
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE

ISSN: 2147-3129/e-ISSN: 2147-3188

VOLUME: 12 NO: 1 PAGE: 226-241 YEAR: 2023

DOI:10.17798/bitlisfen.1225375

226

Fungus Classification Based on CNN Deep Learning Model

Serhat ORAL1, İrfan ÖKTEN2**, Uğur YÜZGEÇ1

1Bilecik Şeyh Edebali University, Faculty of Engineering, Computer Engineering, Bilecik
2Bitlis Eren University, Tatvan Vocational School, Department of Computer Technologies, Bitlis

 (ORCID:0009-0005-2761-1295) (ORCID:0000-0001-9898-7859) (ORCID:0000-0002-5364-6265)

Keywords: Deep Learning,

Convolutional Neural Networks,

Flutter, Mushroom

Classification, Image

Classification.

Abstract

Artificial intelligence has been developing day by day and has started to take a more

prominent place in human life. As computer technologies advance, research on

artificial intelligence has also increased in this direction. One of the main goals of

this research is to examine how real problems in human life can be solved using

artificial intelligence-based deep learning, and to present a case study. Poisoning

from the consumption of poisonous fungi is a common problem worldwide. To

prevent these poisonings, a mobile application has been developed using

Convolutional Neural Networks (CNNs) and transfer learning to detect the species

of fungus. The application informs the user about the type of fungus, whether it is

poisonous or non-toxic, and whether it is safe to eat. The aim of this study is to reduce

poisoning events caused by incorrect fungus detection and to facilitate the

identification of fungus species. The developed deep learning model is integrated

into a mobile application developed by Flutter that is a mobile application

development framework, which enable the detection of fungus species from images

taken from the camera or selected from the gallery. CNNs and the EfficientNetV2

model, a transfer learning method, were used. By using these two methods together,

the classification accuracy rate for 77 fungus species was obtained as 97%.

1. Introduction

Artificial intelligence is evolving day by day and

occupying a larger and larger place in human life. As

computer technologies develop and become more

powerful, the number of researches and studies on

artificial intelligence also increases in the same

direction. Today, artificial intelligence, which

continues to develop by dividing into many sub-

branches, is widely used to solve problems in human

life. It has gained a place in many fields, from routine

tasks in daily life to tasks that are difficult for humans

to learn and require time. One of the things that are

taken into consideration while developing artificial

intelligence technologies is the compatibility and

usability with the devices used by people in daily life.

The purpose here is computer, phone, tablet, wearable

technology, etc., which are used very often in daily

life to be actively introduced into human life and to

benefit from more artificial intelligence. For this

* Corresponding author: iokten@beu.edu.tr Received: 28.01.2022, Accepted: 03.03.2023

reason, studies on artificial intelligence for mobile

devices outside of computers have increased

significantly recently.

Fungi have been used for medicine and food

by humans for centuries. While some of the hundreds

of fungus species found in nature are poisonous,

others are non-poisonous. However, some poisonous

fungus species and non-poisonous fungus species can

be very similar in appearance. Therefore, it is

important to have a good knowledge of fungi and to

have studied and used a variety of fungi in order to

distinguish them. People who are not familiar with

fungi may experience poisoning events when they try

to eat fungi. To prevent poisoning events caused by

fungi and to prevent the collection of the wrong

fungus species, the idea of developing a mobile

application that can detect the types of fungi has

emerged. A Convolutional Neural Network (CNN)

model has been utilized to solve the problem of

distinguishing a large number of similar fungus

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1225375
https://orcid.org/0009-0005-2761-1295
https://orcid.org/0000-0001-9898-7859
https://orcid.org/0000-0002-5364-6265
mailto:iokten@beu.edu.tr

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

227

species. This model aims to solve a difficult problem

that would take people a long time to learn, using the

power of artificial intelligence. The developed model

uses a picture of the fungus to inform the user about

the type of fungus, whether it is poisonous, and

whether it is edible.

The application environment for the deep

learning model developed in this study is a mobile

device, which is very suitable for the problem being

addressed. Since mobile devices are easily portable

and are devices that most people are already familiar

with using, the likelihood of experiencing difficulties

while using the developed application is very low.

Additionally, the highly developed camera systems in

mobile phones make them ideal tools for solving

image classification problems. For these reasons, the

goal of this project is to provide a practical solution to

the mentioned problem by combining deep learning

and the power of mobile devices.

Much work has been done on the use of

Convolutional Neural Networks (CNNs) and analysis

of image data within the scope of Deep Learning.

