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Abstract: This review reckons with iterative scheme of Thianwan to approximate a common fixed point

for four G�nonexpansive mappings (tersely G�nm). We verify several convergence results for in this way

mappings in Banach space by dint of a digraph.
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1. Introduction and Preliminaries
Let X be a Banach space, K x g,K bX . Directed graph mostly enrolled qua digraph is a double:

G � �V �G� ,E �G�� , that here V �G� is the set of vertices of graph and E �G� is the set of its

edges that involves overall the loops, scilicet �x,x� > E �G� for all x > V �G� . Given that G enjoys

no parallel edges. If x , y occur vertices of G , here a path in G ranging x from y of length N is a

sequence �xi�
N
i�0 of N �1 vertices such that x � x0 , y � xN and �xi�1, xi� > E �G� for all i � 1,N .

Digraph G is alleged to become transitive if, for all x, y, z > V �G� such that �x, y� and �y, z� are

in E �G� , we acquire �x, z� > E �G� [2]. A mapping f �K �K is asserted to become

• G�nonexpansive (tersely G � nm) [3] if it yields (i) �x, y� > E �G� � �fx, fy� > E �G� (f

preserves edges of G), (ii) �x, y� > E �G�� Yfx � fyY B Yx � yY ;

• semi-compact [9] if for �xn� in K with Yxn � fxnY � 0 as n � ª , there appears a

subsequence �xni� of �xn� such that xni � f� >K .

The mappings fi �K �K are supply condition �A
��

� [1] if there is a nondecreasing function

g � �0,ª�� �0,ª� with g �0� � 0 , 0 @ g �t� for all t > �0,ª� such that Yx � fixY C g �d �x,Ff�� for

all i � 1, k , x >K , where d �x,Ff� � inf �Yx � f�Y � f� > Ff � 9
k
c�1F �fc� x g� .
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Let x0 > V �G� and Υ b V �G� . We state that [5], (i) Υ is dominated by x0 if �x0, x� > E �G�

for all x > Υ , (ii) Υ dominates x0 if for each x > Υ , �x0, x� > E �G� .

Let G be a digraph such that V �G� � K . Then, K is alleged to get property P [8] if for

each sequence �xn� in K @ x > K and �xn, xn�1� > E �G� , there is a subsequence �xnl
� of �xn�

such that �xnl
, x� > E �G� for all l > N .

Remark 1.1 [6] If G is transitive, then Property P is equal to the speciality: if �xn� b K with

�xn, xn�1� > E �G� such that for any subsequence �xnl
� of �xn� @ x b X , then �xn, x� > E �G�

for all n > N .

Phuengrattana and Suantai [15] gave on the rate of convergence of Mann, Ishikawa, Noor

and SP� iterations for continuous functions on an arbitrary interval. Şahin and Başarır [16]

presented on the strong and ∆�convergence of SP� iteration on CAT �0� space.

Motivated by [11–13] and above results, the iterative scheme is defined as follows:

tn � �1 � βn�xn � βnf1xn,

yn � �1 � ξn�xn � ξnf2tn,

sn � �1 � ϱn� yn � ϱnf3yn,

xn�1 � �1 � θn�xn � θnf4sn, n C 1, (1)

where �ξn� , �θn� , �βn� , �ϱn� b �0,1� , for all i � 1,4 , fi �K �K are G � nm . We verify several

convergence results for in this way mappings in Banach space by dint of a digraph.

Lemma 1.2 [10] Let X be a uniformly convex Banach space. Suggesting that 0 @ b B νn B

c @ 1 , n C 1 . Let �xn� ,�yn� b X be such that lim supn�ª YxnY B a , lim supn�ª YynY B a and

limn�ª Yνnxn � �1 � νn� ynY � a , where a C 0 . Then, limn�ª Yxn � ynY � 0.

2. Main Results

Ff � 9
4
c�1F �fc� x g . For x0 >K , let �xn� be the sequence created by (1).

