

International Electronic Journal of Algebra Volume 33 (2023) 213-225

DOI: 10.24330/ieja.1226320

ON THE IRREDUCIBLE REPRESENTATIONS OF THE JORDAN TRIPLE SYSTEM OF $p \times q$ MATRICES

Hader A. Elgendy

Received: 3 August 2022; Revised: 13 October 2022; Accepted: 15 October 2022 Communicated by Burcu Üngör

Dedicated to the memory of Professor Edmund R. Puczyłowski

ABSTRACT. Let $\mathcal{J}_{\mathbb{F}}$ be the Jordan triple system of all $p \times q$ $(p \neq q; p, q > 1)$ rectangular matrices over a field \mathbb{F} of characteristic 0 with the triple product $\{x,y,z\} = xy^tz + zy^tx$, where y^t is the transpose of y. We study the universal associative envelope $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ of $\mathcal{J}_{\mathbb{F}}$ and show that $\mathcal{U}(\mathcal{J}_{\mathbb{F}}) \cong M_{p+q\times p+q}(\mathbb{F})$, where $M_{p+q\times p+q}(\mathbb{F})$ is the ordinary associative algebra of all $(p+q)\times (p+q)$ matrices over \mathbb{F} . It follows that there exists only one nontrivial irreducible representation of $\mathcal{J}_{\mathbb{F}}$. The center of $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ is deduced.

Mathematics Subject Classification (2020): 17C50, 17B35, 16W10, 16G60 Keywords: Jordan triple system, rectangular matrix, universal associative envelope, representation theory

1. Introduction

A vector space V over a field \mathbb{F} of characteristic 0 equipped with a triple product $\{a,b,c\}$ is called a *Jordan triple system* if

$${x, y, z} = {z, y, x},$$

$$\{u, v, \{x, y, z\}\} = \{\{u, v, x\}, y, z\} - \{x, \{v, u, y\}, z\} + \{x, y, \{u, v, z\}\},\$$

for all $x, y, z, u, v \in V$.

Jordan structures appeared in many areas of mathematics like Lie Theory, differential geometry and analysis [1,12,13,14,15,22]. In addition to that Jordan triple systems have been used to find several solutions of the Yang-Baxter equation [20]. The linkages between Jordan structures, Lie algebras, and projective geometries are given in [6]. Jordan structures play also an important role in theoretical physics. They are appeared in the theory of superstrings [2,5,7,8,11,21], and in the theory of colour and confinement [9], in supersymmetry [10]. The description of some of these applications has been given in the survey [16]. More information about

Jordan triple systems can be found in [18,19]. It is well known that to every associative algebra A one can relate a Jordan triple system J with the triple product $\{x,y,z\} = xyz + zyx$. A Jordan triple system is special if it can be imbedded as a subtriple of some J, otherwise it is exceptional. A representation of a Jordan triple system J is a Jordan triple homomorphism $\Theta: J \to (EndV)_-$, where EndV is the space of endomorphisms of a vector space V to itself. A representation ρ is called irreducible if the only invariant subspaces of V under ρ are the trivial ones, $\{0\}$ and V. It is known that any Jordan algebra gives rise to a Jordan triple system. One of the most important examples of a Jordan triple system which doesn't come from a bilinear product is the rectangular matrices $M_{p\times q}(\mathbb{F})$ with the triple product xy^tz+zy^tx ; if $p\neq q$ there is no natural way to multiply two $p\times q$ matrices to get a third $p\times q$ matrix, see [17]. This example shows the necessity of a ternary product. This example is a special Jordan triple system (see the map Θ of Corollary 3.3 (of the present paper)).

The problem of the classification of the representations of a special Jordan triple system can be converted into a problem of an associative algebra by passage to the universal associative envelope of the Jordan triple system. In [12], it was shown that the universal (associative) envelope of any Jordan triple system of finite dimension is finite-dimensional. In [3], we showed that the universal (associative) envelope of the Jordan triple system J of all n by $n \ (n \geq 2)$ matrices over a field \mathbb{F} of characteristic 0 (with respect to the product xyz + zyx) is isomorphic to $M_{n\times n}(\mathbb{F}) \oplus M_{n\times n}(\mathbb{F}) \oplus M_{n\times n}(\mathbb{F}) \oplus M_{n\times n}(\mathbb{F})$, where $M_{n\times n}(\mathbb{F})$ is the ordinary associative algebra of all n by n matrices over \mathbb{F} . It follows that there are four nontrivial finite-dimensional irreducible representations of J. In [4], we have studied the representations of two special Jordan triple systems (with respect to the product xyz + zyx): The Jordan triple system $\mathcal{J}_{\mathcal{S}}$ of all symmetric n by $n \ (n \geq 2)$ matrices over a field \mathbb{F} of characteristic zero, and the Jordan triple system $\mathcal{J}_{\mathcal{H}}$ of all Hermitian n by $n \ (n \geq 2)$ matrices over the complex numbers \mathbb{C} . We proved that the universal (associative) envelope of $\mathcal{J}_{\mathcal{S}}$ is isomorphic to $M_{n\times n}(\mathbb{F})\oplus M_{n\times n}(\mathbb{F})$, while the universal (associative) envelope of $\mathcal{J}_{\mathcal{H}}$ is isomorphic to $M_{n\times n}(\mathbb{C}) \oplus M_{n\times n}(\mathbb{C}) \oplus M_{n\times n}(\mathbb{C}) \oplus M_{n\times n}(\mathbb{C})$. We deduced that the Jordan triple system $\mathcal{J}_{\mathcal{S}}$ has two nontrivial finite-dimensional inequivalent irreducible representations, while the Jordan triple system $\mathcal{J}_{\mathcal{H}}$ has four nontrivial inequivalent finite-dimensional irreducible representations.

In the present paper, we study the universal associative envelope of the special Jordan triple system $\mathcal{J}_{\mathbb{F}}$ of all $p \times q$ $(p \neq q; p, q > 1)$ rectangular matrices with the

triple product $xy^tz + zy^tx$. This paper is organized as follows. In Section 2, we construct the universal (associative) envelope $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ of $\mathcal{J}_{\mathbb{F}}$ and derive some identities of $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$. In Section 3, we prove that $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ is isomorphic to $M_{p+q\times p+q}(\mathbb{F})$, where $M_{p+q\times p+q}(\mathbb{F})$ is the ordinary associative algebra of all (p+q) by (p+q) matrices over \mathbb{F} (Theorem 3.1). We also deduce that $\mathcal{J}_{\mathbb{F}}$ has only one nontrivial irreducible representation and determine the explicit form of this representation (Corollary 3.3). The center of $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ is also determined (Lemma 3.4).