LeCun et al. discussed the subject of deep learning in

general in their study [1]. By touching on the usage

areas in the modern world, they explained the

working logic of the foundation of deep learning and

also explained the CNNs used for supervised learning

and classification. There are several layers found in

CNNs. These are: Convolutional Layer, Pooling

Layer and Fully Connected Layer [2].

Transfer learning is a machine learning

technique in which a model that has been trained on

one task is re-purposed and fine-tuned for a different

but related task. It involves using knowledge gained

while solving one problem to solve a different, but

related, problem. This can be done by transferring the

weights and biases learned from one model to another

model, or by using the pre-trained layers of a model

as the starting point for a new model. There are

different CNN models used for image classification

and proven success according to the period in which

they were developed. Some of these models are

AlexNet, GoogLeNet, VGG-Net and ResNet [3].

Developing a deep learning model from scratch in a

classification problem may not always be a logical

approach. We can achieve high success and save time

by training proven models with our own datasets. For

all these reasons, the method called Transfer Learning

was used in this study.

The proposed method in this study is original

in the sense that it utilizes deep learning techniques,

specifically Convolutional Neural Networks and

transfer learning, to develop a mobile application that

can accurately detect and classify different species of

fungi from images taken from a camera or selected

from a gallery. This approach is unique in its focus on

solving a real-world problem, specifically the

prevention of poisoning from the consumption of

poisonous fungi, through the use of cutting-edge

artificial intelligence techniques. The use of transfer

learning with the EfficientNetV2 model is also

noteworthy, as this method has been shown to

improve the accuracy of deep learning models while

requiring less training data, making it a promising

approach for future research in this field. Overall, the

proposed method represents a novel and innovative

approach to solving a significant public health issue

using advanced artificial intelligence techniques.

2. Material and Method

There are several methods for recognizing fungi,

including traditional methods such as microscopy and

taxonomic keys, as well as newer methods such as

DNA sequencing and machine learning. Deep

learning architectures such as convolutional neural

networks (CNNs) can be trained to classify fungi

based on their physical characteristics such as shape,

size, and color. These algorithms can be used to build

tools such as mobile applications or websites that can

help users identify different fungi based on images or

other data. Some studies on fungus classification in

literature and deep learning are summarized in Table

1.

Table 1. Some studies on deep learning and on fungus classification.

Authors Title of Study
Datasets Experimental

results
Year

Picek, L. et al.
Fungi Recognition: A Practical use

Case

FGVCx Fungi

Classification

Kaggle

Accuracy rate

: %79
2022 [4]

Picek, L. et al.
Automatic Fungi Recognition: Deep

Learning Meets Mycology

Danish Fungi

2020 (DF20)

Accuracy rate

: %79
2022 [5]

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

228

Krizhevsky, A. et

al.

ImageNet Classification with Deep

Convolutional Neural Networks

ImageNet

LSVRC-2010

contest

top-5 test error

rate of 15.3%
2012) [6]

He, K. et al.

Delving Deep into Rectifiers:

Surpassing Human-Level Performance

on ImageNet Classification

ImageNet

LSVRC-2012

contest

top-5 test error

rate of 4.94%
2015 [7]

Kamnitsas, K. et al.

Efficient multi-scale 3D CNN with

fully connected CRF for accurate

brain lesion segmentation

BRATS 2015

and ISLES 2015

Accuracy rate

: %77
2017 [8]

Kayalı, N.Z. and

İlhan Omurca, S.

Classification of Chinese Number

Patterns with Convolutional Neural

Networks (CNN)

MNIST dataset
Accuracy rate

: %97
2021 [9]

Bozkurt, F. and

Yağanoğlu, M.

Detection of COVID-19 from Lung X-

Ray Images Using Deep

Convolutional Neural Networks

Kaggle's

COVID-19

radiography

database

Accuracy rate

: %97.17
2021 [10]

Ökten, İ. and

Yüzgeç U.

Detection of Rice Crop Disease with

Convolutional Neural Network

Kaggle's Rice

Leaf İmages

database

Accuracy rate

: %97.57
2022 [11]

3. Material and Method

In this section, the deep learning type and methods to

be used are mentioned. The usage areas, working

logic and architecture of convolutional neural

networks are explained. The environment in which

deep learning studies will be carried out is introduced

and the benefits it provides to the developers are

explained. At the same time, important libraries to be

used are also introduced.