Proposition 2.1 Let u0 > Ff be such that �x0, u0� and �u0, x0� are in E �G� . Then, �xn, u0� ,

�u0, xn� , �xn, sn� , �sn, xn� , �xn, yn� , �yn, xn� , �xn, tn� , �tn, xn� , �u0, sn� , �sn, u0� , �u0, yn� ,

�yn, u0� , �u0, tn� , �tn, u0� , �xn, xn�1� are in E �G� for all n > N .

Proof We shall demonstrate our deductions by induction. Let �x0, u0� > E �G� . By virtue of

edge-preserving of f1 , we have �f1x0, u0� > E �G� , and thus �t0, u0� > E �G� from the convexity of

E �G� . Due to edge-preserving of f2 , we get �f2t0, u0� > E �G� . By using the convexity of E �G�
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and �x0, u0� , �f2t0, u0� > E �G� , we own �y0, u0� > E �G� . As f3 is edge-preserving, we possess

�f3y0, u0� > E �G� and �s0, u0� > E �G� from the convexity of E �G� . Owing to edge-preserving of

f4 , �f4s0, u0� > E �G� . Again the convexity of E �G� and �x0, u0� , �f4s0, u0� > E �G� , we acquire

�x1, u0� > E �G� . Continuing in this fashion for �x1, u0� instead of �x0, u0� , we get �t1, u0� ,

�y1, u0� , �s1, u0� , �x2, u0� > E �G� .

Suppose that �xv, u0� > E �G� for v C 1 . Because of edge-preserving of f1 , we attain

�f1xv, u0� > E �G� , and thus �tv, u0� > E �G� from the convexity of E �G� . On account of edge-

preserving of f2 , we achieve �f2tv, u0� > E �G� . Using the convexity of E �G� and �xv, u0� ,

�f2tv, u0� > E �G� , we obtain �yv, u0� > E �G� . Because f3 is edge-preserving, we own �f3yv, u0� >

E �G� and so �sv, u0� > E �G� from the convexity of E �G� . In view of edge-preserving of f4 ,

�f4sv, u0� > E �G� . Repetition the convexity of E �G� and �xv, u0� , �f4sv, u0� > E �G� , we belong

�xv�1, u0� > E �G� . Repeating the procedure on one occasion for �xv�1, u0� > E �G� , we get

�tv�1, u0� , �yv�1, u0� , �sv�1, u0� , �xv�2, u0� > E �G� .

Hence, �xn, u0� , �tn, u0� , �yn, u0� , �sn, u0� > E �G� for n C 1 . Utilizing an analog

argumentum, we infer that �u0, xn� , �u0, tn� , �u0, yn� , �u0, sn� > E �G� from �u0, x0� > E �G� . As

the graph G is transitivity, we acquire for n C 1 �xn, sn� , �sn, xn� , �yn, xn� , �xn, yn� , �tn, xn� ,

�xn, tn� and �xn, xn�1� > E �G� . j

Lemma 2.2 If K is a nonempty closed convex subset of a real uniformly convex Banach space

X , �ξn� , �θn� , �βn� , �ϱn� b �a, b� , where 0 @ a @ b @ 1 and �x0, u0� , �u0, x0� > E �G� for x0 >K

and u0 > Ff , then

(i) Yxn�1 � u0Y B Yxn � u0Y for n C 1 , and hence Yxn � u0Y � 0 as n�ª ;

(ii) limn�ª Yxn � fixnY � 0 for all i � 1,4.

Proof (i) By Proposition 2.1, �xn, u0� , �u0, xn� , �sn, xn� , �xn, sn� ,�yn, xn� , �xn, yn� , �xn, tn� ,

�tn, xn� , �u0, sn� , �sn, u0� , �u0, yn� , �yn, u0� , �u0, tn� , �tn, u0� , �xn, xn�1� are in E �G� . It

follows from (1) that

Ytn � u0Y � Y�u0 � ��βn � 1�xn � βnf1xnY

B ��βn � 1� Y�u0 � xnY � βn Yf1xn � u0Y

B ��βn � 1� Y�u0 � xnY � βn Y�u0 � xnY

� Y�u0 � xnY . (2)
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Using (1) & (2), we have