2. The universal associative envelope of the special Jordan triple system of rectangular matrices

Definition 2.1. Let $\mathcal{J}_{\mathbb{F}}$ be the Jordan triple system of the rectangular matrices $M_{p\times q}(\mathbb{F})$ $(p,q>1; p\neq q)$ over a field \mathbb{F} of characteristic 0 with the triple product

$$\{x, y, z\} = xy^t z + zy^t x,$$

where y^t is the transpose of y.

Definition 2.2. We let $\Omega_1 = \{1, \ldots, p\}$, $\Omega_2 = \{1, \ldots, q\}$, and $\Omega_3 = \{p+1, \ldots, p+q\}$ be three finite index sets. Let $\mathfrak{B} = \{E_{i,j} \mid i \in \Omega_1; j \in \Omega_2\}$ be a basis of $\mathcal{J}_{\mathbb{F}}$, where $E_{i,j}$ denotes the p-by-q matrix with a single 1, in the ith row and jth column, and zeros elsewhere.

Notation 2.3. Throughout this paper, we use the following notations:

- $\delta_{i,j}$ for the Kronecker delta, and $\widehat{\delta}_{i,j} = 1 \delta_{i,j}$.
- $\Delta_{i,L} = 1$ if $i \in L$, and 0 otherwise.

Let $\mathbb{X} = \{G_{i,j} \mid i \in \Omega_1; j \in \Omega_2\}$ be a set of symbols in bijection with \mathfrak{B} and let $\Phi : \mathfrak{B} \to \mathbb{X}$ realize the bijection $(\Phi(E_{i,j}) = G_{i,j})$. Let \mathfrak{F} be the free associative algebra generated by \mathbb{X} . We extend Φ to a map $\Phi : \mathcal{J}_{\mathbb{F}} \to \mathfrak{F}$ (by linearity). Let I be the two-sided ideal of \mathfrak{F} generated by all the elements of the form:

$$G_{i,j}G_{k,\ell}G_{s,t} + G_{s,t}G_{k,\ell}G_{i,j} - \Phi(\{E_{i,j}, E_{k,\ell}, E_{s,t}\}) \quad (i,k,s \in \Omega_1, \ j,\ell,t \in \Omega_2).$$

The universal associative envelope $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ of $\mathcal{J}_{\mathbb{F}}$ is the quotient \mathfrak{F}/I . Let $\pi:\mathfrak{F}\to\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ be the projection, then the map $\iota=\pi\circ\Phi$ maps $\mathcal{J}_{\mathbb{F}}$ to $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$.

2.1. Identities of the universal associative envelope. In this section we get identities of $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ that we use in the proof of the main results of the next section.

Lemma 2.4. In $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$, the following identities hold:

- (1) $G_{i,j}G_{i,j}G_{i,j} \equiv G_{i,j} \quad (i \in \Omega_1, j \in \Omega_2),$
- (2) $G_{i,j}G_{k,\ell} \equiv 0 \quad (i \neq k, j \neq \ell; i, k \in \Omega_1, j, \ell \in \Omega_2),$

- (3) $G_{i,j}G_{i,\ell} \equiv G_{1,j}G_{1,\ell} \quad (j \neq \ell; i \in \Omega_1 \setminus \{1\}, j, \ell \in \Omega_2),$
- (4) $G_{i,j}G_{k,j} \equiv G_{i,1}G_{k,1} \quad (i \neq k; i, k \in \Omega_1, j \in \Omega_2 \setminus \{1\}),$
- (5) $G_{1,j}G_{1,\ell}G_{1,s} \equiv 0 \quad (j \neq \ell \neq s; \ j, \ell, s \in \Omega_2),$
- (6) $G_{i,1}G_{k,1}G_{t,1} \equiv 0 \quad (i \neq k \neq t; i, k, t \in \Omega_1),$
- (7) $G_{1,1}G_{i,1}G_{i,1} \equiv G_{1,j}G_{1,j}G_{1,1} \quad (i \in \Omega_1 \setminus \{1\}, \ j \in \Omega_2 \setminus \{1\}),$
- (8) $G_{i,1}G_{i,1}G_{1,1} \equiv G_{1,1}G_{1,j}G_{1,j} \quad (i \in \Omega_1 \setminus \{1\}, \ j \in \Omega_2 \setminus \{1\}).$

Proof. For (1): It is obvious, since $2G_{i,j}G_{i,j}G_{i,j} \equiv 2G_{i,j}$ $(i \in \Omega_1; j \in \Omega_2)$. For (2): Let $i, k \in \Omega_1, j, \ell \in \Omega_2, i \neq k$, and $j \neq \ell$. By (1) (of the present lemma), we have $G_{i,j}G_{i,j}G_{i,j} \equiv G_{i,j}$. Multiplying by $G_{k,\ell}$ from the right, we get

$$G_{i,j}G_{i,j}G_{i,j}G_{k,\ell} \equiv G_{i,j}G_{k,\ell}. \tag{1}$$

Using $G_{i,j}G_{i,j}G_{k,\ell} \equiv -G_{k,\ell}G_{i,j}G_{i,j}$ in (1) gives

$$-G_{i,j}G_{k,\ell}G_{i,j}G_{i,j} \equiv G_{i,j}G_{k,\ell},$$

which implies (2), since $G_{i,j}G_{k,\ell}G_{i,j} \equiv 0$. For (3): Let $i \in \Omega_1 \setminus \{1\}$, $j,\ell \in \Omega_2$, and $j \neq \ell$, we have

$$G_{i,j}G_{1,j}G_{1,j} + G_{1,j}G_{1,j}G_{i,j} - G_{i,j} \equiv 0.$$

Multiplying by $G_{i,\ell}$ from the right and observing that $G_{1,j}G_{i,\ell} \equiv 0$ (by (2) (of the present lemma)), we get

$$G_{1,i}G_{1,i}G_{i,i}G_{i,\ell} - G_{i,i}G_{i,\ell} \equiv 0.$$
 (2)