3.1. Convolutional Neural Network (CNN)

One of the most popular models for classification

from image data is the CNN model. The features of

an image are extracted by passing the input image

through multiple convolutional layers. The

convolution layer is the basic building block of a

CNN and is where most of the computation occurs.

Typically, 3x3 filters are used to extract the features

of the image. These filters scan all image pixels and

perform convolution, as shown in Figure 1, resulting

in a feature map [12]. After each convolution

operation, the ReLU activation function is applied to

the feature map.

Figure 1. Illustration of the convolution operation [13].

Another layer in a CNN is the pooling layer.

Pooling layers are used to further reduce the number

of parameters and computational complexity of the

model by gradually reducing the dimensionality of the

representation. The largest pixel within the selected

pooling size is transferred to the output. In the

example shown in Figure 2, a 2x2 max-pooling

process was applied by shifting it by 2 steps (pixels)

[14]. This scales the feature map up to 25% while

keeping the depth volume at its standard size [3].

A CNN model structure is shown as an

example in Figure 3. Here, the input image undergoes

a series of convolution and pooling operations,

resulting in a final array through the fully connected

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

229

layer. The highest value in the sequence determines

the class to which the image belongs.

Figure 2. Max-pool operation [14].

Figure 3. A sample CNN model structure [15].

3.2. Transfer Learning

Learning transfer is a machine learning technique in

which a model that has been trained on one task is

applied to a related, but different task. This can be

useful when we have a smaller data set for the new

task and don't have enough data to train a new model

from scratch. It can also be useful when we need to

train a model quickly, or when we want to use a pre-

trained model as a starting point and then fine-tune it

for a specific task [16]. There are two main

approaches to learning transfer: feature extraction and

fine-tuning.

Feature extraction involves using the pre-

trained model as a fixed feature extractor, where the

output of the pre-trained model's layers is taken as

input for a new model. This new model is then trained

on the new task using these extracted features. Fine-

tuning involves unfreezing some of the layers of the

pre-trained model and retraining them using the new

data. This can be useful when the new task is similar

enough to the original task that we can leverage the

knowledge learned by the pre-trained model.

Image recognition has made significant

advances in recent years due to the availability of

large-scale datasets such as ImageNet, which contains

over 1.2 million categorized natural images from over

1000 classes. Convolutional neural networks (CNNs)

trained on these datasets have achieved successful

results on various object detection and image

segmentation tasks [17].

3.3. Feature Extraction

In multiclassification problems, the output layer of

each model is specific to the dataset it is trained on.

In other words, if the model is trained with a data set

containing 50 classes, there must be 50 neurons in the

output layer of the model. CNN models trained with

ImageNet therefore have output layers with 1000

neurons. When we apply these pre-trained models to

our own dataset and problem, we pull without the last

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

230

layers and add the appropriate output layer ourselves.

The parts to be changed and preserved in the original

model are basically shown in Figure 4.

In the feature extraction method, the weights

are preserved by freezing the layers of the pre-trained

model. Since training will not take place in these

layers, the weights will not be updated. Here, the

classification process is carried out by making use of

the information learned from the previous training.

Training takes place only in the last added layers.

Figure 4. Application of feature extraction method to the

model [18].

3.4. Fine-Tuning

Fine-tuning is a method of learning transfer in which

all or part of the pre-trained model is unfrozen and

retrained on the new data using a low learning rate.

This is in contrast to feature extraction, where the pre-

trained model is used as a fixed feature extractor and

a new model is trained on the extracted features. Fine-

tuning can lead to significant improvements by

adapting the previously learned features to the new

data. Figure 5 illustrates the difference between these

two methods. It is often effective to use both feature

extraction and fine-tuning together in learning

transfer.

Figure 5. Feature extraction and fine-tuning [18].

3.5. EfficientNetV2B1 Model

The efficiency of deep learning in training is often

related to the size of the model and the amount of

training data. For instance, GPT-3, a very large model

with a lot of training data, can achieve significant

success in a few steps, but this requires weeks of

training on thousands of GPUs, which can be complex

and time-consuming. In contrast, techniques like

learning transfer can be more efficient because they

allow for the use of smaller models with fewer

parameters, as long as the model is well-designed and

effective at achieving successful results.

EfficientNetV2 is a family of small size image

classification models that provide good parameter

efficiency and faster training as seen in Figure 6. It

includes developed models in various sizes.

Figure 6. Training and parameter efficiency of

EfficientNetV2 model [19].

The EfficientNetV2 is an improved version of

the EfficientNet model, which has gained popularity

due to its ability to balance accuracy and efficiency.

