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Abstract 

Artificial intelligence has been developing day by day and has started to take a more 

prominent place in human life. As computer technologies advance, research on 

artificial intelligence has also increased in this direction. One of the main goals of 

this research is to examine how real problems in human life can be solved using 

artificial intelligence-based deep learning, and to present a case study. Poisoning 

from the consumption of poisonous fungi is a common problem worldwide. To 

prevent these poisonings, a mobile application has been developed using 

Convolutional Neural Networks (CNNs) and transfer learning to detect the species 

of fungus. The application informs the user about the type of fungus, whether it is 

poisonous or non-toxic, and whether it is safe to eat. The aim of this study is to reduce 

poisoning events caused by incorrect fungus detection and to facilitate the 

identification of fungus species. The developed deep learning model is integrated 

into a mobile application developed by Flutter that is a mobile application 

development framework, which enable the detection of fungus species from images 

taken from the camera or selected from the gallery. CNNs and the EfficientNetV2 

model, a transfer learning method, were used. By using these two methods together, 

the classification accuracy rate for 77 fungus species was obtained as 97%. 

 

 
1. Introduction 

 

Artificial intelligence is evolving day by day and 

occupying a larger and larger place in human life. As 

computer technologies develop and become more 

powerful, the number of researches and studies on 

artificial intelligence also increases in the same 

direction. Today, artificial intelligence, which 

continues to develop by dividing into many sub-

branches, is widely used to solve problems in human 

life. It has gained a place in many fields, from routine 

tasks in daily life to tasks that are difficult for humans 

to learn and require time. One of the things that are 

taken into consideration while developing artificial 

intelligence technologies is the compatibility and 

usability with the devices used by people in daily life. 

The purpose here is computer, phone, tablet, wearable 

technology, etc., which are used very often in daily 

life to be actively introduced into human life and to 

benefit from more artificial intelligence. For this 
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reason, studies on artificial intelligence for mobile 

devices outside of computers have increased 

significantly recently. 

Fungi have been used for medicine and food 

by humans for centuries. While some of the hundreds 

of fungus species found in nature are poisonous, 

others are non-poisonous. However, some poisonous 

fungus species and non-poisonous fungus species can 

be very similar in appearance. Therefore, it is 

important to have a good knowledge of fungi and to 

have studied and used a variety of fungi in order to 

distinguish them. People who are not familiar with 

fungi may experience poisoning events when they try 

to eat fungi. To prevent poisoning events caused by 

fungi and to prevent the collection of the wrong 

fungus species, the idea of developing a mobile 

application that can detect the types of fungi has 

emerged. A Convolutional Neural Network (CNN) 

model has been utilized to solve the problem of 

distinguishing a large number of similar fungus 
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species. This model aims to solve a difficult problem 

that would take people a long time to learn, using the 

power of artificial intelligence. The developed model 

uses a picture of the fungus to inform the user about 

the type of fungus, whether it is poisonous, and 

whether it is edible. 

The application environment for the deep 

learning model developed in this study is a mobile 

device, which is very suitable for the problem being 

addressed. Since mobile devices are easily portable 

and are devices that most people are already familiar 

with using, the likelihood of experiencing difficulties 

while using the developed application is very low. 

Additionally, the highly developed camera systems in 

mobile phones make them ideal tools for solving 

image classification problems. For these reasons, the 

goal of this project is to provide a practical solution to 

the mentioned problem by combining deep learning 

and the power of mobile devices. 

Much work has been done on the use of 

Convolutional Neural Networks (CNNs) and analysis 

of image data within the scope of Deep Learning. 

LeCun et al. discussed the subject of deep learning in 

general in their study [1]. By touching on the usage 

areas in the modern world, they explained the 

working logic of the foundation of deep learning and 

also explained the CNNs used for supervised learning 

and classification. There are several layers found in 

CNNs. These are: Convolutional Layer, Pooling 

Layer and Fully Connected Layer [2].  

