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Abstract
In this study, it has been researched the exponential curve as a 3rd , 5th and 7th order Bézier curve in E2. Also,
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1. Introduction and Preliminaries
Bezier curves have special mathematical representations and are obtained with the help of polynomial functions. Since these
curves are used in computer aided geometric design and modelling [1], they have an important place in applied fields. The
Bezier curve has a control polygon that contains it, and only the start and end points are on the curve, so it provides an advantage
in terms of use in modelling. Thus, it provides the opportunity to make the desired changes over the control polygon. Users
outline the wanted path in Bézier curves, and the application creates the needed frames for the object to move along the path.
For three dimension animation Bézier curves are often used to define 3D paths as well as two dimension curves for keyframe
interpolation. Apart from the Bézier-curves’ frequent use in applied sciences, the theory has been studied by many researchers
in mathematical points of view. The matrix form was first coined in [2]. The derivatives of the Bezier curves in matrix notation
was studied in [3]. Particularly, the 5th order Bezier curve and its derivatives were studied by matrices in [4]. Besides, it has
been investigated approximation methods in matrix form for Helix, sin waves and cosin curves by different order Bézier curves
in [5–7]. The curve is also subjected to the differential geometry. For example: In [8], A dual unit spherical Bézier-like curve
corresponds to a ruled surface by using Study’s transference principle and closed ruled surfaces are determined via control
points and also, integral invariants of these surfaces are investigated. In [9], Bezier-curves with curvature and torsion continuity
has been examined. In [10–12], Bezier curves and surfaces has been given and Bezier curves are designed for Computer-Aided
Geometric [13]. Recently equivalence conditions of control points and application to planar Bézier curves have been examined.
In [14], Frenet apparatus of the cubic Bezier curves has been examined in E3. In here, first 5th order Bezier curve and its first,
second and third derivatives have been examined based on the control points of 5thorder Bezier Curve in E3. Subsequently,
in [15, 16] involutes of cubic Bezier curves, in [17] and [18] the Bertrand and the Mannheim mate of a cubic Bézier curve by
using matrix representation have been researched in E3. In [19], it has been researched the answer of the question “How to find
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a nth order Bezier curve if we know the first, second and third derivatives?”.
Generally Bézier curves can be defined by n+1 control points P0,P1, . . . ,Pn with the parametrization

B(t) =
n

∑
i=0

(
n
i

)
t i (1− t)n−i (t) [Pi] . (1.1)

In this study, it will be researched the exponential curve as a 3rd , 5th and 7th order Bézier curve in E2. Also, the numerical
matrix representations of these curves will be calculated via the control points. For more detail, see respectively [20, 21].

It is well known that Taylor series of a function f (x) =
∞

∑
n=0

f (n) (a) (x−a)n

n! is an infinite sum of the functions derivatives at a

single point a, also a Maclaurin series f (x) =
∞

∑
n=0

f (n) (0) xn

n! is a taylor series where a = 0.

2. The Curve ex as a Cubic Bézier Curve
We will examine the curve ex as a cubic or 3rd order Bézier curve.

Theorem 2.1. The numerical matrix representation of the curve f (x) = ex as a cubic Bézier curve is

(
t,et)=


t3

t2

t
1


T 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




0 1
1
3

4
3

2
3

11
6

1 8
3


where the control points P0, P1, P2, and P3 are

P0
P1
P2
P3

=


0 1
1
3

4
3

2
3

11
6

1 8
3

 .
Proof. For ex function cubic Maclaurin series expansion is

ex = 1+ x+
x2

2!
+

x3

3!
.

It can be written as in parametric form and a 5th degree polynomial function(
t,et)= (t,1+ t +

t2

2!
+

t3

3!

)
=
(
t,a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a cubic Bézier curve in matrix representation with the coefficients

a3 =
1
3! ,

a2 =
1
2! ,

a1 = 1,
a0 = 1.

Hence we get the following equation(
t,et)= (t,1+ t +

t2

2!
+

t3

3!

)

=


t3

t2

t
1


T 

0 1
3!

0 1
2!

1 1
0 1

=


t3

t2

t
1


T 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




P0
P1
P2
P3

 ,


P0
P1
P2
P3

=


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1




0 1
3!

0 1
2!

1 1
0 1

 ,
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where the coefficients matrix of any cubic Bézier curve and inverse matrix are respectively

[
B3]=


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

 , [
B3]−1

=


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1

 .
For more detail see in [18].