The EfficientNetV2 model achieves state-of-the-art

performance on image classification tasks, while

requiring fewer parameters and achieving faster

inference times compared to other popular deep

learning models. The model is highly scalable and

adaptable to different image sizes and resolutions,

making it suitable for a wide range of applications. Its

transfer learning capabilities and robustness to noise

also make it an attractive option for developers

working with limited training data or lower-quality

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

231

images. Overall, the EfficientNetV2 model is a

valuable tool for computer vision applications and is

likely to play an important role in the continued

development of AI technologies. Compared to

EfficientNet and newer runs, the EfficientNetV2 is up

to 6.8x smaller while training up to 11x faster [19].

EfficientNetV2B1 is one of the smaller

models in the EfficientNet family, with a moderate

number of parameters and computational cost. It was

designed for image classification tasks and has shown

good performance on a variety of benchmarks.

EfficientNetV2 models are an improvement over the

original EfficientNet models, with better performance

and fewer parameters. EfficientNetV2B1 is trained on

the ImageNet dataset, which contains over 1 million

labeled images from 1000 classes. It is a widely used

benchmark for image classification tasks, and many

CNN models are trained and evaluated on it.

Therefore, EfficientNetV2B1 model was used in the

fungus classification application to be developed.

3.6. Software Libraries

Within the scope of this study, the Python

programming language was used to create the CNN

model. Python is used in many areas and contains

various libraries for different areas. It also supports

developers and researchers with very powerful and

useful libraries in the field of machine learning. In the

fungus classification application, TensorFlow and

Keras libraries supported by Google were used. Also,

the Matplotlib and NumPy were used for data

visualization and numerical computing.

3.7. Flutter

Flutter is an open source user interface development

kit created by Google. It is used to develop

applications for Android, iOS, Windows, Mac, Linux

and the web [20]. It has a layered architecture that

gives developers control over every pixel on the

screen, using a set of built-in widgets.

Flutter is powered by Skia, a hardware-

accelerated graphics library that is used in Chrome

and Android, and it is designed to support fast, error-

free graphics on both iOS and Android devices. The

Flutter framework is built on the Dart platform, which

provides support for 32-bit and 64-bit ARM machine

code for iOS and Android, as well as JavaScript for

the web and compiling to Intel x64 for desktop

devices. Flutter is a good choice for developing deep

learning models because of its fast performance and

ability to create visually appealing apps.

4. Training and Test of the CNN Model

4.1. Data Set

In 2018, the "FGVCx Fungi Classification"

competition was held on Kaggle [21] using data

provided and sponsored by the Danish Swampe Atlas

[22]. The Danish Fungus Atlas contains 8560 expert-

approved fungus species and has been supported by

over 4000 volunteers, resulting in over 1 million

labeled data points. The FGVCx Fungi Dataset,

created for the competition, includes 85578 images

for training and 4182 images for verification of 1394

fungal species. There is also a set of test data

consisting of 9758 images whose labels are not

publicly available. For the purpose of this study, 77

fungus species from the competition's dataset were

selected, resulting in a training dataset of 6733 fungus

images, a validation dataset of 231 images, and a test

dataset of 400 images.

The data set used to train the model should

have a folder structure as shown in Figure 7. The

FGVCx Fungi dataset does not come divided into

training and validation sets, but rather is loaded as a

whole. Information about which images should be

used for training and which should be used for

validation is provided in JSON format. A Python

script was created to divide the data into training and

validation sets based on this information.

Figure 7. The desired folder structure of the data set.

4.2. Data Augmentation

The amount of data is crucial in deep learning. If a

model has too many parameters relative to the number

of training examples and has a complex structure, it

may suffer from overfitting [23]. This means that

while the model performs well on the training data, it

may not perform as well on tests or in real-life

classification. In other words, the model has

memorized the few training examples it has seen and

has difficulty generalizing to new examples. Data

augmentation techniques, such as rotation, flip, and

adding random noise, can help to improve the image

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

232

recognition accuracy [23,24]. These techniques

involve modifying the training data in order to create

additional, slightly different examples that can be

used to train the model.

In this study, a data augmentation layer was

implemented to augment the data during training.

This layer was integrated into the model using the

Keras functional API and will automatically apply

data augmentation during the training phase. When

using this model, it will not be necessary to manually

perform data augmentation. The Keras library can be

used to create a data augmentation layer, which can

modify images during training according to the

properties specified in the layer. Figure 8 shows some

examples of the augmented images produced by the

data augmentation layer.