Transfer learning is a machine learning 

technique in which a model that has been trained on 

one task is re-purposed and fine-tuned for a different 

but related task. It involves using knowledge gained 

while solving one problem to solve a different, but 

related, problem. This can be done by transferring the 

weights and biases learned from one model to another 

model, or by using the pre-trained layers of a model 

as the starting point for a new model. There are 

different CNN models used for image classification 

and proven success according to the period in which 

they were developed. Some of these models are 

AlexNet, GoogLeNet, VGG-Net and ResNet [3]. 

Developing a deep learning model from scratch in a 

classification problem may not always be a logical 

approach. We can achieve high success and save time 

by training proven models with our own datasets. For 

all these reasons, the method called Transfer Learning 

was used in this study. 

The proposed method in this study is original 

in the sense that it utilizes deep learning techniques, 

specifically Convolutional Neural Networks and 

transfer learning, to develop a mobile application that 

can accurately detect and classify different species of 

fungi from images taken from a camera or selected 

from a gallery. This approach is unique in its focus on 

solving a real-world problem, specifically the 

prevention of poisoning from the consumption of 

poisonous fungi, through the use of cutting-edge 

artificial intelligence techniques. The use of transfer 

learning with the EfficientNetV2 model is also 

noteworthy, as this method has been shown to 

improve the accuracy of deep learning models while 

requiring less training data, making it a promising 

approach for future research in this field. Overall, the 

proposed method represents a novel and innovative 

approach to solving a significant public health issue 

using advanced artificial intelligence techniques. 

 

2. Material and Method 

 

There are several methods for recognizing fungi, 

including traditional methods such as microscopy and 

taxonomic keys, as well as newer methods such as 

DNA sequencing and machine learning. Deep 

learning architectures such as convolutional neural 

networks (CNNs) can be trained to classify fungi 

based on their physical characteristics such as shape, 

size, and color. These algorithms can be used to build 

tools such as mobile applications or websites that can 

help users identify different fungi based on images or 

other data. Some studies on fungus classification in 

literature and deep learning are summarized in Table 

1. 

 

 

 

 
 

Table 1. Some studies on deep learning and on fungus classification. 

Authors Title of Study  
Datasets Experimental 

results 
Year 

Picek, L. et al. 
Fungi Recognition: A Practical use 

Case 

FGVCx Fungi 

Classification 

Kaggle 

Accuracy rate 

: %79 
2022 [4] 

Picek, L. et al. 
Automatic Fungi Recognition: Deep 

Learning Meets Mycology 

Danish Fungi 

2020 (DF20) 

Accuracy rate 

: %79 
2022 [5] 



İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023 

228 
 

Krizhevsky, A. et 

al. 

ImageNet Classification with Deep 

Convolutional Neural Networks 

ImageNet 

LSVRC-2010 

contest 

top-5 test error 

rate of 15.3% 
2012) [6] 

He, K. et al. 

Delving Deep into Rectifiers: 

Surpassing Human-Level Performance 

on ImageNet Classification 

ImageNet 

LSVRC-2012 

contest 

top-5 test error 

rate of 4.94% 
2015 [7] 

Kamnitsas, K. et al. 

Efficient multi-scale 3D CNN with 

fully connected CRF for accurate 

brain lesion segmentation 

BRATS 2015 

and ISLES 2015 

Accuracy rate 

: %77 
2017 [8] 

Kayalı, N.Z. and 

İlhan Omurca, S. 

Classification of Chinese Number 

Patterns with Convolutional Neural 

Networks (CNN) 

MNIST dataset 
Accuracy rate 

: %97 
2021 [9] 

Bozkurt, F. and 

Yağanoğlu, M. 

Detection of COVID-19 from Lung X-

Ray Images Using Deep 

Convolutional Neural Networks 

Kaggle's 

COVID-19 

radiography 

database 

Accuracy rate 

: %97.17 
2021 [10] 

Ökten, İ. and 

Yüzgeç U. 