3. The Curve eax+b as a Cubic Bézier Curve

Theorem 3.1. The numerical matrix representation of the curve f (x) = eax+b as a cubic Bézier curve is

(
t,eat+b

)
=


t3

t2

t
1


T [

B3]


P0
P1
P2
P3


where the control points P0, P1, P2, and P3 are

P0
P1
P2
P3

=


0 eb

1
3

1
3 eb (a+3)

2
3

1
6 eb
(
a2 +4a+6

)
1 1

6 eb
(
a3 +3a2 +6a+6

)
 .

Proof. Taylor series of a function is an infinite sum of terms of the functions derivatives at a single point a , also a Maclaurin
series is a taylor series where a = 0. 5th degree Maclaurin series expansion for the function eax+b is

f (x) = eax+b =
3

∑
n=0

f (n) (0)
xn

n!

= eb +aebx+a2eb x2

2!
+a3eb x3

3!
.

It can be written as in parametric form and a cubic polynomial function

(
t,eat+b

)
=

(
t,

a3eb

3!
t3 +

a2eb

2!
t2 +aebt + eb

)
=
(
t,a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a cubic Bézier curve in matrix representation with the coefficients

a3 =
a3eb

3! ,

a2 =
a2eb

2! ,
a1 = aeb,
a0 = eb.

Hence we get the following equation
t3

t2

t
1


T


0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb

=


t3

t2

t
1


T 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




P0
P1
P2
P3

 ,
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
P0
P1
P2
P3

=


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1




0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb



=


0 eb

1
3

1
3 eb (a+3)

2
3

1
6 eb
(
a2 +4a+6

)
1 1

6 eb
(
a3 +3a2 +6a+6

)
 .

4. The Curve ex as a 5th Order Bézier Curve
Now, we will examine the curve ex as a 5th order Bézier curve. We have already known that the matrix representation of
α(t) = (t,a5t5 +a4t4 +a3t3 +a2t2 +at1 +a0) is

α(t) =


t5

t4

t3

t2

t
1



T

[
B5
]


P0
P1
P2
P3
P4
P5


where the coefficient matrix and inverse matrix of 5th order Bézier curve are

[
B5
]
=


−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0

 ,
[
B5
]−1

=



0 0 0 0 0 1
0 0 0 0 1

5 1
0 0 0 1

10
2
5 1

0 0 1
10

3
10

3
5 1

0 1
5

2
5

3
5

4
5 1

1 1 1 1 1 1

 .

Theorem 4.1. The numerical matrix representation of the curve f (x) = ex as a 5th order Bézier curve is

(
t,et)=


t5

t4

t3

t2

t
1



T 
−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0





0 0
1
5

1
5

2
5

2
5

3
5

7
12

4
5

11
15

1 101
120


where the control points P0, P1, P2, P3, P4, and P5 are

P0
P1
P2
P3
P4
P5

=



0 0
1
5

1
5

2
5

2
5

3
5

7
12

4
5

11
15

1 101
120

 .

Proof. 5th degree Maclaurin series expansion for the function ex is

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
.
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It can be written as in parametric form and a 5th degree polynomial function

(
t,et)= (t,1+ t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!

)
=
(

t,a5t5 +a4t4 +a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a 5th order Bézier curve in matrix representation with the coefficients[
a5 a4 a3 a2 a1 a0

]
=
[ 1

5!
1
4!

1
3!

1
2! 1 1

]
.

Hence we get the following equation

(
t,et)= (t,1+ t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!

)

=


t5

t4

t3

t2

t
1



T 
0 1

5!
0 1

4!
0 1

3!
0 1

2!
1 1
0 1

=


t5

t4

t3

t2

t
1



T 
−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0




P0
P1
P2
P3
P4
P5

 ,


P0
P1
P2
P3
P4
P5

=



0 0 0 0 0 1
0 0 0 0 1

5 1
0 0 0 1

10
2
5 1

0 0 1
10

3
10

3
5 1

0 1
5

2
5

3
5

4
5 1

1 1 1 1 1 1




0 1

5!
0 1

4!
0 1

3!
0 1

2!
1 1
0 1

 ,

solving these equation we obtained the control numbers
P0
P1
P2
P3
P4
P5

=



0 1
1
5

6
5

2
5

29
20

3
5

53
30

4
5

87
40

1 163
60

 .