Figure 8. Some images regenerated by the data

augmentation layer.

4.3. Creating the Model

In this section, the pre-trained model was retrieved

from the Keras functional API, modified with

necessary additions, and trained. The model building

process involved two stages: feature extraction and

fine-tuning. At the end of each stage, the model's

accuracy and loss were plotted in curve graphs.

4.3.1. Feature Extraction

EfficientNetV2B1, a model trained on the

ImageNet1k dataset, will be used in this study. To

utilize Transfer Learning, it is important to freeze the

model by disabling the trainability of its layers. This

helps to preserve the previously learned weights and

avoids making any changes to them. In this case, the

model was trained for 25 epochs.

To build the main model, the previously

created data augmentation layer and input layer must

be added. The Keras functional API offers a lot of

flexibility and convenience for modifying the model

by adding different layers as if adding a chain to

different parts of the model. First, the input layer is

included. Next, the data augmentation layer is added.

Then, the EfficientNetV2B1 model, which forms the

main part of the model, is added. A Global Average

Pooling layer is then created and added to the end of

the modified model. This layer is used to make the

feature maps easier to interpret, rather than directly

providing the feature maps to the fully connected

layer. Finally, an output layer with 77 neurons is

created to return 77 possibilities for an image,

representing the 77 fungus species in the dataset. The

"softmax" activation function is used in the output

layer for multi-class classification, producing outputs

between [0,1] indicating the probability that each

input belongs to a class. The layers of the model are

shown in Figure 9.

The image data used in the model was resized

to 224x224x3 dimensions. The choice of optimization

algorithm should take into account the characteristics

of the problem and the dataset. In this case, the Adam

optimization algorithm was used in the training

process. After preparing the layers and parameters,

the training process for the proposed model was

initiated.

Figure 9. The structure of the proposed model.

Table 2 shows the first 5 and last 5 epoch

values obtained in the initial training of the model.

During training, the model was also validated using

validation data at each epoch. Figure 10 plots the loss

and accuracy values for feature extraction, which is

the first training step. Both the table and the plotted

curves can be used to make inferences about the

model's performance.

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

233

Table 2. The results obtained in the first training of the model.

Epoch Duration Training

loss

Traning

accuracy

Loss of

validation

Accuracy of

validation

1/25 149s 2.8566 0.3575 2.0017 0.5281

2/25 96s 1.6368 0.6318 1.4246 0.6623

3/25 82s 1.2636 0.7079 1.1679 0.7446

4/25 79s 1.0594 0.7493 0.9908 0.7835

5/25 71s 0.9274 0.7760 0.8876 0.8139

...

21/25 45s 0.3353 0.9247 0.4228 0.8918

22/25 46s 0.3244 0.9266 0.4134 0.8961

23/25 43s 0.3150 0.9265 0.4084 0.9048

24/25 43s 0.2958 0.9335 0.3950 0.9004

25/25 44s 0.2794 0.9393 0.3814 0.9091

The model performed well in the first epoch,

with a validation success rate of 0.5281 after one

epoch of training. While this is a good value, it is

expected that the loss would be quite high at the

beginning of training. As training progressed, the

model became more accurate and made fewer

mistakes, as seen in the curves in Figure 10.

Figure 10. Loss and accuracy curves for 25 epochs.

The parts at the end of the curves remain

stable and do not diverge from each other, indicating

that the model is making consistent predictions in the

validation tests compared to the predictions made

during training. This suggests that there is no

overfitting. If the last parts of the curves were widely

separated and continued to diverge, it would indicate

that the model is memorizing the data and further

precautions would be necessary. Figure 10(b) shows

some fluctuation at the last parts of the accuracy

curves. Additionally, examining the last three epochs

in the table reveals that saturation has begun to be

reached for feature extraction, with the accuracy

value increasing very slowly. The accuracy values for

training and validation also appear to be starting to

diverge towards the end, indicating that the training

should be stopped at this point.

If the number of epochs is increased further,

the model may start to overfit. It is important to pay

attention to this and analyze the results of the training

carefully. To reduce fluctuation in the curves and

improve the model's performance, fine-tuning was

applied to the model

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

234

4.3.2. Fine-Tuning

In this stage, the model was trained for 10 epochs

by enabling the trainability feature for the last 15

layers of the model. This fine-tuning and

updating is expected to improve the model's

performance. To begin, all layers of the model are

made trainable. Then, a loop is created and all

layers except the last 15 are frozen again. This

leaves only the last 15 layers as trainable. The

training speed of the model is also reduced 100

times compared to normal. During the fine-

tuning phase, training is performed at a much

lower rate than usual. Finally, training continues

from the last epoch value that the model reached

in its previous training. The results of the model,

which received a total of 35 epochs of training,

are summarized in Table 3, and the curve graphs

are shown in Figures 11 and 12.