Detection of Rice Crop Disease with 

Convolutional Neural Network 

Kaggle's Rice 

Leaf İmages 

database 

Accuracy rate 

: %97.57 
2022 [11] 

 

3. Material and Method 

 

In this section, the deep learning type and methods to 

be used are mentioned. The usage areas, working 

logic and architecture of convolutional neural 

networks are explained. The environment in which 

deep learning studies will be carried out is introduced 

and the benefits it provides to the developers are 

explained. At the same time, important libraries to be 

used are also introduced. 

 

3.1. Convolutional Neural Network (CNN) 

 

One of the most popular models for classification 

from image data is the CNN model. The features of 

an image are extracted by passing the input image 

through multiple convolutional layers. The 

convolution layer is the basic building block of a 

CNN and is where most of the computation occurs. 

Typically, 3x3 filters are used to extract the features 

of the image. These filters scan all image pixels and 

perform convolution, as shown in Figure 1, resulting 

in a feature map [12]. After each convolution 

operation, the ReLU activation function is applied to 

the feature map. 

 

Figure 1. Illustration of the convolution operation [13].

Another layer in a CNN is the pooling layer. 

Pooling layers are used to further reduce the number 

of parameters and computational complexity of the 

model by gradually reducing the dimensionality of the 

representation. The largest pixel within the selected 

pooling size is transferred to the output. In the 

example shown in Figure 2, a 2x2 max-pooling 

process was applied by shifting it by 2 steps (pixels) 

[14]. This scales the feature map up to 25% while 

keeping the depth volume at its standard size [3]. 

A CNN model structure is shown as an 

example in Figure 3. Here, the input image undergoes 

a series of convolution and pooling operations, 

resulting in a final array through the fully connected 
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layer. The highest value in the sequence determines 

the class to which the image belongs. 

 

 

 

 

Figure 2. Max-pool operation [14]. 

 

 

 

Figure 3. A sample CNN model structure [15].

3.2. Transfer Learning 

 

Learning transfer is a machine learning technique in 

which a model that has been trained on one task is 

applied to a related, but different task. This can be 

useful when we have a smaller data set for the new 

task and don't have enough data to train a new model 

from scratch. It can also be useful when we need to 

train a model quickly, or when we want to use a pre-

trained model as a starting point and then fine-tune it 

for a specific task [16]. There are two main 

approaches to learning transfer: feature extraction and 

fine-tuning. 

Feature extraction involves using the pre-

trained model as a fixed feature extractor, where the 

output of the pre-trained model's layers is taken as 

input for a new model. This new model is then trained 

on the new task using these extracted features. Fine-

tuning involves unfreezing some of the layers of the 

pre-trained model and retraining them using the new 

data. This can be useful when the new task is similar 

enough to the original task that we can leverage the 

knowledge learned by the pre-trained model. 

Image recognition has made significant 

advances in recent years due to the availability of 

large-scale datasets such as ImageNet, which contains 

over 1.2 million categorized natural images from over 

1000 classes. Convolutional neural networks (CNNs) 

trained on these datasets have achieved successful 

results on various object detection and image 

segmentation tasks [17]. 

 

3.3. Feature Extraction 

 

In multiclassification problems, the output layer of 

each model is specific to the dataset it is trained on. 

In other words, if the model is trained with a data set 

containing 50 classes, there must be 50 neurons in the 

output layer of the model. CNN models trained with 

ImageNet therefore have output layers with 1000 

neurons. When we apply these pre-trained models to 

our own dataset and problem, we pull without the last 
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layers and add the appropriate output layer ourselves. 

The parts to be changed and preserved in the original 

model are basically shown in Figure 4. 

In the feature extraction method, the weights 

are preserved by freezing the layers of the pre-trained 

model. Since training will not take place in these 

layers, the weights will not be updated. Here, the 

classification process is carried out by making use of 

the information learned from the previous training. 

Training takes place only in the last added layers. 

 

Figure 4. Application of feature extraction method to the 

model [18]. 

 

3.4. Fine-Tuning 

 

Fine-tuning is a method of learning transfer in which 

all or part of the pre-trained model is unfrozen and 

retrained on the new data using a low learning rate. 