Using $G_{1,j}G_{i,j}G_{i,\ell} \equiv -G_{i,\ell}G_{i,j}G_{1,j} + G_{1,\ell}$ in (2) gives

$$G_{1,i}\left(-G_{i,\ell}G_{i,j}G_{1,i}+G_{1,\ell}\right)-G_{i,j}G_{i,\ell}\equiv 0,$$

which implies (3), since $G_{1,j}G_{i,\ell} \equiv 0$ (by (2) (of the present lemma)). For (4): Let $i, k \in \Omega_1, j \in \Omega_2 \setminus \{1\}$, and $i \neq k$. We have

$$G_{i,j}G_{i,1}G_{i,1} + G_{i,1}G_{i,1}G_{i,j} - G_{i,j} \equiv 0.$$

Multiplying by $G_{k,j}$ from the right and observing that $G_{i,1}G_{k,j} \equiv 0$ (by (2) (of the present lemma)), we obtain

$$G_{i,1}G_{i,1}G_{i,j}G_{k,j} - G_{i,j}G_{k,j} \equiv 0. (3)$$

Using $G_{i,1}G_{i,j}G_{k,j} \equiv -G_{k,j}G_{i,j}G_{i,1} + G_{k,1}$ in (3) gives

$$G_{i,1}(-G_{k,i}G_{i,i}G_{i,1}+G_{k,1})-G_{i,i}G_{k,i}\equiv 0,$$

which implies (4), since $G_{i,1}G_{k,j} \equiv 0$ (by (2) (of the present lemma)). For (5): Let $i \in \Omega_1 \setminus \{1\}, j, \ell, s \in \Omega_2$, and $j \neq \ell \neq s$. By (3) (of the present lemma), we have

$$G_{i,i}G_{i,\ell} \equiv G_{1,i}G_{1,\ell}$$
.

Multiplying by $G_{1,s}$ from the right, we get

$$G_{i,j}G_{i,\ell}G_{1,s} \equiv G_{1,j}G_{1,\ell}G_{1,s},$$

which implies (5), since $G_{i,\ell}G_{1,s} \equiv 0$ (by (2) (of the present lemma)). For (6): Let $i, k, t \in \Omega_1, i \neq k \neq t$, and $j \in \Omega_2 \setminus \{1\}$. By (3) (of the present lemma), we have

$$G_{i,i}G_{k,i} \equiv G_{i,1}G_{k,1}$$
.

Multiplying by $G_{t,1}$ from the right gives

$$G_{i,j}G_{k,j}G_{t,1} \equiv G_{i,1}G_{k,1}G_{t,1},$$

which implies (6); since $G_{k,j}G_{t,1} \equiv 0$ (by (2) (of the present lemma)). For (7): Let $i \in \Omega_1 \setminus \{1\}$ and $j \in \Omega_2 \setminus \{1\}$. By (4) (of the present lemma), we have

$$G_{1,j}G_{i,j} \equiv G_{1,1}G_{i,1}.$$

Multiplying by $G_{i,1}$ from the right and observing that $G_{i,j}G_{i,1} \equiv G_{1,j}G_{1,1}$ (by (3) (of the present lemma)), we get (7). For (8), let $i \in \Omega_1 \setminus \{1\}$, and $j \in \Omega_2 \setminus \{1\}$, we have

$$G_{i,1}G_{i,1}G_{1,1} \equiv -G_{1,1}G_{i,1}G_{i,1} + G_{1,1}. \tag{4}$$

By (7) (of the present lemma), we have $G_{1,1}G_{i,1}G_{i,1} \equiv G_{1,j}G_{1,j}G_{1,1}$. Using this in (4) gives

$$G_{i,1}G_{i,1}G_{1,1} \equiv -G_{1,i}G_{1,i}G_{1,1} + G_{1,1} \equiv G_{1,1}G_{1,i}G_{1,i}$$

This completes the proof.

Remark 2.5. By (7) and (8) of Lemma 2.4, for all $i, k \in \Omega_1 \setminus \{1\}$, $i \neq k$, and $j \in \Omega_2 \setminus \{1\}$, we have

$$G_{1,1}G_{i,1}G_{i,1} \equiv G_{1,j}G_{1,j}G_{1,1} \equiv G_{1,1}G_{k,1}G_{k,1},$$

and

$$G_{i,1}G_{i,1}G_{1,1} \equiv G_{1,1}G_{1,j}G_{1,j} \equiv G_{k,1}G_{k,1}G_{1,1}.$$

That is, the products

 $G_{1,1}G_{i,1}G_{i,1}$ and $G_{i,1}G_{i,1}G_{1,1}$ (resp. $G_{1,j}G_{1,j}G_{1,1}$ and $G_{1,1}G_{1,j}G_{1,j}$) do not depend on the choice of $i \in \Omega_1 \setminus \{1\}$ (resp. $j \in \Omega_2 \setminus \{1\}$).

Corollary 2.6. In $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$, the following identities hold:

(1)
$$G_{1,\ell}G_{1,1}G_{1,1}G_{1,j} \equiv -\delta_{\ell,j}G_{1,1}G_{1,1}G_{1,j}G_{1,j} + G_{1,\ell}G_{1,j} \quad (\ell, j \in \Omega_2 \setminus \{1\}),$$

(2)
$$G_{i,1}G_{1,1}G_{1,1}G_{k,1} \equiv -\delta_{i,k}G_{1,1}G_{1,1}G_{i,1}G_{i,1} + G_{i,1}G_{k,1} \quad (i,k \in \Omega_1 \setminus \{1\}),$$

(3)
$$G_{1,j}G_{1,\ell}G_{1,\ell}G_{1,1} \equiv -\delta_{j,1}G_{1,1}G_{1,1}G_{1,\ell}G_{1,\ell} + G_{1,j}G_{1,1} \quad (j,\ell \in \Omega_2; \ell \neq 1),$$

(4)
$$G_{1,1}G_{1,j}G_{1,j}G_{1,j} \equiv G_{1,j}G_{1,j}G_{1,1} \quad (j \in \Omega_2 \setminus \{1\}),$$

(5)
$$G_{1,j}G_{1,j}G_{1,1}G_{1,1}G_{1,\ell} \equiv G_{1,1}G_{1,1}G_{1,\ell} \quad (j,\ell \in \Omega_2 \setminus \{1\}),$$

(6)
$$G_{1,1}G_{1,j}G_{1,j}G_{1,j}G_{1,1}G_{i,1} \equiv G_{1,1}G_{i,1} \quad (i \in \Omega_1 \setminus \{1\}, \ j \in \Omega_2 \setminus \{1\}),$$