Figure 11. Accuracy curves of the model after fine

tuning.

Figure 12. Loss curves of the model after fine tuning.

Table 3. Results obtained in the fine-tuning phase.

Epoch Duration Training

loss

Training

accuracy

Loss of

validation

Accuracy of

validation

25/35 62s 0.2384 0.9445 0.3420 0.9091

26/35 45s 0.2157 0.9459 0.3313 0.9134

27/35 45s 0.2046 0.9479 0.3263 0.9134

28/35 45s 0.2037 0.9459 0.3276 0.9177

29/35 44s 0.1920 0.9476 0.3257 0.9134

30/35 45s 0.1951 0.9465 0.3189 0.9264

31/35 45s 0.1963 0.9464 0.3174 0.9264

32/35 44s 0.1880 0.9491 0.3158 0.9264

33/35 43s 0.1812 0.9520 0.3150 0.9264

34/35 43s 0.1835 0.9528 0.3186 0.9221

35/35 42s 0.1851 0.9498 0.3194 0.9264

4.4. Testing the Model

When the developed model is evaluated using

test data consisting of 400 images, it is found that

the accuracy is 97% and the loss value is 0.1441.

In addition to these values, various metrics are

used to evaluate the performance of classification

models. By calculating these values, various

inferences can be made and a confusion matrix

can be created. To evaluate the model

performance, some metrics were utilized in this

study. These are Accuracy, Loss-Categorical

Cross-Entropy, Precision, Recall, and F1 Score.

Accuracy is the most common metric used to

evaluate classification models. It represents the

percentage of correctly classified instances out of

the total number of instances in the dataset. The

Loss-Categorical Cross-Entropy is a loss

function that measures the performance of a

multi-class classification model by calculating

the difference between the predicted probability

distribution and the actual probability

distribution of the target variable. Precision is a

metric that measures the proportion of true

positive predictions out of all the positive

predictions made by the model. Recall is a metric

that measures the proportion of true positive

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

235

predictions out of all the actual positive instances

in the dataset. F1 score is the harmonic mean of

precision and recall, and is a popular metric for

evaluating classification models. It provides a

balanced measure of precision and recall, and is

particularly useful when the dataset is

imbalanced. The formulas for calculating these

metrics are summarized in Table 4, and the

results of these metrics calculated for test of the

proposed model are given in Table 5. PREC,

REC, TN, TP, FN, and FP used in model

evaluation metrics formulas are Precision,

Recall, True Negative, True Positive, False

Negative, and False Positive, respectively.

 The success rate of the model was

recorded and then the network was tested on real

images. To do this, fungus images from different

sources were uploaded to Google Colaboratory

and provided as input to the trained network, and

the classification results were obtained. The

classification rates and images from the test

results are shown in Figure 13. To demonstrate

the performance of the model, the confusion

matrix obtained using the samples of 77 fungal

species is shown in Figure 14.

Table 4. Metrics and formulas used in model evaluation.

Metrics Formula

Accuracy
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑛 + 𝑇𝑁

Loss-Categorical Cross-

Entropy
∑ 𝑦𝑖 ∗ 𝑙𝑜𝑔𝑦̂𝑖

𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒

𝑖=0

Precision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 Score
2 ∗ 𝑃𝑅𝐸𝐶 ∗ 𝑅𝐸𝐶

𝑃𝑅𝐸𝐶 + 𝑅𝐸𝐶

Table 5. Evaluation results of the model.

Accuracy 0.9700

Loss 0.1441

Precision 0.9746

Recall 0.9696

F1 Score 0.9694

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

236

Figure 13. Classification results of test fungus images.

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

237

Figure 14. Confusion matrix of 77 fungal species used in the model.

5. Mobile Application Developed for Fungus

Species Detection

After training the model for detecting fungus species,

the trained model was saved. Since the model was

developed in Colaboratory, the trained network is also

saved here. However, the saved model cannot be used

directly on mobile devices. Instead, the model was

converted to the tflite format in the Colaboratory

environment for use on mobile devices. A mobile

application was then developed using the Dart

programming language and the Flutter UI kit.

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

238

5.1. Application Homepage

When the application is first opened, the

homepage shown in Figure 15 appears to the

user.