This is in contrast to feature extraction, where the pre-

trained model is used as a fixed feature extractor and 

a new model is trained on the extracted features. Fine-

tuning can lead to significant improvements by 

adapting the previously learned features to the new 

data. Figure 5 illustrates the difference between these 

two methods. It is often effective to use both feature 

extraction and fine-tuning together in learning 

transfer. 

 

Figure 5. Feature extraction and fine-tuning [18]. 

 

 

 

 

3.5. EfficientNetV2B1 Model 

 

The efficiency of deep learning in training is often 

related to the size of the model and the amount of 

training data. For instance, GPT-3, a very large model 

with a lot of training data, can achieve significant 

success in a few steps, but this requires weeks of 

training on thousands of GPUs, which can be complex 

and time-consuming. In contrast, techniques like 

learning transfer can be more efficient because they 

allow for the use of smaller models with fewer 

parameters, as long as the model is well-designed and 

effective at achieving successful results. 

EfficientNetV2 is a family of small size image 

classification models that provide good parameter 

efficiency and faster training as seen in Figure 6. It 

includes developed models in various sizes.  

 

 

Figure 6. Training and parameter efficiency of 

EfficientNetV2 model [19]. 

 

The EfficientNetV2 is an improved version of 

the EfficientNet model, which has gained popularity 

due to its ability to balance accuracy and efficiency. 

The EfficientNetV2 model achieves state-of-the-art 

performance on image classification tasks, while 

requiring fewer parameters and achieving faster 

inference times compared to other popular deep 

learning models. The model is highly scalable and 

adaptable to different image sizes and resolutions, 

making it suitable for a wide range of applications. Its 

transfer learning capabilities and robustness to noise 

also make it an attractive option for developers 

working with limited training data or lower-quality 
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images. Overall, the EfficientNetV2 model is a 

valuable tool for computer vision applications and is 

likely to play an important role in the continued 

development of AI technologies. Compared to 

EfficientNet and newer runs, the EfficientNetV2 is up 

to 6.8x smaller while training up to 11x faster [19]. 

EfficientNetV2B1 is one of the smaller 

models in the EfficientNet family, with a moderate 

number of parameters and computational cost. It was 

designed for image classification tasks and has shown 

good performance on a variety of benchmarks. 

EfficientNetV2 models are an improvement over the 

original EfficientNet models, with better performance 

and fewer parameters. EfficientNetV2B1 is trained on 

the ImageNet dataset, which contains over 1 million 

labeled images from 1000 classes. It is a widely used 

benchmark for image classification tasks, and many 

CNN models are trained and evaluated on it. 

Therefore, EfficientNetV2B1 model was used in the 

fungus classification application to be developed. 

 

3.6. Software Libraries 

 

Within the scope of this study, the Python 

programming language was used to create the CNN 

model. Python is used in many areas and contains 

various libraries for different areas. It also supports 

developers and researchers with very powerful and 

useful libraries in the field of machine learning. In the 

fungus classification application, TensorFlow and 

Keras libraries supported by Google were used. Also, 

the Matplotlib and NumPy were used for data 

visualization and numerical computing. 

 

3.7. Flutter 

 

Flutter is an open source user interface development 

kit created by Google. It is used to develop 

applications for Android, iOS, Windows, Mac, Linux 

and the web [20]. It has a layered architecture that 

gives developers control over every pixel on the 

screen, using a set of built-in widgets.  

Flutter is powered by Skia, a hardware-

accelerated graphics library that is used in Chrome 

and Android, and it is designed to support fast, error-

free graphics on both iOS and Android devices. The 

Flutter framework is built on the Dart platform, which 

provides support for 32-bit and 64-bit ARM machine 

code for iOS and Android, as well as JavaScript for 

the web and compiling to Intel x64 for desktop 

devices. Flutter is a good choice for developing deep 

learning models because of its fast performance and 

ability to create visually appealing apps. 

