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Abstract  

In this study, a biased estimator is proposed for the scale parameter of Laplace distribution. First, it is 

theoretically shown that the mean square error of the biased estimator is smaller than that of the 

maximum likelihood estimator. Then the maximum likelihood estimator is compared with the obtained 

biased estimator by means of a simulation study using the relative efficiency of these estimators. In 

addition, confidence intervals are constructed for the scale parameter of Laplace distribution with 

bootstrap method in order to compare them with each other in a different way. 

 

Laplace Dağılımının Ölçek Parametresi için Daraltıcı Tahmin ve 
Bootstrap Güven Aralığı 

Anahtar kelimeler 

Yanlı Tahmin, 

Bootstrap Güven 

Aralığı; Laplace 

Dağılımı; Daraltıcı 

Tahmin. 

Öz 

Bu çalışmada, Laplace dağılımının ölçek parametresi için yanlı bir tahmin edici önerilmiştir. İlk olarak, 

yanlı tahmin edicinin hata kare ortalamasının, en çok olabilirlik tahmin edicisininkinden daha küçük 

olduğu teorik olarak gösterilmiştir. Daha sonra en çok olabilirlik tahmin edicisi ile elde edilen yanlı 

tahminci, bu tahmincilerin göreli etkinlikleri kullanılarak bir benzetim çalışması ile karşılaştırılmıştır. 

Ayrıca tahmin edicileri farklı bir açıdan karşılaştırmak için Laplace dağılımının ölçek parametresi için 

bootstrap yöntemi ile güven aralıkları oluşturulmuştur. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

Unbiased estimators are widely used to estimate 

descriptive parameters of distributions. If the 

unbiased estimator has high variance, it may be 

possible to use biased estimators which has smaller 

mean squared error (MSE) criterion than that of 

unbiased estimator. There are several studies on 

biased but has lower MSE estimators of unknown 

population parameters. Thompson (1968) 

suggested a shrinkage method by multiplying the 

best linear unbiased estimator (BLUE) by a shrinking 

factor to obtain an estimator with a smaller MSE 

than the BLUE. Shrinkage estimators are considered 

a lot of studies in literature as Metha and Srinivasan 

(1971) gave estimation of the mean by shrinkage to 

a point, Govindarajulu and Sahai (1972) studied on 

estimating parameters of normal distribution, 

Bhatnagar (1986) propose to use variance 

estimating mean, Singh and Katyar (1988) proposed 

a generalized class of estimators for parameters of 

normal distribution, Singh (1990) also studied on 

estimating parameters of normal distributions, Jani 

(1991) suggested a class of shrinkage estimators for 

the scale parameter of exponential distribution, 

Singh and Singh (1997) and Singh and Saxena (2003) 

studied on shrinkage estimation for the variance of 

a normal population, Singh and Saxena (2008) gave 

a family of shrinkage estimators for Weibull shape 

parameter, Özdemir and Ebegil (2012) proposed 

shrinkages estimators for the shape parameter of 

pareto distribution, Mehta and Singh (2014) 

suggested shrinkage estimators of parameters of 

morgenstern type bivariate logistic distribution, 

Singh and Mehta (2016) studied on a class of 

shrinkage estimators of scale parameter of uniform 

               Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 
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distribution based on k-record values, Ebegil and 

Özdemir (2016) proposed two different shrinkage 

estimator classes for the shape parameter of 

classical pareto distribution, Balui et al. (2020) gave 

two different shrinkage estimator classes for the 

scale parameter of classical rayleigh distribution 

and, Vishwakarma and Gupta (2022) proposed 

shrinkage estimator for scale parameter of gamma 

distribution. 