5. The Curve eax+b as a 5th Order Bézier Curve
In this section we have investigated the curve eax+b as a 5th order Bézier curve.

f (x) =
∞

∑
n=0

f (n) (0)
xn

n!
,

f (x) = eax+b,

f ′ (x) = aeax+b,

f ′′ (x) = a2eax+b,

f ′′′ (x) = a3eax+b,

f (4) (x) = a4eax+b,

f (5) (x) = a5eax+b,

f (6) (x) = a6eax+b,

f (7) (x) = a7eax+b.
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Theorem 5.1. The numerical matrix representation of the curve f (x) = eax+b as a 5th order Bézier curve is

(
t,eat+b

)
=


t5

t4

t3

t2

t
1



T 
−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0




P0
P1
P2
P3
P4
P5


where the control points P0, P1, P2, P3, P4 and P5 are

P0
P1
P2
P3
P4
P5

=



0 eb

1
5

1
5 eb (a+5)

2
5

1
20 eb

(
a2 +8a+20

)
3
5

1
60 eb

(
a3 +9a2 +36a+60

)
4
5

1
120 eb

(
a4 +8a3 +36a2 +96a+120

)
1 1

120 eb
(
a5 +5a4 +20a3 +60a2 +120a+120

)

 .

Proof. Taylor series of a function is an infinite sum of terms of the functions derivatives at a single point a , also a Maclaurin
series is a taylor series where a = 0. 5th degree Maclaurin series expansion for the function eax+b is

f (x) = eax+b =
5

∑
n=0

f (n) (0)
xn

n!

= eb +aebx+a2eb x2

2!
+a3eb x3

3!
+a4eb x4

4!
+a5eb x5

5!

and it can be written as in parametric form and a 5th degree polynomial function(
t,eat+b

)
=

(
t,

a5eb

5!
t5 +

a4eb

4!
t4 +

a3eb

3!
t3 +

a2eb

2!
t2 +aebt + eb

)
=
(

t,a5t5 +a4t4 +a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a 5th order Bézier curve in matrix representation with the coefficients[
a5 a4 a3 a2 a1 a0

]
=
[

a5eb

5!
a4eb

4!
a3eb

3!
a2eb

2! aeb eb
]
.

Hence we get the following equation(
t,eat+b

)
=

(
t,

a5eb

5!
t5 +

a4eb

4!
t4 +

a3eb

3!
t3 +

a2eb

2!
t2 +aebt + eb

)

=


t5

t4

t3

t2

t
1



T


0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb


=


t5

t4

t3

t2

t
1



T 
−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0




P0
P1
P2
P3
P4
P5

 ,


P0
P1
P2
P3
P4
P5

=



0 0 0 0 0 1
0 0 0 0 1

5 1
0 0 0 1

10
2
5 1

0 0 1
10

3
10

3
5 1

0 1
5

2
5

3
5

4
5 1

1 1 1 1 1 1





0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb


,
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
P0
P1
P2
P3
P4
P5

=



0 eb

1
5 eb + 1

5 aeb

2
5

1
20 eba2 + 2

5 eba+ eb

3
5

1
60 eba3 + 3

20 eba2 + 3
5 eba+ eb

4
5

1
120 eba4 + 1

15 eba3 + 3
10 eba2 + 4

5 eba+ eb

1 1
120 eba5 + 1

24 eba4 + 1
6 eba3 + 1

2 eba2 + eba+ eb

 ,

f (x) =
∞

∑
n=0

f (n) (0)
xn

n!
,

f (x) = eax+b xn

0!
+aeax+b xn

1!
+a2eax+b xn

2!
+a3eax+b xn

3!
+a4eax+b xn

4!
+a5eax+b xn

5!
+a6eax+b xn

6!
+a7eax+b xn

7!
.