 

4. Training and Test of the CNN Model 

 

4.1. Data Set 

 

In 2018, the "FGVCx Fungi Classification" 

competition was held on Kaggle [21] using data 

provided and sponsored by the Danish Swampe Atlas 

[22]. The Danish Fungus Atlas contains 8560 expert-

approved fungus species and has been supported by 

over 4000 volunteers, resulting in over 1 million 

labeled data points. The FGVCx Fungi Dataset, 

created for the competition, includes 85578 images 

for training and 4182 images for verification of 1394 

fungal species. There is also a set of test data 

consisting of 9758 images whose labels are not 

publicly available. For the purpose of this study, 77 

fungus species from the competition's dataset were 

selected, resulting in a training dataset of 6733 fungus 

images, a validation dataset of 231 images, and a test 

dataset of 400 images. 

The data set used to train the model should 

have a folder structure as shown in Figure 7. The 

FGVCx Fungi dataset does not come divided into 

training and validation sets, but rather is loaded as a 

whole. Information about which images should be 

used for training and which should be used for 

validation is provided in JSON format. A Python 

script was created to divide the data into training and 

validation sets based on this information. 

 

 

Figure 7. The desired folder structure of the data set. 

 

4.2. Data Augmentation 

 

The amount of data is crucial in deep learning. If a 

model has too many parameters relative to the number 

of training examples and has a complex structure, it 

may suffer from overfitting [23]. This means that 

while the model performs well on the training data, it 

may not perform as well on tests or in real-life 

classification. In other words, the model has 

memorized the few training examples it has seen and 

has difficulty generalizing to new examples. Data 

augmentation techniques, such as rotation, flip, and 

adding random noise, can help to improve the image 
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recognition accuracy [23,24]. These techniques 

involve modifying the training data in order to create 

additional, slightly different examples that can be 

used to train the model. 

In this study, a data augmentation layer was 

implemented to augment the data during training. 

This layer was integrated into the model using the 

Keras functional API and will automatically apply 

data augmentation during the training phase. When 

using this model, it will not be necessary to manually 

perform data augmentation. The Keras library can be 

used to create a data augmentation layer, which can 

modify images during training according to the 

properties specified in the layer. Figure 8 shows some 

examples of the augmented images produced by the 

data augmentation layer. 

 

 

Figure 8. Some images regenerated by the data 

augmentation layer. 

 

4.3. Creating the Model 

 

In this section, the pre-trained model was retrieved 

from the Keras functional API, modified with 

necessary additions, and trained. The model building 

process involved two stages: feature extraction and 

fine-tuning. At the end of each stage, the model's 

accuracy and loss were plotted in curve graphs. 

 

4.3.1. Feature Extraction 

 

EfficientNetV2B1, a model trained on the 

ImageNet1k dataset, will be used in this study. To 

utilize Transfer Learning, it is important to freeze the 

model by disabling the trainability of its layers. This 

helps to preserve the previously learned weights and 

avoids making any changes to them. In this case, the 

model was trained for 25 epochs. 

To build the main model, the previously 

created data augmentation layer and input layer must 

be added. The Keras functional API offers a lot of 

flexibility and convenience for modifying the model 

by adding different layers as if adding a chain to 

different parts of the model. First, the input layer is 

included. Next, the data augmentation layer is added. 

Then, the EfficientNetV2B1 model, which forms the 

main part of the model, is added. A Global Average 

Pooling layer is then created and added to the end of 

the modified model. This layer is used to make the 

feature maps easier to interpret, rather than directly 

providing the feature maps to the fully connected 

layer. Finally, an output layer with 77 neurons is 

created to return 77 possibilities for an image, 

representing the 77 fungus species in the dataset. The 

"softmax" activation function is used in the output 

layer for multi-class classification, producing outputs 

between [0,1] indicating the probability that each 

input belongs to a class. The layers of the model are 

shown in Figure 9. 

The image data used in the model was resized 

to 224x224x3 dimensions. The choice of optimization 

algorithm should take into account the characteristics 

of the problem and the dataset. In this case, the Adam 

optimization algorithm was used in the training 

process. After preparing the layers and parameters, 

the training process for the proposed model was 

initiated. 