 

In this study, we focus on estimating the parameters 

of Laplace distribution, also known as the double 

exponential distribution. The probability density 

function of the Laplace distribution, is given as 

 

𝑓(𝑥) = (2𝛽)−1𝑒
−

|𝑥−𝛼|

𝛽 , −∞ < 𝑥 < ∞, −∞ < 𝛼 < ∞, 𝛽 > 0(1) 

 

where α is the location parameter and 𝛽 is the scale 

parameter. Govindarajulu (1996) obtained the best 

linear estimates under symmetric censoring for the 

parameters of the double exponential distribution. 

Some alternative estimates were also given as in 

Raughunandanan and Srinivasan (1971). It was 

considered that coefficients for computing ordered 

linear unbiased minimum variance estimators for 

the location and scale parameters of the double 

exponential distribution in Tiao and Lund (1970). 

Confidence intervals based on maximum likelihood 

(ML) estimators were given for the location and 

scale parameters of the double exponential 

distribution Bain and Engelhardt (1973). 

 

In this study we obtained a biased estimator, which 

is adapting the shrinkage estimator supposed by 

Thompson (1968), for the scale parameter of the 

Laplace distribution using the ML estimator. Firstly, 

it is theoretically shown that the MSE of the biased 

estimator is smaller than the MSE of the ML 

estimator. Then the ML estimator is compared with 

the obtained biased estimator by means of a 

simulation study to show in which case the biased 

estimator is better than the ML estimator. At last, 

confidence intervals are constructed for the 

parameter 𝜷 with bootstrap method using both the 

biased estimator and the ML estimator in order to 

compare them with each other. 

 

The bootstrap method is a larger form of method 

class that resamples from the original dataset, 

hence called resampling procedures. Efron (1979) 

mentioned the simple nonparametric bootstrapping 

for independent and identically distributed 

observations, which “resamples the data with 

replacement”, with previously accepted statistical 

tools to estimate standard errors such as the 

jackknife method. After the later papers by Efron 

and Gong (1983), Efron and Tibshirani (1986), 

Diaconis and Efron (1983) that the statistical and 

scientific community began began to take these 

ideas into account, to appreciate the extensions and 

broad applicability of the methods, and to recognize 

their importance (Chernick 2008). There are so 

many studies used the bootstrap method with a 

view to make statistical inference by the help of 

confidence intervals: see also Efron and Tibshirani 

(1986), Diaconis and Efron (1983), Efron (1987), 

Carpenter, and Bithell (2000), Park (2011), DiCiccio 

and Efron (1996), DiCiccio and Tibshirani (1987), 

Efron and Tibshirani (1993), Chesneau et al. (2022) 

and Akdoğan (2022). 

The rest of the paper is organized as follows. The 

shrinkage estimation method is summarized in 

Section 2.1. A brief information about bootstrap 

method is given in Section 2.2.  Section 3 includes a 

simulation study. A numerical example is given in 

Section 4. The paper is finalized with a conclusion 

section. 

 

2. Methods  

2.1. Shrinkage Estimation Method 

Thompson (1968) suggested a shrinkage estimator 

𝜃𝑠 given as 

𝜃𝑠 = 𝑐(𝜃) + (1 − 𝑐)𝜃0 (2) 

where 𝜃 is the unbiased estimator, 𝜃0 is the prior 

information for parameter 𝜃 and c is a shrinking 

factor which is 0 ≤ 𝑐 ≤ 1 and also  minimizes the 

MSE value of the proposed estimator.  
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To adapt the mentioned method to estimating the 

scale parameter of Laplace distribution, first the 

unbiased estimator is obtained by using the ML 

estimation method, which is given by 

�̂� =
∑ |𝑥𝑖−𝛼|𝑛

𝑖=1

𝑛
. (3) 

Note that  �̂�  can be found by maximizing the 

likelihood function  

𝐿(𝛼, 𝛽; 𝑥) = ∏ 𝑓(𝑥𝑖) = 2−𝑛𝛽−𝑛𝑒−1/𝛽|𝑥𝑖−𝛼|

𝑛

İ=1

 

and related log-likelihood function is 

ln 𝐿(𝛼, 𝛽; 𝑥) = −𝑛 ln 2 − 𝑛 ln 𝛽 −
1

𝛽
∑|𝑥𝑖 − 𝛼|

𝑛

𝑖=1

. 