6. The Curve ex as a 7th Order Bézier Curve

Theorem 6.1. The matrix of any 7th order Bézier curve is

[
B7]=



−
(7

0

)(7
7

) (7
1

)(7−1
7−1

)
−
(7

2

)(7−2
7−2

) (7
3

)(7−3
7−3

)
−
(7

4

)(7−4
7−4

) (7
5

)(7−5
7−5

)
−
(7

6

)(7−6
7−6

) (7
7

)(0
0

)(7
0

)( 7
7−1

)
−
(7

1

)(7−1
7−2

) (7
2

)(7−2
7−3

)
−
(7

3

)(7−3
7−4

) (7
4

)(7−4
7−5

)
−
(7

5

)(7−5
7−6

) (7
6

)(7−6
7−7

)
0

−
(7

0

)( 7
7−2

) (7
1

)(7−1
7−3

)
−
(7

2

)(7−2
7−4

) (7
3

)(7−3
7−5

)
−
(7

4

)(7−4
7−6

) (7
5

)(7−5
7−7

)
0 0(7

0

)( 7
7−3

)
−
(7

1

)(7−1
7−4

) (7
2

)(7−2
7−5

)
−
(7

3

)(7−3
7−6

) (7
4

)(7−4
7−7

)
0 0 0

−
(7

0

)( 7
7−4

) (7
1

)(7−1
7−5

)
−
(7

2

)(7−2
7−6

) (7
3

)(7−3
7−7

)
0 0 0 0(7

0

)( 7
7−5

)
−
(7

1

)(7−1
7−6

) (7
2

)(7−2
7−7

)
0 0 0 0 0

−
(7

0

)( 7
7−6

) (7
1

)(7−1
7−7

)
0 0 0 0 0 0(7

0

)( 7
7−7

)
0 0 0 0 0 0 0



=



−1 7 −21 35 −35 21 −7 1
7 −42 105 −140 105 −42 7 0
−21 105 −210 210 −105 21 0 0
35 −140 210 −140 35 0 0 0
−35 105 −105 35 0 0 0 0
21 −42 21 0 0 0 0 0
−7 7 0 0 0 0 0 0
1 0 0 0 0 0 0 0


.

Also the inverse matrix of 7th order Bézier curves in E2 is

[
B7]−1

=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1

7 1
0 0 0 0 0 1

21
2
7 1

0 0 0 0 1
35

1
7

3
7 1

0 0 0 1
35

4
35

2
7

4
7 1

0 0 1
21

1
7

2
7

10
21

5
7 1

0 1
7

2
7

3
7

4
7

5
7

6
7 1

1 1 1 1 1 1 1 1


.

Now, we will examine the ex curve as a 7th order Bézier curve.
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Theorem 6.2. The numerical matrix representation of the curve f (x) = ex as a 7th order Bézier curve is

(
t,et)=



t7

t6

t5

t4

t3

t2

t
1



T


0 a7eb

7!
0 a6eb

6!
0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb



T

=



t7

t6

t5

t4

t3

t2

t
1



T

[
B7]


P0
P1
P2
P3
P4
P5
P7
P7


where the control points P0, P1, P2, . . . ,P7 are

P0
P1
P2
P3
P4
P5
P7
P7


=



0 1
1
7

8
7

2
7

55
42

3
7

158
105

4
7

1457
840

5
7

632
315

6
7

11743
5040

1 685
252


.

Proof. 7th degree Maclaurin series expansion for the function ex is

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!

and it can be written as in parametric form and a 7th degree polynomial function

(
t,et)= (t,1+ t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+

t6

6!
+

t7

7!

)
=
(

t,a7t7 +a6t6 +a5t5 +a4t4 +a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a 7th order Bézier curve in matrix representation with the coefficients. Hence we get the following
equation

(
t,et)= (t,1+ t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+

t6

6!
+

t7

7!

)

=



t7

t6

t5

t4

t3

t2

t
1



T 

0 1
7!

0 1
6!

0 1
5!

0 1
4!

0 1
3!

0 1
2!

1 1
0 1



T

=



t7

t6

t5

t4

t3

t2

t
1



T

[
B7]


P0
P1
P2
P3
P4
P5
P7
P7


,



P0
P1
P2
P3
P4
P5
P7
P7


=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1

7 1
0 0 0 0 0 1

21
2
7 1

0 0 0 0 1
35

1
7

3
7 1

0 0 0 1
35

4
35

2
7

4
7 1

0 0 1
21

1
7

2
7

10
21

5
7 1

0 1
7

2
7

3
7

4
7

5
7

6
7 1

1 1 1 1 1 1 1 1





0 1
7!

0 1
6!

0 1
5!

0 1
4!

0 1
3!

0 1
2!

1 1
0 1


.



A Modelling on the Exponential Curves as Cubic, 5th and 7th Bézier Curve in Plane — 75/77

7. The Curve eax+b as a 7th Order Bézier Curve

In this section, we will research the curve eax+b as a 7th order Bézier curve.

f (x) = eax+b =
7

∑
n=0

f (n) (0)
xn

n!

= eax+b +aeax+bx+a2eax+b x2

2!
+a3eax+b x3

3!
+a4eax+b x4

4!
+a5eax+b x5

5!
+a6eb x6

6!
+a7eb x7

7!
.