(7)
$$G_{1,1}G_{1,j}G_{1,j}G_{1,\ell} \equiv G_{1,1}G_{1,\ell} \quad (j, \ell \in \Omega_2 \setminus \{1\}),$$

(8)
$$G_{i,1}G_{1,1}G_{1,j}G_{1,j} \equiv G_{i,1}G_{1,1} \quad (i \in \Omega_1 \setminus \{1\}, \ j \in \Omega_2 \setminus \{1\}).$$

Proof. For (1): Let $\ell, j \in \Omega_2 \setminus \{1\}$, we have

$$G_{1,\ell}G_{1,1}G_{1,1}G_{1,j} \equiv (-G_{1,1}G_{1,1}G_{1,\ell} + G_{1,\ell})G_{1,j}$$

$$\equiv -\delta_{\ell,j}G_{1,1}G_{1,1}G_{1,j}G_{1,j} + G_{1,\ell}G_{1,j},$$

using $G_{1,\ell}G_{1,1}G_{1,1} \equiv -G_{1,1}G_{1,1}G_{1,\ell} + G_{1,\ell}$ and (5) of Lemma 2.4. The proof of (2) is similar. For (3): Let $\ell, j \in \Omega_2$ and $\ell \neq 1$, we have

$$G_{1,j}G_{1,\ell}G_{1,\ell}G_{1,1} \equiv G_{1,j}(-G_{1,1}G_{1,\ell}G_{1,\ell} + G_{1,1})$$

$$\equiv -\delta_{i,1}G_{1,1}G_{1,1}G_{1,\ell}G_{1,\ell} + G_{1,i}G_{1,1},$$

using $G_{1,\ell}G_{1,\ell}G_{1,1} \equiv -G_{1,1}G_{1,\ell}G_{1,\ell} + G_{1,1}$ and (5) of Lemma 2.4. For (4): Let $j \in \Omega_2 \setminus \{1\}$ and choose any $t \in \Omega_1 \setminus \{1\}$, we have

$$G_{1,1}G_{1,1}G_{1,j}G_{1,j}G_{1,1} \equiv G_{1,1}G_{1,1}G_{1,1}G_{t,1}G_{t,1} \equiv G_{1,1}G_{t,1}G_{t,1} \equiv G_{1,j}G_{1,j}G_{1,j}$$

by (7) and (1) of Lemma 2.4. For (5): Let $j, \ell \in \Omega_2 \setminus \{1\}$ and choose any $t \in \Omega_1 \setminus \{1\}$, we have

$$G_{1,i}G_{1,i}G_{1,1}G_{1,1}G_{1,\ell} \equiv G_{1,1}G_{t,1}G_{t,1}G_{1,\ell} \equiv G_{1,1}G_{1,\ell}G_{1,\ell}G_{1,\ell}G_{1,\ell} \equiv G_{1,1}G_{1,1}G_{1,\ell}$$

by (7), (8), and (1) of Lemma 2.4. For (6): Let $i \in \Omega_1 \setminus \{1\}$ and $j \in \Omega_2 \setminus \{1\}$, we have

$$G_{1,1}G_{1,1}G_{1,i}G_{1,i}G_{1,i}G_{1,1} \equiv G_{1,i}G_{1,i}G_{1,i}G_{1,1}G_{i,1} \equiv G_{1,1}G_{i,1}G_{i,1} \equiv G_{1,1}G_{i,1}$$

by (4) (of the present lemma) and (7), (1) of Lemma 2.4. For (7): Let ℓ , $j \in \Omega_2 \setminus \{1\}$, we have

$$G_{1,1}G_{1,j}G_{1,j}G_{1,\ell} \equiv G_{1,1}G_{1,\ell}G_{1,\ell}G_{1,\ell} \equiv G_{1,1}G_{1,\ell},$$

by Remark 2.5 and (1) of Lemma 2.4. For (8): Let $i \in \Omega_1 \setminus \{1\}$ and $j \in \Omega_2 \setminus \{1\}$, we have

$$G_{i,1}G_{1,1}G_{1,i}G_{1,i} \equiv G_{i,1}G_{i,1}G_{i,1}G_{1,1} \equiv G_{i,1}G_{1,1},$$

by (8) and (1) of Lemma 2.4. This completes the proof.

3. Main results

In this section we present the main results of this paper on the representations of the Jordan triple system $\mathcal{J}_{\mathbb{F}}$. Our goal is to use the specialty of the Jordan triple system $\mathcal{J}_{\mathbb{F}}$ and the identities of Section 2.1 to get the decomposition of $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ into matrix algebras.

Theorem 3.1. With notation as above. If $\mathcal{J}_{\mathbb{F}}$ is the Jordan triple system of all $p \times q$ $(p \neq q; p, q > 1)$ rectangular matrices over a field \mathbb{F} of characteristic 0 and $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ is the universal associative envelope of $\mathcal{J}_{\mathbb{F}}$, then

$$\mathcal{U}(\mathcal{J}_{\mathbb{F}}) \cong M_{p+q \times p+q}(\mathbb{F}),$$

where $M_{p+q\times p+q}(\mathbb{F})$ is the ordinary associative algebra of all $(p+q)\times (p+q)$ matrices over \mathbb{F} .

Proof. We set

$$\begin{split} A_{i,k} &= G_{i,1}G_{k,1} \quad (i,k \in \Omega_1; \ i \neq k). \\ A_{1,p+1} &= G_{1,j}G_{1,j}G_{1,1} \quad (\text{for any } j \in \Omega_2 \setminus \{1\}). \\ A_{i,k} &= G_{i,1}G_{1,1}G_{1,k-p} \quad (i \in \Omega_1, \ k \in \Omega_3; \ (i,k) \neq (1,p+1)). \\ A_{i,k} &= -A_{k,i} + G_{k,i-p} \quad (i \in \Omega_3, \ k \in \Omega_1). \\ A_{i,k} &= G_{1,i-p}G_{1,k-p} \quad (i,k \in \Omega_3; \ i \neq k). \\ A_{1,1} &= G_{1,1}G_{1,1}G_{1,j}G_{1,j} \quad (\text{for any } j \in \Omega_2 \setminus \{1\}). \\ A_{i,i} &= -G_{1,1}G_{1,1}G_{t,1}G_{t,1} + G_{i,1}G_{i,1} \quad (i \in \Omega_1 \setminus \{1\}; \text{ for any } t \in \Omega_1 \setminus \{1\}). \\ A_{i,i} &= -G_{1,1}G_{1,1}G_{1,j}G_{1,j} + G_{1,i-p}G_{1,i-p} \quad (i \in \Omega_3; \text{ for any } j \in \Omega_2 \setminus \{1\}). \end{split}$$