It can be said that if random variable X has the 

Laplace distribution with parameters 𝛼 and 𝛽, then 

∑ |𝑥𝑖 − 𝛼|𝑛
𝑖=1  has the Gamma distribution with 

parameters 𝑛, 𝛽. So it is clear that the expected 

value of �̂� is equal to parameter  𝛽 and the variance 

of �̂� is calculated as 

𝑉𝑎𝑟(�̂�) =
𝛽2

𝑛
. (4) 

Corollary: The shrinkage estimator of the Laplace 

distribution's shape parameter is proposed as  

�̂�𝑠 =
(𝛽−𝛽0)2

𝛽2

𝑛
+(𝛽−𝛽0)2

(�̂� − 𝛽0) + 𝛽0 (5) 

where 𝛽0 is the prior information for parameter 𝛽. 

The MSE value of �̂�𝑠 is 

𝑀𝑆𝐸( �̂�𝑠 ) =
𝛽2(𝛽−𝛽0)2

𝛽2+𝑛(𝛽−𝛽0)2 . (6) 

Proof: The shrinkage estimator of the Laplace 

distribution's shape parameter described as  

�̂�𝑠 = 𝑐(�̂� − 𝛽0) + 𝛽0 (7) 

which is obtained by means of Equation (2). As 

known, the MSE value of �̂�𝑠 is 

𝑀𝑆𝐸( �̂�𝑠 ) = 𝐸[�̂�𝑠  − 𝛽]
2

. (8) 

If required information is written in Equation (8), the 

MSE value is obtained as 

𝑀𝑆𝐸( �̂�𝑠 ) = 𝑐2𝛽2 1

𝑛
+ (𝑐 − 1)2(𝛽 − 𝛽0)2. (9) 

The derivative of equation (9) with respect to c is 

taken and set to zero, a solution for c can be found 

as 

𝑐 =
(𝛽−𝛽0)2

𝛽2

𝑛
+(𝛽−𝛽0)2

                                                         (10) 

It is clear that 𝑐 given in Equation (10) minimizes the 

MSE of �̂�𝑠. Thus, the biased estimator �̂�𝑠 can be 

written as 

�̂�𝑠 =
(𝛽−𝛽0)2

𝛽2

𝑛
+(𝛽−𝛽0)2

(�̂� − 𝛽0) + 𝛽0. (11) 

Inserting the value of c in Equation (9), the MSE of 

�̂�𝑠 is  

𝑀𝑆𝐸( �̂�𝑠 ) =
𝛽2(𝛽−𝛽0)2

𝛽2+𝑛(𝛽−𝛽0)2 . (12) 

This completes the proof.                                           ∎ 

 

Furthermore, the bias of �̂�𝑠 estimator is 

𝐵𝑖𝑎𝑠( �̂�𝑠 ) =
𝛽2(𝛽−𝛽0)

𝛽2+𝑛(𝛽−𝛽0)2. (13) 

Equation (13) shows that �̂�𝑠is asymptotically 

unbiased, namely 𝐵𝑖𝑎𝑠( �̂�𝑠 ) → 0 as 𝑛 → ∞. 

The relative efficiency of �̂�𝑠 estimator with respect 

to �̂� estimator is given as 

𝑀𝑆𝐸( �̂�𝑠 )

𝑉𝑎𝑟(�̂�)
=

𝑛(𝛽−𝛽0)2

𝛽2+𝑛(𝛽−𝛽0)2. (14) 

According to Equation (14), it can be seen that 

( �̂�𝑠 )/𝑉𝑎𝑟(�̂�) < 1 , and �̂�𝑠 is more efficient than �̂�.  