Yyn � u0Y B �1 � ξn� Yxn � u0Y � ξn Yf2tn � u0Y

B �1 � ξn� Yxn � u0Y � ξn Ytn � u0Y

B Yxn � u0Y . (3)

Similarly, along with (3), we get

Ysn � u0Y B �1 � ϱn� Yyn � u0Y � ϱn Yf3yn � u0Y

B �1 � ϱn� Yyn � u0Y � ϱn Yyn � u0Y

B Yyn � u0Y

B Yxn � u0Y . (4)

By (4), we possess

Y�u0 � xn�1Y B ��θn � 1� Y�u0 � xnY � θn Y�u0 � f4snY

B ��θn � 1� Y�u0 � xnY � θn Ysn � u0Y

B Yxn � u0Y . (5)

Hence, limn�ª Yxn � u0Y exists.

(ii) By assumption (i), �xn� is bounded. Let

lim
n�ª

Yxn � u0Y �M. (6)

If M � 0 , then, by G � nm of �f1, f2, f3, f4� , it is obvious. Next, suppose M A 0 . We shall show

that, for all i � 1,4 , Yxn � fixnY� 0 as n�ª .

Getting lim sup on both parts of (2), (3) & (4), we have

lim sup
n�ª

Ytn � u0Y B M, (7)

lim sup
n�ª

Yyn � u0Y B M, (8)

lim sup
n�ª

Ysn � u0Y B M. (9)

It implies by (7), (8) & (9) and the G � nm of �f1, f2, f3, f4� that

Yf1xn � u0Y B Yxn � u0Y

lim sup
n�ª

Yf1xn � u0Y B M , (10)
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Yf2tn � u0Y B Ytn � u0Y

lim sup
n�ª

Yf2tn � u0Y B M , (11)

Yf3yn � u0Y B Yyn � u0Y

lim sup
n�ª

Yf3yn � u0Y B M , (12)

and

Yf4sn � u0Y B Ysn � u0Y

lim sup
n�ª

Yf4sn � u0Y B M . (13)

Since limn�ª Yxn�1 � u0Y �M , we get

lim
n�ª

Y�1 � θn� �xn � u0� � θn �f4sn � u0�Y �M. (14)

By Lemma 1.2, we obtain

Yxn � f4snY� 0 as n�ª. (15)

Now, using the G � nm of �f1, f2, f3, f4� , we have

Y�u0 � xnY B Yf4sn � u0Y � Y�f4sn � xnY

B Yxn � f4snY � Ysn � u0Y (16)

B Yxn � f4snY � Y�1 � ϱn� �yn � u0� � ϱn �f3yn � u0�Y

B Yxn � f4snY � �1 � ϱn� Yyn � u0Y � ϱn Yf3yn � u0Y

B Yxn � f4snY � Yyn � u0Y (17)

B Yxn � f4snY � Y�1 � ξn� �xn � u0� � ξn �f2tn � u0�Y

B Yxn � f4snY � �1 � ξn� Yxn � u0Y � ξn Yf2tn � u0Y

B
1

ξn
Yxn � f4snY � Ytn � u0Y

B
1

a
Yxn � f4snY � Ytn � u0Y . (18)

Taking lim inf on both sides of (16), (17), (18) and using (15), we obtain

M B lim inf
n�ª

Ysn � u0Y , (19)

M B lim inf
n�ª

Yyn � u0Y , (20)

M B lim inf
n�ª

Ytn � u0Y , (21)
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respectively.

By combining (7) & (21), (8) & (20), (9) & (19), we get

lim
n�ª

Ytn � u0Y � lim
n�ª

Yyn � u0Y � lim
n�ª

Ysn � u0Y �M , (22)

respectively. Namely,

lim
n�ª

Y�1 � βn� �xn � u0� � βn �f1xn � u0�Y � M,

lim
n�ª

Y�1 � ξn� �xn � u0� � ξn �f2tn � u0�Y � M,

lim
n�ª

Y�1 � ϱn� �yn � u0� � ϱn �f3yn � u0�Y � M ,

respectively. It follows from (6), (8), (10), (11) & (12) and Lemma 1.2 that

lim
n�ª

Yxn � f1xnY � 0, (23)

lim
n�ª

Yxn � f2tnY � 0, (24)

lim
n�ª

Yyn � f3ynY � 0, resp. (25)