We wish to show that the elements $A_{i,j}$ (for all $i, j \in \Omega_1 \cup \Omega_3$) satisfy the multiplication table for matrix units. We first observe that the elements $A_{1,1}$, $A_{1,p+1}$, and the first term of $A_{i,i}$ ($i \in (\Omega_1 \cup \Omega_3) \setminus \{1\}$) do not depend on the choice of $j \neq 1$ (see Remark 2.5). Let $i \in (\Omega_1 \cup \Omega_3) \setminus \{1\}$ and choose any $j \in \Omega_2 \setminus \{1\}$, we have

$$A_{1,i} = \Delta_{i,\Omega_1} G_{1,1} G_{i,1} + \delta_{i,p+1} G_{1,j} G_{1,j} G_{1,1} + \widehat{\delta}_{i,p+1} \Delta_{i,\Omega_3} G_{1,1} G_{1,i-p}.$$

$$A_{i,1} = \Delta_{i,\Omega_1} G_{i,1} G_{1,1} + \Delta_{i,\Omega_3} (-A_{1,i} + G_{1,i-p}).$$

For all $i \in (\Omega_1 \cup \Omega_3) \setminus \{1\}$, we first consider the following four products: $A_{1,i}A_{1,1}$, $A_{1,1}A_{1,i}$, $A_{1,1}A_{1,i}$, and $A_{i,1}A_{1,1}$. For $A_{1,i}A_{1,1}$: We have

$$A_{1,i}A_{1,1} = \Delta_{i,\Omega_1}G_{1,1}G_{1,1}G_{1,1}G_{1,1}G_{1,j}G_{1,j}$$

$$+ \delta_{i,p+1}G_{1,j}G_{1,j}G_{1,1}G_{1,1}G_{1,1}G_{1,j}G_{1,j}$$

$$+ \hat{\delta}_{i,p+1}\Delta_{i,\Omega_3}G_{1,1}G_{1,1}G_{1,i-p}G_{1,1}G_{1,1}G_{1,j}G_{1,j}$$

$$\equiv 0.$$

$$(5)$$

since $G_{11}G_{11}G_{11} \equiv G_{11}$ (by (1) of Lemma 2.4) and the elements, $G_{1,1}G_{i,1}G_{1,1}$ $(i \neq 1)$, $G_{1,j}G_{1,1}G_{1,j}$ $(j \neq 1)$ and $G_{1,1}G_{1,i-p}G_{1,1}$ $(i \neq p+1)$ vanish (by (6), (5) of Lemma 2.4),

For $A_{1,1}A_{1,i}$: We have

$$A_{1,1}A_{1,i} = \Delta_{i,\Omega_{1}}G_{1,1}G_{1,1}G_{1,j}G_{1,j}G_{1,1}G_{i,1} + \delta_{i,p+1}G_{1,1}G_{1,1}G_{1,j}G_{1,j}G_{1,j}G_{1,j}G_{1,j}G_{1,1}$$

$$+ \hat{\delta}_{i,p+1}\Delta_{i,\Omega_{3}}G_{1,1}G_{1,1}G_{1,j}G_{1,j}G_{1,1}G_{1,1}G_{1,i-p}$$

$$\equiv \Delta_{i,\Omega_{1}}G_{1,1}G_{i,1} + \delta_{i,p+1}G_{1,1}G_{1,1}G_{1,j}G_{1,j}G_{1,1}$$

$$+ \hat{\delta}_{i,p+1}\Delta_{i,\Omega_{3}}G_{1,1}G_{1,1}G_{1,1}G_{1,1}G_{1,i-p}$$

$$\equiv \Delta_{i,\Omega_{1}}G_{1,1}G_{i,1} + \delta_{i,p+1}G_{1,j}G_{1,j}G_{1,1} + \hat{\delta}_{i,p+1}\Delta_{i,\Omega_{3}}G_{1,1}G_{1,i-p}$$

$$= A_{1,i},$$

$$(6)$$

by (6), (4), (5) of Corollary 2.6 and (1) of Lemma 2.4. For $A_{1,1}A_{i,1}$: We have

$$A_{1,1}A_{i,1} = \Delta_{i,\Omega_1}A_{1,1}G_{i,1}G_{1,1} + \Delta_{i,\Omega_2}(-A_{1,1}A_{1,i} + A_{1,1}G_{1,i-n}).$$

We observe that $A_{1,1}G_{i,1} = G_{1,1}G_{1,1}G_{1,j}G_{1,j}G_{i,1} \equiv 0$; since $G_{1,j}G_{i,1} \equiv 0$ (by (2) of Lemma 2.4). Using this and (6) (of the present proof), (4) and (7) of Corollary 2.6, we obtain

$$\begin{split} A_{1,1}A_{i,1} &= \Delta_{i,\Omega_3}(-A_{1,i} + A_{1,1}G_{1,i-p}) \\ &= \Delta_{i,\Omega_3}(-A_{1,i} + G_{1,1}G_{1,1}G_{1,j}G_{1,j}G_{1,i-p}) \\ &\equiv \Delta_{i,\Omega_3}(-A_{1,i} + \delta_{i,p+1}G_{1,j}G_{1,j}G_{1,1} + \widehat{\delta}_{i,p+1}G_{1,1}G_{1,1}G_{1,i-p}) \\ &\equiv 0. \end{split}$$