The shrinking parameter c is a function of parameter 

𝛽. As our goal is to estimate parameter 𝛽, the 

unknown parameters are replaced by their unbiased 

estimators in Equation (8). Thus an estimator for c 

can be written as 

�̂� =
(�̂�−𝛽0)

2

�̂�2

𝑛
+(�̂�−𝛽0)

2. (15) 

The MSE values of the proposed estimator, which 

includes the shrinking coefficient given in equation 

(15), compares with the variance of the unbiased 

estimator in the simulation study section. 
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2.2. Bootstrap Method 

The basic idea behind the bootstrap is resampling 

the data with replacement. Suppose there are 

observations such that independent data points 

𝑥1, 𝑥2, … , 𝑥𝑛, for convenience denoted by vector 

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛), from this a statistic of interest 

𝜃(𝑥) is computed. A bootstrap sample 𝐱∗ =

(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ ) is created by choosing a random 

sample of n units, replacing the original data points 

𝑥1, 𝑥2, … , 𝑥𝑛. The obtained estimates from the 

bootstrap samples are called bootstrap estimates 

(Efron and Tibshirani 1993). A bootstrap confidence 

interval can be generated using the percentile 

method (Efron’s percentile method). Suppose that 

𝜃𝑖 is the ith bootstrap estimate from the i-th 

bootstrap sample and each bootstrap sample size is 

n. Since there is a random sampling method, it is 

expected that if the observations are ordered from 

smallest to largest, an interval that contains 90% of 

the 𝜃𝑖 to be a 90% confidence interval for 𝜃. The 

most sensible way to choose the interval is to 

exclude the lowest 5% and the highest 5% (Chernick 

2008). In this study, it is desired to construct the 95% 

confidence interval, so the lowest 2.5% and the 

highest 2.5% are considered in simulation section. 

 

3 Simulation Study 

In this section, a data set is generated for the 

Laplace distribution using two independent 

exponential distributions with the same 

parameter  𝛽. Then the unbiased estimator of 

parameter 𝛽 and its variance were calculated for 

different values of the parameters 𝛼 and 𝛽 when the 

sample size was n=10. Following this, we used a 

moment estimator of parameter 𝛽 in place of the 

prior information 𝛽0, so that the prior information 

conformed to the generated data set. Using this 

estimator, we obtained the shrinkage estimator 

mentioned in the previous section and calculated its 

MSE by means of Monte Carlo Simulation study 

where the number of replications was 75000. Then 

the relative efficiency is calculated by proportioning 

the MSE of �̂�𝑠 estimator to the variance of �̂� 

estimator.  

We carried out similar calculations for the both 

cases where the parameter α is known and α 

parameter is not known in order to estimate the 

parameter 𝛽.  

If the parameter α is known, it can be used in 

Equation (3) to find the unbiased estimator the 

parameter 𝛽. Using different values of parameter α 

ranging from 0 to 4.9 with 0.1 increments and using 

different values of parameter 𝛽 ranging from 0.1 to 

5 with 0.1 increments, a data set was generated in 

Figure 1 which enables a visual efficiency 

comparison.  

 

 

In Figure 1, It can be seen that the relative efficiency 

is smaller than 1 for all handled values of 

parameters 𝛼 and 𝛽. Namely, the proposed 

shrinkage estimator has smaller MSE than that of 

the unbiased estimator. Also, Figure 1 shows that 

differences of parameters 𝛼 and 𝛽 have similar 

effects on relative efficiencies. Relative efficiencies 

Figure 1: Relative efficiencies when parameter α is known. 
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take their minimum values when parameters 𝛼 and 

𝛽 are equal to each other.  

If the parameter α isn’t known, it can be replaced by 

an estimator as sample mean. Figure 2 shows 

relative efficiencies of mentioned estimators for 

different parameters 𝛽 that take values 0.1 to 5 by 

0.05 increments and sample means are used in 

place of parameters α. As indicated in Figure2, 

shrinkage estimators, which are both include 

parameter 𝛽 and obtained by the using unbiased 

estimator, give relative efficiencies smaller than 1 

for all handled parameters 𝛽. So, the shrinkage 

estimator has a smaller MSE than that of the 

unbiased estimator for parameter 𝛽.  