It implies by (23) & (24) that

Yxn � f2xnY B Yxn � f2tnY � Yf2tn � f2xnY

B Yxn � f2tnY � Ytn � xnY

B Yxn � f2tnY � βn Yf1xn � xnY

B Yxn � f2tnY � b Yf1xn � xnY

� 0 as n�ª. (26)

By (1) & (24), we have

Yxn � ynY � Yxn � ��1 � ξn�xn � ξnf2tn�Y

B ξn Yxn � f2tnY

B b Yxn � f2tnY

� 0 as n�ª. (27)

It follows from (25) & (27), we get

Yxn � f3xnY B Y�yn � xnY � Yyn � f3ynY � Yf3yn � f3xnY

B Y�yn � xnY � Yyn � f3ynY

� Y�xn � ynY � 0 as n�ª. (28)
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By (1), (25) & (27), we have

Ysn � xnY B Y�yn � snY � Yyn � xnY

� Y��1 � ϱn� yn � ϱnf3yn� � ynY � Y�xn � ynY

B ϱn Yyn � f3ynY � Y�xn � ynY

B b Yyn � f3ynY � Y�xn � ynY

� 0 as n�ª. (29)

Using (15) & (29), we obtain

Yxn � f4xnY B Yxn � f4snY � Yf4sn � f4xnY

B Yxn � f4snY

� Ysn � xnY

� 0 as n�ª. (30)

From (23), (26), (28) & (30), we get

Yxn � fixnY� 0 as n�ª for all i � 1,4. (31)

j

Theorem 2.3 Let K is a nonempty closed convex subset of a real uniformly convex Banach space

X and �ξn� , �θn� , �βn� , �ϱn� b �a, b� , where 0 @ a @ b @ 1 . Let u0 > Ff such that �x0, u0� ,

�u0, x0� are in E �G� for x0 > K . Supposing that K hold the property P , �f1, f2, f3, f4� satisfy

the condition�A
��

� , Ff is dominated by x0 and Ff dominates x0 , then �xn� Ð� u0 > Ff .

Proof Let u0 > Ff be such that �xn, u0� , �u0, xn� ,�sn, xn� , �xn, sn� , �xn, yn� , �yn, xn� ,

�xn, tn� , �tn, xn� , �u0, sn� , �sn, u0� , �u0, yn� , �yn, u0� , �u0, tn� , �tn, u0� , �xn, xn�1� are in E �G�

for all n > N . Due to Lemma 2.2 (ii) and condition �A
��

� , we attain that limn�ª g �d �xn, Ff�� � 0 .

As g is nondecreasing with g �0� � 0 , we hold d �xn, Ff� � 0 as n �ª . Thus, we can receive a

subsequence �xnl
� of �xn� and �u�l � ` Ff such that Yxnl

� u�l Y @ 2�l . Due to the fact that strong

convergence implies weak convergence and by Remark 1.1, we hold �xnl
, u�l � > E �G� . Using the

proof method of [11], we own

Yxnl�1
� u�l Y B Yxnl

� u�l Y @
1

2l
,

and so

Y�u�l�1 � u�l Y B Y�xnl�1
� u�l Y � Y�u�l�1 � xnl�1

Y B 3.2��1�l�.
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We deduce that �u�l�1� is a Cauchy sequence. Therefore, we have u�l � r . By closed of Ff ,

r > Ff in that case xnl
� r . Because of Lemma 2.2 (i), xn � r > Ff . j

Theorem 2.4 Let K is a nonempty closed convex subset of a real uniformly convex Banach space

X and �ξn� , �θn� , �βn� , �ϱn� b �a, b� , where 0 @ a @ b @ 1 . Let u0 > Ff such that �x0, u0� ,

�u0, x0� are in E �G� for x0 >K . Supposing that K has the property P and one of �f1, f2, f3, f4�

is semi-compact, Ff is dominated by x0 and Ff dominates x0 , then �xn�Ð� u0 > Ff .