For $A_{i,1}A_{1,1}$: We have

$$\begin{split} A_{i,1}A_{1,1} &= \Delta_{i,\Omega_1}G_{i,1}G_{1,1}A_{1,1} + \Delta_{i,\Omega_3}(-A_{1,i}A_{1,1} + G_{1,i-p}A_{1,1}) \\ &= \Delta_{i,\Omega_1}G_{i,1}G_{1,1}G_{1,1}G_{1,1}G_{1,j}G_{1,j} + \Delta_{i,\Omega_3}G_{1,i-p}G_{1,1}G_{1,1}G_{1,j}G_{1,j} \\ &\equiv \Delta_{i,\Omega_1}G_{i,1}G_{1,1}G_{1,j}G_{1,j} + \Delta_{i,\Omega_3}\left[\delta_{i,p+1}G_{1,1}G_{1,1}G_{1,1}G_{1,j}G_{1,j} \right. \\ &\qquad \qquad + \widehat{\delta}_{i,p+1}G_{1,i-p}G_{1,1}G_{1,1}G_{1,i-p}G_{1,i-p}\right] \\ &\equiv \Delta_{i,\Omega_1}G_{i,1}G_{1,1} + \Delta_{i,\Omega_3}\left[\delta_{i,p+1}G_{1,1}G_{1,j}G_{1,j} \right. \\ &\qquad \qquad + \widehat{\delta}_{i,p+1}(-G_{1,1}G_{1,1}G_{1,i-p} + G_{1,i-p})\right] \\ &= A_{i,1}, \end{split}$$

by (5) (of the present proof), (1) of Lemma 2.4, Remark 2.5, and (8), (1) of Corollary 2.6. Summarizing, for all $i \in (\Omega_1 \cup \Omega_3) \setminus \{1\}$, we have

$$A_{1,i}A_{1,1} = 0 = A_{1,1}A_{i,1}, \ A_{1,1}A_{1,i} = A_{1,i}, \ A_{i,1}A_{1,1} = A_{i,1}.$$
 (7)

Throughout the rest of the proof, we assume that $i, k \in (\Omega_1 \cup \Omega_3) \setminus \{1\}$. Using the products of (7), we get

$$A_{1,i}A_{1,k} = A_{1,i}A_{1,1}A_{1,k} = 0, \quad A_{i,1}A_{k,1} = A_{i,1}A_{1,1}A_{k,1} = 0.$$
 (8)

We next consider the two products: $A_{1,i}A_{k,1}$ and $A_{i,1}A_{1,k}$.

For $A_{1,i}A_{k,1}$: Using (8) (of the present proof), we get

$$\begin{split} A_{1,i}A_{k,1} &= \Delta_{k,\Omega_1}A_{1,i}G_{k,1}G_{1,1} + \Delta_{k,\Omega_3}A_{1,i}G_{1,k-p}. \\ &= \Delta_{k,\Omega_1} \big(\Delta_{i,\Omega_1}G_{1,1}G_{i,1} + \delta_{i,p+1}G_{1,j}G_{1,j}G_{1,1} \\ &+ \widehat{\delta}_{i,p+1}\Delta_{i,\Omega_3}G_{1,1}G_{1,1}G_{1,i-p}\big)G_{k,1}G_{1,1} \\ &+ \Delta_{k,\Omega_3} \big(\Delta_{i,\Omega_1}G_{1,1}G_{i,1} + \delta_{i,p+1}G_{1,j}G_{1,j}G_{1,1} \\ &+ \widehat{\delta}_{i,p+1}\Delta_{i,\Omega_3}G_{1,1}G_{1,1}G_{1,i-p}\big)G_{1,k-p}. \end{split}$$

By (2), (5), and (6) of Lemma 2.4, the following products vanish: $G_{i,1}G_{k,1}G_{1,1}$ $(i \neq k), G_{1,1}G_{k,1}G_{1,1}, G_{1,i-p}G_{k,1}$ $(i \neq p+1), G_{i,1}G_{1,k-p}$ $(k \neq p+1), G_{1,j}G_{1,i-p}G_{1,k-p}$ $(i \neq k, p+1)$. It follows that

$$A_{1,i}A_{k,1} = \Delta_{k,\Omega_1}\delta_{i,k}G_{1,1}G_{k,1}G_{k,1}G_{1,1} + \Delta_{k,\Omega_3}(\delta_{i,p+1}\delta_{k,p+1}G_{1,j}G_{1,j}G_{1,1}G_{1,1}G_{1,1}G_{1,1}G_{1,1}G_{1,1}G_{1,1}G_{1,k-p}G_{1,k-p}).$$

We now choose any $\ell \in \Omega_1 \setminus \{1\}$ and $t \in \Omega_2 \setminus \{1\}$. By (7) and (8) of Lemma 2.4 and Remark 2.5, we get $G_{k,1}G_{k,1}G_{1,1} \equiv G_{1,1}G_{1,t}G_{1,t}, \ G_{1,j}G_{1,j}G_{1,1}G_{1,1} \equiv$

 $G_{1,1}G_{\ell,1}G_{\ell,1}G_{1,1} \equiv G_{1,1}G_{1,1}G_{1,t}G_{1,t} \ (j \neq 1), \ G_{1,1}G_{1,k-p}G_{1,k-p} \equiv G_{1,1}G_{1,t}G_{1,t}$ $(k-p \neq 1)$. Using this discussion in the last equation implies

$$A_{1,i}A_{k,1} \equiv \Delta_{k,\Omega_1}\delta_{i,k}G_{1,1}G_{1,1}G_{1,t}G_{1,t} + \Delta_{k,\Omega_3} \left(\delta_{i,p+1}\delta_{k,p+1}G_{1,1}G_{1,1}G_{1,t}G_{1,t} + \Delta_{i,\Omega_3}\widehat{\delta}_{i,p+1}\delta_{i,k}G_{1,1}G_{1,1}G_{1,t}G_{1,t}\right)$$

$$= \delta_{ik}A_{1,1}.$$
(9)

For the product $A_{i,1}A_{1,k}$: Using (8)(of the present proof) and (1) of Lemma 2.4, we get

$$\begin{split} A_{i,1}A_{1,k} &\equiv \Delta_{i,\Omega_1}G_{i,1}G_{1,1}A_{1,k} + \Delta_{i,\Omega_3}(-A_{1,i}A_{1,k} + G_{1,i-p}A_{1,k}) \\ &\equiv \Delta_{i,\Omega_1}G_{i,1}G_{1,1}\left[\Delta_{k,\Omega_1}G_{1,1}G_{k,1} + \delta_{k,p+1}G_{1,t}G_{1,t}G_{1,1} \right. \\ &+ \left. \Delta_{k,\Omega_3}\widehat{\delta}_{k,p+1}G_{1,k-p} \right] + \Delta_{i,\Omega_3}G_{1,i-p}\left[\Delta_{k,\Omega_1}G_{1,1}G_{k,1} \right. \\ &+ \left. \delta_{k,p+1}G_{1,t}G_{1,t}G_{1,1} + \widehat{\delta}_{k,p+1}\Delta_{k,\Omega_3}G_{1,1}G_{1,1}G_{1,k-p} \right]. \end{split}$$