Theorem 7.1. The numerical matrix representation of the curve f (x) = eax+b as a 7th order Bézier curve is

(
t,eat+b

)
= α(t) =



t7

t6

t5

t4

t3

t2

t
1



T 

−1 7 −21 35 −35 21 −7 1
7 −42 105 −140 105 −42 7 0
−21 105 −210 210 −105 21 0 0
35 −140 210 −140 35 0 0 0
−35 105 −105 35 0 0 0 0
21 −42 21 0 0 0 0 0
−7 7 0 0 0 0 0 0
1 0 0 0 0 0 0 0





P0
P1
P2
P3
P4
P5
P7
P7


where the control points P0, P1, P2, . . . ,P7 are



P0
P1
P2
P3
P4
P5
P7
P7


=



0 eb

1
7 eb + 1

7 aeb

2
7

1
42 eba2 + 2

7 eba+ eb

3
7

1
210 eba3 + 1

14 eba2 + 3
7 eba+ eb

4
7

1
840 eba4 + 2

105 eba3 + 1
7 eba2 + 4

7 eba+ eb

5
7

1
2520 eba5 + 1

168 eba4 + 1
21 eba3 + 5

21 eba2 + 5
7 eba+ eb

6
7

1
5040 eba6 + 1

420 eba5 + 1
56 eba4 + 2

21 eba3 + 5
14 eba2 + 6

7 eba+ eb

1 1
5040 eba7 + 1

720 eba6 + 1
120 eba5 + 1

24 eba4 + 1
6 eba3 + 1

2 eba2 + eba+ eb


.

Proof. 7th degree Maclaurin series expansion for the function eax+b is

f (x) = eax+b =
7

∑
n=0

f (n) (0)
xn

n!
,

f (x) = eax+b +aeax+bx+a2eax+b x2

2!
+a3eax+b x3

3!
+a4eax+b x4

4!
+a5eax+b x5

5!
+a6eb x6

6!
+a7eb x7

7!
,

and it can be written as in parametric form and a 5th degree polynomial function

(
t,eat+b

)
=

(
t,eat+b +aeat+bt +

a2eax+b

2!
t2 +

a3eax+b

3!
t3 +

a4eax+b

4!
t4 +

a5eax+b

5!
t5
)

=

(
t,a7eb t7

7!
+a6eb t6

6!
+

a5eax+b

5!
t5 +

a4eax+b

4!
t4 +

a3eax+b

3!
t3 +

a2eax+b

2!
t2 +aeax+bt + eax+b

)
=
(

t,a7t7 +a6t6 +a4t4 +a3t3 +a2t2 +a1t +a0

)
.

Also, this can be written as a 7th order Bézier curve in matrix representation with the coefficients. Hence we get the following
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equation

(
t,eat+b

)
=

(
t,

a5eax+b

5!
t5 +

a4eax+b

4!
t4 +

a3eax+b

3!
t3 +

a2eax+b

2!
t2 +aeax+bt + eax+b

)
,

(
t,eat+b

)
=



t7

t6

t5

t4

t3

t2

t
1



T


0 a7eb

7!
0 a6eb

6!
0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb



T

=



t7

t6

t5

t4

t3

t2

t
1



T

[
B7]


P0
P1
P2
P3
P4
P5
P7
P7


,



P0
P1
P2
P3
P4
P5
P6
P7


=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1

7 1
0 0 0 0 0 1

21
2
7 1

0 0 0 0 1
35

1
7

3
7 1

0 0 0 1
35

4
35

2
7

4
7 1

0 0 1
21

1
7

2
7

10
21

5
7 1

0 1
7

2
7

3
7

4
7

5
7

6
7 1

1 1 1 1 1 1 1 1





0 a7eb

7!
0 a6eb

6!
0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb



T

,



P0
P1
P2
P3
P4
P5
P6
P7


=



0 eb

1
7

1
7 eb (a+7)

2
7

1
42 eb

(
a2 +12a+42

)
3
7

1
210 eb

(
a3 +15a2 +90a+210

)
4
7

1
840 eb

(
a4 +16a3 +120a2 +480a+840

)
5
7

1
2520 eb

(
a5 +15a4 +120a3 +600a2 +1800a+2520

)
6
7

1
5040 eb

(
a6 +12a5 +90a4 +480a3 +1800a2 +4320a+5040

)
1 1

5040 eb
(
a7 +7a6 +42a5 +210a4 +840a3 +2520a2 +5040a+5040

)


,

and so, the result give us the proof.
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