Proof Let u0 > Ff be such that �xn, u0� , �u0, xn� , �xn, sn� , �sn, xn� , �xn, yn� , �yn, xn� ,

�xn, tn� , �tn, xn� , �u0, sn� , �sn, u0� , �u0, yn� , �yn, u0� , �u0, tn� , �tn, u0� , �xn, xn�1� are in

E �G� for all n > N . We have limn�ª Yxn � fjxnY � 0 from Lemma 2.2 (ii). Assume that fj

is semi-compact for all j � 1,4 . Then, there exists a subsequence �xnl
� of �xn� such that

liml�ª Yxnl
� υY � 0 for some υ >K . This together with Remark 1.1 implies that �xnl

, υ� > E �G� .

It follows from the G � nm of �f1, f2, f3, f4� and Lemma 2.2 (ii) that

Yυ � fjυY B Yυ � xnl
Y � Yxnl

� fjxnl
Y � Yfjxnl

� fjυY

� 0 as l �ª,

for all j � 1,4 . Hereat, υ > Ff so that limn�ª Yxn � υY exists. Thus, xn � υ as n�ª . j

We indicate an instance which is inspired by Example 4.5 in [7].

Example 2.5 K � �0,2� bX � R . Let G be a digraph described by V �G� �K and �x, y� > E �G�

iff 1.20 C y C x C 0.50 . Denote �f1, f2, f3, f4� � K � K by f1x � 1 � 23
49

tan ��1 � x� , f2x �

1 � 29
45

tan ��1 � x� , f3x � 1 � 23
49

arcsin ��1 � x� , f4x � 1 � 29
45

arcsin ��1 � x� for any x > K and

i � 1,2,3,4 . It is easy to see that f1, f2, f3, f4 are G�nm , but f1, f2, f3, f4 are not nonexpansive.

Let βn �
6n�5
8n�15

, ξn �
3n�1
9n�20

, ϱn �
10n�3
11n�4

, θn �
7n�11
13n�47

for n C 1 . Ff � 9
4
c�1F �fc� � �1� as in Figure

1.
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Figure 1: Plot showing Ff � 9
4
c�1F �fc� � �1�

Table 1 The value of the sequence �xn� with initial value x0 � 1.20000 , x0 � 0.80000 and

n � 20 , respectively.

n xn xn

1 1.20000 0.80000
2 1.15950 0.84047
3 1.12180 0.87822
4 1.09010 0.90994
5 1.06500 0.93499
6 1.04600 0.95395
7 1.03210 0.96788
8 1.02210 0.97787
9 1.01510 0.98492
10 1.01020 0.98981
11 1.00680 0.99317
12 1.00450 0.99545
13 1.00300 0.99699
14 1.00200 0.99802
15 1.00130 0.99870
16 1.00090 0.99915
17 1.00060 0.99945
18 1.00040 0.99964
19 1.00030 0.99977
20 1.00020 0.99985

Remark 2.6 (i) If ξn � 0 and f1 � f2 � f3 � f4 � f in (1), then Theorem 2.3 generalize the results

of Theorem 3.6 in [14] for self-map.

(ii) If ξn � ϱn � 0 and f1 � f2 � f3 � f4 � f in (1), we attain convergence of the Mann

iteration to some fixed points of f on Banach space involving a digraph.

(iii) If f1 � f2 � f3 � f4 � f in (1), then Theorem 2.3 extends the results of [12] without

errors for self-map.
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(iv) If f1 � f2 , f3 � f4 in (1), then Theorem 2.3 improves the results of [13] without errors

for self-map.

(v) If ξn � 0 in (1), then Theorem 2.4 reduces to the results of [4].

3. Conclusion
In this writting, we reckons with four step iteration scheme to common fixed points of four G�nm

described on Banach space involving a digraph. Our findings evolve the equal results of Shahzad

(2005) [14], Thianwan (2008) [12], Kızıltunç et al. (2010) [13] and Tripak (2016) [4]. Within

the future scope of the idea, reader can show that (1) compare convergence rate Picard, Mann,

Ishikawa and SP� iteration process for contractions.
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