Using (2), (8), (3), and (1) of Corollary 2.6 implies

$$\begin{split} A_{i,1}A_{1,k} &\equiv \Delta_{i,\Omega_{1}} \left[\Delta_{k,\Omega_{1}} \left(-\delta_{i,k}G_{1,1}G_{1,1}G_{i,1}G_{i,1} + G_{i,1}G_{k,1} \right) + \delta_{k,p+1}G_{i,1}G_{1,1}G_{1,1} \right. \\ &+ \left. \Delta_{k,\Omega_{3}} \widehat{\delta}_{k,p+1}G_{i,1}G_{1,1}G_{1,k-p} \right] + \Delta_{i,\Omega_{3}} \left[\Delta_{k,\Omega_{1}}G_{1,i-p}G_{1,1}G_{k,1} \right. \\ &+ \left. \delta_{k,p+1} \left(-\delta_{i,p+1}G_{1,1}G_{1,1}G_{1,t}G_{1,t} + G_{1,i-p}G_{1,1} \right) + \widehat{\delta}_{k,p+1}\Delta_{k,\Omega_{3}} \left(\delta_{i,p+1}G_{1,1}G_{1,k-p} \right. \\ &+ \left. \widehat{\delta}_{i,p+1} \left(-\delta_{i,k}G_{1,1}G_{1,1}G_{1,i-p}G_{1,i-p} + G_{1,i-p}G_{1,k-p} \right) \right) \right] \\ &= A_{i,k}. \end{split}$$

Summarizing, for all $i, k \in (\Omega_1 \cup \Omega_3) \setminus \{1\}$, we have

$$A_{1,i}A_{1,k} = 0 = A_{i,1}A_{k,1}, \ A_{1,i}A_{k,1} = \delta_{ik}A_{1,1}, \ A_{i,1}A_{1,k} = A_{i,k}.$$
 (10)

We now use the products of (7) and (10) to get all the others. For all $i, k, \ell, t \in (\Omega_1 \cup \Omega_3) \setminus \{1\}$, we have $A_{1,i}A_{i,1} = A_{1,1}$, hence $A_{1,1}A_{1,i}A_{i,1} = A_{1,1}A_{1,1}$. Thus $A_{1,1} = A_{1,1}A_{1,1}$. We also have $A_{i,k} = A_{i,1}A_{1,k}$. Hence $A_{i,k}A_{\ell,t} = A_{i,1}A_{1,k}A_{\ell,1}A_{1,t} = \delta_{k,\ell}A_{i,1}A_{1,1}A_{1,t} = \delta_{k,\ell}A_{i,1}A_{1,t}$. Summarizing, for all $i, k, \ell, t \in \Omega_1 \cup \Omega_3$, we have

$$A_{i,k}A_{\ell,t} = \delta_{k,\ell}A_{i,t}.$$

Now let S denote the subspace of $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ generated by $A_{i,j}$ $(i,j \in \Omega_1 \cup \Omega_3)$. We have shown that S is a subalgebra of $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ and is isomorphic to $M_{p+q\times p+q}(\mathbb{F})$. By the definition of $A_{i,j}$, we get

$$G_{i,j} = A_{i,j+p} + A_{j+p,i}$$
 (for all $i \in \Omega_1, j \in \Omega_2$).

Thus all $G_{i,j} \in \mathcal{S}$. Hence $\mathcal{U}(\mathcal{J}_{\mathbb{F}}) \cong M_{p+q \times p+q}(\mathbb{F})$.

Corollary 3.2. The universal associative envelope of the Jordan triple system $\mathcal{J}_{\mathbb{F}}$ (of Definition 2.1) is semisimple.

Corollary 3.3. The Jordan triple system $\mathcal{J}_{\mathbb{F}}$ (of Definition 2.1) has only one non-trivial representation (up to equivalence) defined by:

$$\Theta: \mathcal{J}_{\mathbb{F}} \to M_{p+q \times p+q}(\mathbb{F}), \quad E_{i,j} \to \left(\begin{array}{cc} O_{p \times p} & E_{i,j} \\ E_{j,i} & O_{q \times q} \end{array} \right).$$

Proof. By Theorem 3.1, the Jordan triple system $\mathcal{J}_{\mathbb{F}}$ has only one nontrivial representation. We now verify that Θ is a representation of $\mathcal{J}_{\mathbb{F}}$. We first observe that,

$$\Theta(E_{i,j}) = \mathbb{E}_{i,p+j} + \mathbb{E}_{p+j,i}$$
 (for all $i \in \Omega_1, j \in \Omega_2$).

where $\mathbb{E}_{i,j}$ is the $(p+q) \times (p+q)$ matrices whose (i,j) entry is 1 and all the other entries are 0. For all $i, k, s \in \Omega_1$ and $j, \ell, t \in \Omega_2$, we have

$$\Theta\{E_{i,j}, E_{k,\ell}, E_{s,t}\} = \Theta\left(E_{i,j} E_{\ell,k} E_{s,t} + E_{s,t} E_{\ell,k} E_{i,j}\right)
= \Theta\left(\delta_{j,\ell} \delta_{k,s} E_{i,t} + \delta_{t,\ell} \delta_{k,i} E_{s,j}\right)
= \delta_{j,\ell} \delta_{k,s} \left(\mathbb{E}_{i,p+t} + \mathbb{E}_{p+t,i}\right) + \delta_{t,\ell} \delta_{k,i} \left(\mathbb{E}_{s,p+j} + \mathbb{E}_{p+j,s}\right).$$