Figure 15. Application homepage.

The main purpose of this page is to allow

the user to input fungus images for classification

and display the results. The user has two options

for importing fungus images: taking a photo with

the camera or choosing an image from the

gallery. Two buttons are provided on the

homepage to perform these actions.

5.2. Results Page

In the result page shown in Figure 16, images from

the main page are input to the model, which classifies

the fungus species and returns the name of the species

in the image. A dictionary structure was also created

that contains information about the fungus species,

such as whether they are poisonous, edible, and found

in certain regions. By using the fungus name returned

by the model, the corresponding information in the

dictionary structure is retrieved and displayed to the

user. Some symbols were also created and used to

convey information about the condition of the fungus.

These symbols and their meanings are shown in

Figure 17. Separate dictionaries have been created for

these symbols, and the information symbol for the

relevant fungus is printed by checking these

dictionaries.

Figure 16. Some screenshots of the fungus classification results.

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

239

Figure 17. Warning symbols about fungus classification.

6. Conclusion and Future Works

In this study, we discuss the use of deep learning

to solve an image classification problem. The

main idea is to demonstrate that problems can be

quickly and easily solved by following

appropriate methods and steps with transfer

learning. To this end, we chose the fungus

species classification problem and developed a

study to solve it, including discussions of

convolutional neural networks and transfer

learning.

Since the problem involves image

classification, it is important that fungus images

can be easily obtained. Therefore, the study was

designed to be implemented in a mobile

application. The model for classification was first

prepared on Google Colaboratory, then

converted to the "TensorFlow Lite" model and

used in the mobile application.

The prepared model accurately classifies

77 fungus classes with high rates of success.

When tested with 400 fungus images, the model

achieved an accuracy of 0.97 and an average F1

score of 0.9694. One of the main challenges in

fungus classification is that different fungus

species can be very similar to each other, making

it difficult for the human eye to distinguish them

and requiring extensive knowledge and expertise.

Deep learning models may also utilized to

accurately classify fungus species that are very

similar to each other. To minimize this, it is

important to have a diverse and rich dataset for

training. This should be considered if a larger

number of fungus species classifications are to be

performed, as the number of species increases,

the similarity in appearance between the fungus

species will increase and the problem will

become more complex and difficult. In addition,

paying attention to overfitting and allowing for

longer training periods will also contribute to

better learning success.

The mobile application developed to

utilize the machine learning model has

demonstrated successful performance. The

application, which has a simple design, is

optimized for fast and accurate classification of

fungus species. Proper planning is crucial for the

application's success, as issues such as data

migration and page loading can significantly

impact its performance. The application includes

a dictionary of 77 fungus species, which allows

users to access and view information about

specific fungi by using the species name returned

by the model through classification.

When using deep learning to solve a

problem, it is important to first clearly define the

problem and thoroughly analyze it. The

complexity of the problem should be taken into

account when selecting appropriate data for the

model. In the field of deep learning, data plays a

crucial role. If the data is not clean, accurate, and

relevant to the problem at hand, it is likely that

the model will not perform well. One of the major

factors driving the rapid growth of this field is the

availability of large, high-quality data sets. It is

essential to carefully consider these two key steps

in the process of using deep learning.
In the future, the work presented in this study

could be expanded and refined to further improve the

accuracy and efficiency of the model. One potential

direction for future work is to increase the number of

fungus species that the model can classify. This would

require a larger and more diverse dataset for training,

as well as more sophisticated techniques for handling

the increased complexity of the classification

problem. Another potential area for improvement is

to optimize the mobile application's performance and

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

240

user experience, such as by implementing more

advanced features or incorporating user feedback.

Finally, the techniques and methods presented in this

study could be applied to other image classification

problems, opening up new opportunities for using

deep learning to solve real-world problems.

Contributions of the authors

This study is a study prepared by Serhat ORAL and

İrfan ÖKTEN under the consultancy of Prof Dr Uğur

YÜZGEÇ. Serhat ORAL contributed to the finding of

the data, the algorithm of the model and the

preparation of the software, İrfan ÖKTEN contributed

to the development of the software and the writing of

the article in this study, and Uğur YÜZGEÇ

contributed to the editing and consultancy of the

article.

Conflict of Interest Statement

There is no conflict of interest between the authors.

Statement of Research and Publication Ethics

The study is complied with research and publication

ethics

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” arXiv [cs.NE], 2015.

[3] F. Sultana, A. Sufian, and P. Dutta, “Advancements in image classification using convolutional Neural

Network,” arXiv [cs.CV], 2019.