 

 

Figure 9. The structure of the proposed model. 

 

Table 2 shows the first 5 and last 5 epoch 

values obtained in the initial training of the model. 

During training, the model was also validated using 

validation data at each epoch. Figure 10 plots the loss 

and accuracy values for feature extraction, which is 

the first training step. Both the table and the plotted 

curves can be used to make inferences about the 

model's performance.



İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023 

233 
 

 

Table 2. The results obtained in the first training of the model. 

Epoch Duration Training 

loss 

Traning 

accuracy 

Loss of 

validation 

Accuracy of 

validation 

1/25 149s 2.8566 0.3575 2.0017 0.5281 

2/25 96s 1.6368 0.6318 1.4246 0.6623 

3/25 82s 1.2636 0.7079 1.1679 0.7446 

4/25 79s 1.0594 0.7493 0.9908 0.7835 

5/25 71s 0.9274 0.7760 0.8876 0.8139 

... ... ... ... ... ... 

21/25 45s 0.3353 0.9247 0.4228 0.8918 

22/25 46s 0.3244 0.9266 0.4134 0.8961 

23/25 43s 0.3150 0.9265 0.4084 0.9048 

24/25 43s 0.2958 0.9335 0.3950 0.9004 

25/25 44s 0.2794 0.9393 0.3814 0.9091 

 

The model performed well in the first epoch, 

with a validation success rate of 0.5281 after one 

epoch of training. While this is a good value, it is 

expected that the loss would be quite high at the 

beginning of training. As training progressed, the 

model became more accurate and made fewer 

mistakes, as seen in the curves in Figure 10. 
 

 

Figure 10. Loss and accuracy curves for 25 epochs. 

 

The parts at the end of the curves remain 

stable and do not diverge from each other, indicating 

that the model is making consistent predictions in the 

validation tests compared to the predictions made 

during training. This suggests that there is no 

overfitting. If the last parts of the curves were widely 

separated and continued to diverge, it would indicate 

that the model is memorizing the data and further 

precautions would be necessary. Figure 10(b) shows 

some fluctuation at the last parts of the accuracy 

curves. Additionally, examining the last three epochs 

in the table reveals that saturation has begun to be 

reached for feature extraction, with the accuracy 

value increasing very slowly. The accuracy values for 

training and validation also appear to be starting to 

diverge towards the end, indicating that the training 

should be stopped at this point. 

If the number of epochs is increased further, 

the model may start to overfit. It is important to pay 

attention to this and analyze the results of the training 

carefully. To reduce fluctuation in the curves and 

improve the model's performance, fine-tuning was 

applied to the model 
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4.3.2. Fine-Tuning 

 

In this stage, the model was trained for 10 epochs 

by enabling the trainability feature for the last 15 

layers of the model. This fine-tuning and 

updating is expected to improve the model's 

performance. To begin, all layers of the model are 

made trainable. Then, a loop is created and all 

layers except the last 15 are frozen again. This 

leaves only the last 15 layers as trainable. The 

training speed of the model is also reduced 100 

times compared to normal. During the fine-

tuning phase, training is performed at a much 

lower rate than usual. Finally, training continues 

from the last epoch value that the model reached 

in its previous training. The results of the model, 

which received a total of 35 epochs of training, 

are summarized in Table 3, and the curve graphs 

are shown in Figures 11 and 12. 

 

 

Figure 11. Accuracy curves of the model after fine 

tuning. 

 

Figure 12. Loss curves of the model after fine tuning. 

 
Table 3. Results obtained in the fine-tuning phase. 