On the other hand

$$\begin{aligned} \{\Theta(E_{i,j}), \Theta(E_{k,\ell}), \Theta(E_{s,t})\} &= \Theta(E_{i,j})(\Theta(E_{k,\ell}))^t \Theta(E_{s,t}) + \Theta(E_{s,t})(\Theta(E_{k,\ell}))^t \Theta(E_{i,j}) \\ &= (\mathbb{E}_{i,p+j} + \mathbb{E}_{p+j,i}) \left(\mathbb{E}_{k,p+\ell} + \mathbb{E}_{p+\ell,k}\right)^t \left(\mathbb{E}_{s,p+t} + \mathbb{E}_{p+t,s}\right) \\ &+ \left(\mathbb{E}_{s,p+t} + \mathbb{E}_{p+t,s}\right) \left(\mathbb{E}_{k,p+\ell} + \mathbb{E}_{p+\ell,k}\right)^t \left(\mathbb{E}_{i,p+j} + \mathbb{E}_{p+j,i}\right) \\ &= \left(\mathbb{E}_{i,p+j} + \mathbb{E}_{p+j,i}\right) \left(\mathbb{E}_{k,p+\ell} + \mathbb{E}_{p+\ell,k}\right) \left(\mathbb{E}_{s,p+t} + \mathbb{E}_{p+t,s}\right) \\ &+ \left(\mathbb{E}_{s,p+t} + \mathbb{E}_{p+t,s}\right) \left(\mathbb{E}_{k,p+\ell} + \mathbb{E}_{p+\ell,k}\right) \left(\mathbb{E}_{i,p+j} + \mathbb{E}_{p+j,i}\right) \\ &= \delta_{j,\ell} \delta_{k,s} \mathbb{E}_{i,p+t} + \delta_{i,k} \delta_{\ell,t} \mathbb{E}_{p+j,s} + \delta_{t,\ell} \delta_{i,k} \mathbb{E}_{s,p+j} + \delta_{s,k} \delta_{\ell,j} \mathbb{E}_{p+t,i}. \end{aligned}$$

Hence Θ is a representation of $\mathcal{J}_{\mathbb{F}}$.

Lemma 3.4. The center $\mathfrak{C}(\mathcal{U}(\mathcal{J}_{\mathbb{F}}))$ of the universal associative envelope $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ has dimension 1 with a basis

$$e = (1 - q) G_{1,1} G_{1,j} G_{1,j} + (1 - p) G_{1,1} G_{1,1} G_{t,1} G_{t,1} + \sum_{i=2}^{p} G_{i,1} G_{i,1} + \sum_{s=1}^{q} G_{1,s} G_{1,s},$$

for any $t \in \Omega_1 \setminus \{1\}$ and $j \in \Omega_2 \setminus \{1\}$.

Proof. By Theorem 3.1, we have $\mathfrak{C}(\mathcal{U}(\mathcal{J}_{\mathbb{F}})) \cong \mathbb{F}$. It follows that $e = \sum_{i=1}^{p+q} A_{i,i}$ is the only idempotent in $\mathcal{U}(\mathcal{J}_{\mathbb{F}})$ that span the center. Using the proof of Theorem 3.1, we get

$$\begin{split} e &= G_{1,1}G_{1,1}G_{1,j}G_{1,j} + \sum_{i=2}^{p} \left(-G_{11}G_{1,1}G_{t,1}G_{t,1} + G_{i,1}G_{i,1} \right) \\ &+ \sum_{i=p+1}^{p+q} \left(-G_{1,1}G_{1,1}G_{1,j}G_{1,j} + G_{1,i-p}G_{1,i-p} \right) \\ &= G_{1,1}G_{1,1}G_{1,j}G_{1,j} - (p-1)G_{11}G_{1,1}G_{t,1}G_{t,1} + \sum_{i=2}^{p} G_{i,1}G_{i,1} \\ &- q G_{1,1}G_{1,1}G_{1,j}G_{1,j} + \sum_{i=p+1}^{p+q} G_{1,i-p}G_{1,i-p}. \end{split}$$

This completes the proof.

Acknowledgement. We thank the referee for helpful suggestions which improved the exposition.

References

- [1] C. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math., 219 (2008), 2029-2057.
- [2] E. Corrigan and T. Hollowood, String construction of a commutative nonassociative algebra related to the exceptional Jordan algebra, Phys. Lett., 203 (1988), 47-51.
- [3] H. Elgendy, On the universal envelope of a Jordan triple system of $n \times n$ matrices, J. Algebra Appl., 21(6) (2022), 2250126 (19 pp).
- [4] H. Elgendy, Representations of special Jordan triple systems of all symmetric and hermitian n by n matrices, Linear Multilinear Algebra, DOI: 10.1080/03081087.2021.1970097, in press.
- [5] D. Fairlie and C. Manogue, Lorentz invariance and the composite string, Phys. Rev., 34 (1986), 1832-1834.
- [6] J. Faulkner and J. Ferrar, Exceptional Lie algebras and related algebraic and geometric structures, Bull. London Math. Soc., 9 (1977), 1-35.
- [7] R. Foot and G. Joshi, String theories and the Jordan algebras, Phys. Lett., 199 (1987), 203-208.
- [8] P. Goddard, W. Nahm, D. Olive, H. Ruegg and A. Schwimmer, Fermions and octonions, Comm. Math. Phys., 112 (1987), 385-408.

- [9] M. Günaydin and F. Gürsey, Quark structure and octonions, J. Mathematical Phys., 14 (1973), 1651-1667.
- [10] M. Günaydin, G. Sierra and P. Townsend, The geometry of N=2 Maxwell-Einstein supergravity and Jordan algebras, Nuclear Phys., 242 (1984), 244-268.
- [11] F. Gürsey, Super Poincaré groups and division algebras, Modern Phys. Lett., 2 (1987), 967-976.
- [12] N. Jacobson, Lie and Jordan triple systems, Amer. J. Math., 71 (1949), 149-170.
- [13] W. Kaup and D. Zaitsev, On symmetric Cauchy-Riemann manifolds, Adv. Math., 149 (2000), 145-181.
- [14] M. Koecher, Imbedding of Jordan algebras into Lie algebras I, Amer. J. Math., 89 (1967), 787-816.
- [15] M. Koecher, An Elementary Approach to Bounded Symmetric Domains, Lecture Notes, Rice University, Houston, 1969.
- [16] K. McCrimmon, Jordan algebras and their applications, Bull. Amer. Math. Soc., 84 (1978), 612-627.
- [17] K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer-Verlag, 2004.
- [18] K. Meyberg, Lectures on Algebras and Triple Systems, Lecture Notes, University of Virginia, Charlottesville, 1972.
- [19] E. Neher, Jordan Triple Systems by the Grid Approach, Lecture Notes in Mathematics, Vol. 1280, Springer-Verlag, Berlin, 1987.
- [20] S. Okubo, Triple products and Yang-Baxter equation. II. Orthogonal and symplectic ternary systems, J. Math. Phys., 34 (1993), 3292-3315.
- [21] G. Sierra, An application of the theories of Jordan algebras and Freudenthal triple systems to particles and strings, Classical Quantum Gravity, 4 (1987), 227-236.
- [22] H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math., 108 (1986), 1-25.

Hader A. Elgendy

Department of Mathematics Faculty of Science Damietta University Damietta 34517, Egypt

e-mail: haderelgendy42@hotmail.com