Until now, we handled cases that sample size was 

n=10. Figure 3 shows relative efficiencies calculated 

for different sample sizes under the condition that 

parameter α isn’t known. The sample size take 

values 2 to 50 by 1 increments. The blue line in the 

Figure 2 and 3 represents where the relative 

efficiency equals one to facilitate comparison.  

It is seen that the shrinkage estimator given by 

Equation (5) has a smaller MSE than that of the 

unbiased estimator for all different sample size as 

indicated theoretically in Equation (14). But the 

shrinkage estimator, which includes the shrinkage 

factor given by Equation (15), takes higher values 

than that of unbiased estimator when 𝑛 > 22. 

There isn’t a significant difference in the relative 

efficiencies for different values of the parameter 𝛽 

according to Figure 2. So we randomly handled the 

situation such that parameter 𝛽 takes values 2 and 

5 to construct the confidence intervals. Also, Figure 

3 shows that 𝑛 = 22 is a threshold for superiority of 

Figure 3: Relative efficiencies for different sample sizes. 

Figure 2: Relative efficiencies when the parameter α is replaced by the sample mean. 
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the biased estimator. Therefore we considered four 

different situations for sample size (𝑛 =

5, 10, 25, 50 ) by taking into account the threshold 

value. The confidence intervals are obtained using 

the bootstrap method for all of mentioned situation. 

Then the method repeated 10000 times in order to 

calculate the confidence level which shows ratio of 

include parameter by confidence intervals and to 

obtain means of bounds of confidence intervals.  

The obtained means of confidence intervals, which 

are constructed by using both the biased estimator 

�̂�𝑠 estimator and the ML estimator �̂�, are given in 

Table 1. Furthermore, confidence levels for each 

confidence interval are in Table 1 where MLB is the 

mean lower bound, while MUB symbolize the mean 

upper bound. 

Although Figure 3 shows that there is a threshold for 

superiority of the biased estimator such as 𝑛 = 22, 

it can be seen that �̂�𝑠 estimators have smaller 

variances than those of �̂� estimator  with respect to 

obtained confidence intervals.  

Constructed confidence intervals obtained using �̂�𝑠 

estimators have narrower width than those of �̂�  

estimator because of �̂�𝑠 have smaller MSE values 

than those of �̂�. Therefore the confidence levels of 

confidence intervals obtained by using �̂�𝑠 estimator 

are smaller than those of confidence intervals 

obtained by using �̂� estimator. 

 

Table 1: Confidence Intervals for parameter β using β̂s 

and β̂, and their confidence levels.  

n 

β = 2 β = 5 

β̂s β̂ β̂s β̂ 

MLB MUB MLB MUB MLB MUB MLB MUB 

5 
0.36 2.13 0.31 2.52 0.92 5.33 0.81 6.31 

(�̂� = 0.52) (�̂� = 0.60) (�̂� = 0.51) (�̂� = 0.58) 

10 
0.77 2.47 0.78 2.82 1.92 6.18 1.94 7.05 

(�̂� = 0.73) (�̂� = 0.81) (�̂� = 0.71) (�̂� = 0.79) 

25 
1.21 2.55 1.23 2.69 2.99 6.34 3.06 6.68 

(�̂� = 0.84) (�̂� = 0.90) (�̂� = 0.82) (�̂� = 0.89) 

50 
1.43 2.46 1.45 2.52 3.55 6.13 3.60 6.28 

(�̂� = 0.89) (�̂� = 0.92) (�̂� = 0.89) (�̂� = 0.92) 

 

4. Numerical Example 

We use a data set consisting exchange rates 

(EURO/DOLAR) between the years 1999-2020. The 

data is given in Table 2 and also available at 

https://ec.europa.eu/eurostat/databrowser/view/ 

ert_bil_eur_a/default/table?lang=en.  