Epoch Duration Training 

loss 

Training 

accuracy 

Loss of 

validation 

Accuracy of 

validation 

25/35 62s 0.2384 0.9445 0.3420 0.9091 

26/35 45s 0.2157 0.9459 0.3313 0.9134 

27/35 45s 0.2046 0.9479 0.3263 0.9134 

28/35 45s 0.2037 0.9459 0.3276 0.9177 

29/35 44s 0.1920 0.9476 0.3257 0.9134 

30/35 45s 0.1951 0.9465 0.3189 0.9264 

31/35 45s 0.1963 0.9464 0.3174 0.9264 

32/35 44s 0.1880 0.9491 0.3158 0.9264 

33/35 43s 0.1812 0.9520 0.3150 0.9264 

34/35 43s 0.1835 0.9528 0.3186 0.9221 

35/35 42s 0.1851 0.9498 0.3194 0.9264 

 

4.4. Testing the Model 

 

When the developed model is evaluated using 

test data consisting of 400 images, it is found that 

the accuracy is 97% and the loss value is 0.1441. 

In addition to these values, various metrics are 

used to evaluate the performance of classification 

models. By calculating these values, various 

inferences can be made and a confusion matrix 

can be created. To evaluate the model 

performance, some metrics were utilized in this 

study.  These are Accuracy, Loss-Categorical 

Cross-Entropy, Precision, Recall, and F1 Score. 

Accuracy is the most common metric used to 

evaluate classification models. It represents the 

percentage of correctly classified instances out of 

the total number of instances in the dataset. The 

Loss-Categorical Cross-Entropy is a loss 

function that measures the performance of a 

multi-class classification model by calculating 

the difference between the predicted probability 

distribution and the actual probability 

distribution of the target variable. Precision is a 

metric that measures the proportion of true 

positive predictions out of all the positive 

predictions made by the model. Recall is a metric 

that measures the proportion of true positive 
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predictions out of all the actual positive instances 

in the dataset. F1 score is the harmonic mean of 

precision and recall, and is a popular metric for 

evaluating classification models. It provides a 

balanced measure of precision and recall, and is 

particularly useful when the dataset is 

imbalanced. The formulas for calculating these 

metrics are summarized in Table 4, and the 

results of these metrics calculated for test of the 

proposed model are given in Table 5. PREC, 

REC, TN, TP, FN, and FP used in model 

evaluation metrics formulas are Precision, 

Recall, True Negative, True Positive, False 

Negative, and False Positive, respectively. 

  The success rate of the model was 

recorded and then the network was tested on real 

images. To do this, fungus images from different 

sources were uploaded to Google Colaboratory 

and provided as input to the trained network, and 

the classification results were obtained. The 

classification rates and images from the test 

results are shown in Figure 13. To demonstrate 

the performance of the model, the confusion 

matrix obtained using the samples of 77 fungal 

species is shown in Figure 14. 

 
Table 4. Metrics and formulas used in model evaluation. 

Metrics Formula 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑛 + 𝑇𝑁 
 

Loss-Categorical Cross-

Entropy 
∑ 𝑦𝑖 ∗ 𝑙𝑜𝑔𝑦̂𝑖

𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒

𝑖=0
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score 
2 ∗ 𝑃𝑅𝐸𝐶 ∗ 𝑅𝐸𝐶

𝑃𝑅𝐸𝐶 + 𝑅𝐸𝐶
 

 
Table 5. Evaluation results of the model. 

Accuracy 0.9700 

Loss 0.1441 

Precision 0.9746 

Recall 0.9696 

F1 Score 0.9694 
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Figure 13. Classification results of test fungus images. 
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Figure 14. Confusion matrix of 77 fungal species used in the model. 

 

 

5. Mobile Application Developed for Fungus 

Species Detection 

 

After training the model for detecting fungus species, 

the trained model was saved. Since the model was 

developed in Colaboratory, the trained network is also 

saved here. However, the saved model cannot be used 

directly on mobile devices. Instead, the model was 

converted to the tflite format in the Colaboratory 

environment for use on mobile devices. A mobile 

application was then developed using the Dart 

programming language and the Flutter UI kit. 
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5.1. Application Homepage 

 

When the application is first opened, the 

homepage shown in Figure 15 appears to the 

user. 
 

 

Figure 15. Application homepage. 

