λ, µ > 0 such that

1 − Fuw(λ) + λ < ρ(u,w) +
ϵ

2
and

1 − Fwv(µ) + µ < ρ(w, v) +
ϵ

2
.

From these inequalities, by taking summation from both sides, we get

1 − (Fuw(λ) + Fwv(µ) − 1) + λ + µ < ρ(u,w) + ρ(w, v) + ϵ. (2.1)

On the other hand, from the hypothesis, as δ ≥ δ0, we have

Fuv(λ + µ) ≥ δ(Fuw(λ), Fwv(µ)) ≥ Fuw(λ) + Fwv(µ) − 1.

Hence,

1 − Fuv(λ + µ) + λ + µ ≤ 1 − δ(Fuw(λ), Fwv(µ)) + λ + µ ≤ 1 − (Fuw(λ) + Fwv(µ) − 1) + λ + µ

From here, by taking into account the inequality (2.1) and the definition of ρ, one can easily get that

ρ(u, v) ≤ 1 − Fuv(λ + µ) + λ + µ < ρ(u,w) + ρ(w, v) + ϵ

for all ϵ > 0. Hence, ρ(u, v) ≤ ρ(u,w) + ρ(w, v). □

Theorem 2.3. Consider the space (X, F, δ). Suppose that Fuu = ϱ0 and Fuw(a + b) ≥ δ(Fuv(a), Fvw(b)) for all a, b > 0
and u, v,w ∈ X. In this case, X is a quasi-metrizable space.

Proof. Since Fuu = ϵ0, ρ(u, u) = in f {η : η > 0} = 0. Thus, by Proposition 2.2, the function ρ is a quasi-metric on X.
Now we will prove that the collection S (u) is a local basis at each u ∈ X. At this point, we remark that the sub-collection
E = {Aη : η > 0} satisfies the conditions of Theorem 1.2. Indeed, as Fuu = ϱ0, D ⊆ Aη for each η > 0. On the other
hand, by Proposition 2.1 (iii), we get Amin{η1,η2} ⊆ Aη1 ∩ Aη2 . Thus, E is a filter basis whose each element containing the
diagonal. Moreover, let η > 0 and (u, v) ∈ A η

2
◦ A η

2
. Then, there exists w ∈ X satisfying (u,w), (w, v) ∈ A η

2
. It follows

from the hypothesis that

Fuv(η) ≥ δ(Fuw(
η

2
), Fwv(

η

2
)) ≥ δ0(Fuw(

η

2
), Fwv(

η

2
)) ≥ Fuw(

η

2
) + Fwv(

η

2
) − 1 > 1 − η.

Thus, (u, v) ∈ Aη. We conclude from here that E is a basis for a quasi-uniformity I on X.
Let τI be the topology generated by I. It’s well-known that the family (Aη(u))η>0 is a local basis at each u ∈ X, here,
we recall that Aη(u) = {v ∈ X : (u, v) ∈ Aη}. In addition, Proposition 2.1 (i) and (ii) imply that A η

2
(u) ⊆ Bη(u) and

Bη(u) ⊆ Aη(u) respectively. Thus, the collection S (u) = {Bη(u) : η > 0} is a local basis at each u ∈ X. Hence, X is
quasi-metrizable. □
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