 

Table 2: Yearly average exchange rates (1 UNIT of EUR = 

X UNITS of USD) 

Year Rate Year Rate Year Rate Year Rate 

1999 1.07 2005 1.25 2011 1.39 2017 1.13 

2000 0.92 2006 1.26 2012 1.29 2018 1.18 

2001 0.90 2007 1.37 2013 1.33 2019 1.12 

2002 0.94 2008 1.47 2014 1.33 2020 1.14 

2003 1.13 2009 1.39 2015 1.11   

2004 1.24 2010 1.33 2016 1.11   

 

Using Equation (3) the ML estimates for the data is 

obtained as  �̂� = 0.1318 . The shrinkage estimation, 

which is given in Equation (7), is calculated as �̂�𝑆 =

0.1182. It can be said that using ML estimation the 

data fits the Laplace distribution according to 

Kolmogorov-Smirnov test since the test statistic and 

p-value are 0.1345 and 0.8998, respectively. Since 

the Kolmogorov-Smirnov test statistics for the data 

using shrinkage estimation is 0.1545 and related p-

value is 0.7822, the data can be considered to fit the 

Laplace distribution. Log-likelihood values using ML 

and shrinkage estimates are 1.333 and 1.442, 

respectively. So, the shrinkage estimator is more 

preferable than ML because of its greater log-

likelihood value for this numerical example. Further, 

AIC (Akaike Information Criterion) and BIC (Bayesian 

Information Criterion) values are calculated and 

given in Table 3. Similar to comment based on log-

likelihood values, it is more convenient to use the 

shrinkage estimator according to AIC and BIC values, 

since interested value for the shrinkage estimate are 

smaller than those of ML estimate.  

Table 3: Log-likelihood, AIC and BIC values for yearly 

average exchange rates using the ML and 

shrinkage estimates 

 ML Shrinkage 

Log-Likelihood 1.333 1.442 

AIC 1.334 1.115 

BIC 4.902 4.683 

 

https://ec.europa.eu/eurostat/databrowser/view/
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5. Conclusions 

The biased estimators sometimes give a smaller 

MSE than unbiased estimators. In such cases, it may 

be preferable to use biased estimators instead of 

unbiased estimators. In this study, the biased 

estimator for the scale parameter of Laplace 

distribution was obtained by using the shrinkage 

estimation method proposed by Thompson (1968). 

The estimator obtained in this way gives a lower 

MSE than the unbiased estimator. It was 

theoretically shown that the shrinkage estimator 

has smaller MSE than that of the unbiased estimator 

by help of Equation (14). But in this equation, the 

shrinkage estimator depended on the scale 

parameter. Since this is inconvenient in practice, a 

different shrinkage estimator was obtained by 

replacing the scale parameter with its unbiased 

estimator and the efficiency of this shrinkage 

estimator is calculated by means of simulation 

study. In the simulation study, we generated data 

sets using double exponential distribution for 

different α and 𝛽 parameters. The unbiased 

estimator, the moment estimator which refers to 

prior information, and shrinkage estimators are 

obtained for mentioned data sets.  After that, we 

calculated relative efficiencies of estimators using 

their MSE values. As indicated in the first figure and 

the second one, relative efficiencies take smaller 

values than 1 for all handled situations. Constructed 

confidence intervals also showed that confidence 

intervals obtained using the �̂�𝑠 estimator have 

narrower width than those of �̂� estimator. This 

indicates that the shrinkage estimator has a smaller 

MSE than that of the unbiased estimator. So it can 

be said that the shrinkage estimator more efficient 

than the unbiased estimator for the scale parameter 

of Laplace Distribution when 𝑛 < 22. It may seem 

like a restricted frame, as the proposed estimator is 

preferable for small samples. However, it should be 

kept in mind that many studies work with small 

samples in cases where the experiments cannot be 

repeated or in environments where data acquisition 

is difficult. 
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