 

The main purpose of this page is to allow 

the user to input fungus images for classification 

and display the results. The user has two options 

for importing fungus images: taking a photo with 

the camera or choosing an image from the 

gallery. Two buttons are provided on the 

homepage to perform these actions. 

 
5.2. Results Page 

 

In the result page shown in Figure 16, images from 

the main page are input to the model, which classifies 

the fungus species and returns the name of the species 

in the image. A dictionary structure was also created 

that contains information about the fungus species, 

such as whether they are poisonous, edible, and found 

in certain regions. By using the fungus name returned 

by the model, the corresponding information in the 

dictionary structure is retrieved and displayed to the 

user. Some symbols were also created and used to 

convey information about the condition of the fungus. 

These symbols and their meanings are shown in 

Figure 17. Separate dictionaries have been created for 

these symbols, and the information symbol for the 

relevant fungus is printed by checking these 

dictionaries. 

 

 
 

Figure 16. Some screenshots of the fungus classification results. 
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Figure 17. Warning symbols about fungus classification. 

 

 

6. Conclusion and Future Works 

 

In this study, we discuss the use of deep learning 

to solve an image classification problem. The 

main idea is to demonstrate that problems can be 

quickly and easily solved by following 

appropriate methods and steps with transfer 

learning. To this end, we chose the fungus 

species classification problem and developed a 

study to solve it, including discussions of 

convolutional neural networks and transfer 

learning. 

Since the problem involves image 

classification, it is important that fungus images 

can be easily obtained. Therefore, the study was 

designed to be implemented in a mobile 

application. The model for classification was first 

prepared on Google Colaboratory, then 

converted to the "TensorFlow Lite" model and 

used in the mobile application. 

The prepared model accurately classifies 

77 fungus classes with high rates of success. 

When tested with 400 fungus images, the model 

achieved an accuracy of 0.97 and an average F1 

score of 0.9694. One of the main challenges in 

fungus classification is that different fungus 

species can be very similar to each other, making 

it difficult for the human eye to distinguish them 

and requiring extensive knowledge and expertise. 

Deep learning models may also utilized to 

accurately classify fungus species that are very 

similar to each other. To minimize this, it is 

important to have a diverse and rich dataset for 

training. This should be considered if a larger 

number of fungus species classifications are to be 

performed, as the number of species increases, 

the similarity in appearance between the fungus 

species will increase and the problem will 

become more complex and difficult. In addition, 

paying attention to overfitting and allowing for 

longer training periods will also contribute to 

better learning success. 

The mobile application developed to 

utilize the machine learning model has 

demonstrated successful performance. The 

application, which has a simple design, is 

optimized for fast and accurate classification of 

fungus species. Proper planning is crucial for the 

application's success, as issues such as data 

migration and page loading can significantly 

impact its performance. The application includes 

a dictionary of 77 fungus species, which allows 

users to access and view information about 

specific fungi by using the species name returned 

by the model through classification. 

When using deep learning to solve a 

problem, it is important to first clearly define the 

problem and thoroughly analyze it. The 

complexity of the problem should be taken into 

account when selecting appropriate data for the 

model. In the field of deep learning, data plays a 

crucial role. If the data is not clean, accurate, and 

relevant to the problem at hand, it is likely that 

the model will not perform well. One of the major 

factors driving the rapid growth of this field is the 

availability of large, high-quality data sets. It is 

essential to carefully consider these two key steps 

in the process of using deep learning. 
In the future, the work presented in this study 

could be expanded and refined to further improve the 

accuracy and efficiency of the model. One potential 

direction for future work is to increase the number of 

fungus species that the model can classify. This would 

require a larger and more diverse dataset for training, 

as well as more sophisticated techniques for handling 

the increased complexity of the classification 

problem. Another potential area for improvement is 

to optimize the mobile application's performance and 
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user experience, such as by implementing more 

advanced features or incorporating user feedback. 

Finally, the techniques and methods presented in this 

study could be applied to other image classification 

problems, opening up new opportunities for using 

deep learning to solve real-world problems. 
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