[4] L. Picek, M. Šulc, J. Matas, J. Heilmann-Clausen, T. S. Jeppesen, and E. Lind, “Automatic fungi

recognition: Deep learning meets mycology,” Sensors (Basel), vol. 22, no. 2, p. 633, 2022.

[5] S. Sladojevic et al., Fungi Recognition: A Practical Use Case. 2020.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural

networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance

on ImageNet classification,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015.

[8] K. Kamnitsas et al., “Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion

segmentation,” Med. Image Anal., vol. 36, pp. 61–78, 2017.

[9] N. Z. Kayalı and S. Ve Ilhan Omurca, Konvolüsyonel Sinir Ağları (CNN) ile Çin Sayı Örüntülerinin

Sınıflandırması. 2021.

[10] F. Bozkurt ve M. Yağanoğlu, "Derin Evrişimli Sinir Ağları Kullanarak Akciğer X-Ray Görüntülerinden

COVID-19 Tespiti", Veri Bilimi, c. 4, sayı. 2, ss. 1-8, Ağu. 2021.

[11] İ. Ökten ve U. Yüzgeç, "Evrişimli Sinir Ağı ile Çeltik Bitkisi Hastalığının Tespiti", Bitlis Eren

Üniversitesi Fen Bilimleri Dergisi, c. 11, sayı. 1, ss. 203-217, Mar. 2022,

doi:10.17798/bitlisfen.1014393.

[12] “What are Convolutional Neural Networks?” Ibm.com. [Online]. Available:

https://www.ibm.com/topics/convolutional-neural-networks. [Accessed: 27-Dec-2022].

[13] A. H. Reynolds, “Anh H. reynolds,” Anh H. Reynolds. [Online]. Available:

https://anhreynolds.com/blogs/cnn.html. [Accessed: 27-Dec-2022].

[14] A. Kızrak, “DERİNE DAHA DERİNE: Evrişimli Sinir Ağları - ayyüce kızrak, ph.D,” Medium, 28-

May-2018. [Online]. Available: https://ayyucekizrak.medium.com/deri%CC%87ne-daha-

deri%CC%87ne-evri%C5%9Fimli-sinir-a%C4%9Flar%C4%B1-2813a2c8b2a9. [Accessed: 27-Dec-

2022].

[15] S. Saha, “A comprehensive guide to convolutional neural networks — the ELI5 way,” Towards Data

Science, 15-Dec-2018. [Online]. Available: https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53. [Accessed: 27-Dec-2022].

İ. Ökten, S. Oral, U. Yüzgeç / BEU Fen Bilimleri Dergisi 12 (1), 226-241, 2023

241

[16] M. Hussain, J. J. Bird, and D. R. Faria, “A study on CNN transfer learning for image classification,”

in Advances in Intelligent Systems and Computing, Cham: Springer International Publishing, 2019, pp.

191–202.

[17] H.-C. Shin et al., “Deep convolutional neural networks for computer-aided detection: CNN

architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging, vol. 35, no. 5,

pp. 1285–1298, 2016.

[18] S. Lee, “(TF2) Transfer Learning - Feature Extraction,” AAA (All About AI), 05-Mar-2022. [Online].

Available: https://seunghan96.github.io/dlf/TF2_4%EC%9E%A5/. [Accessed: 27-Dec-2022].

[19] M. Tan and Q. V. Le, “EfficientNetV2: Smaller models and faster training,” arXiv [cs.CV], 2021.

[20] Wikipedia contributors, “Flutter,” Wikipedia, The Free Encyclopedia. [Online]. Available:

https://tr.wikipedia.org/w/index.php?title=Flutter&oldid=27787028.

[21] “2018 FGCVx fungi classification challenge,” Kaggle.com. [Online]. Available:

https://www.kaggle.com/competitions/fungi-challenge-fgvc-2018/overview. [Accessed: 27-Dec-2022].

[22] “Danmarks officielle database for svampefund,” Danmarks SvampeatlasXXXXX. [Online]. Available:

https://svampe.databasen.org/en/. [Accessed: 27-Dec-2022].

[23] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random Erasing Data Augmentation,” Proc. Conf.

AAAI Artif. Intell., vol. 34, no. 07, pp. 13001–13008, 2020.

[24] W. Li, C. Chen, M. Zhang, H. Li, and Q. Du, “Data augmentation for hyperspectral image classification

with deep CNN,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 4, pp. 593–597, 2019.

