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1. INTRODUCTION 

 

Simplicial commutative algebras occupy a place somewhere between homological algebra, homotopy 

theory, algebraic K-theory and algebraic geometry. In each sector they have played a significant part in 

developments over quite a lengthy period of time. Their own internal structure has however been studied 

relatively little [1, 2]. 

 

The concept of a crossed module originates in the work [16] of Whitehead in algebraic topology. There 

the crossed modules were crossed modules of groups. Areas in which crossed modules have been applied 

include the theory of group presentations, algebraic K-theory, and homological algebra. The 

commutative algebra version of crossed modules has been used, in essence rather than in name, by 

Lichtenbaum and Schlessinger [12] also the work of Gerstenhaber [11] essentially involves the notion 

of crossed modules in commutative algebras. Some categorical results and Koszul complex link are also 

given by Porter in [14].  

 

A share package XMod, [15], for the GAP computational discrete algebra system was described by C.D. 

Wensley et al. The 2-dimensional part of this programme contains functions for computing crossed 

modules and cat1-groups and their morphisms. Arvasi and Odabas describe a package XModAlg [6] for 

GAP4 which constructs crossed modules of k-algebras and cat1-algebras over k, and their morphisms 

(see [7]). 

 

By a similar way, we give a GAP implementation for classification of finite simplicial algebras. For 

this, we added some new functions which do not exist in XModAlg package. One of our main results is 

the GAP implementation of the equivalent categories crossed modules of algebras and that of simplicial 

algebras with Moore complex of length 1. 

 

2. SIMPLICIAL ALGEBRAS 

 
In this section we recall a few well-known definitions and facts about simplicial algebras and homology 

modules. For more details regarding this, we refer to the book Homologie des algèbres commutatives by 

M.André [1]. Let k be a fixed commutative ring with 1 ≠ 0. 𝐸𝑛(𝑛 ∈ N) 
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A simplicial algebra E is a collection of k-algebras  𝐸𝑛(𝑛 ∈ ℕ) together with, for each 𝑛 ≥ 0, k-algebra 

homomorphisms  

 

𝑑𝑖
𝑛: 𝐸𝑛 ⟶ 𝐸𝑛−1 0 ≤ 𝑖 ≤ 𝑛 ≠ 0,

𝑠𝑗
𝑛: 𝐸𝑛 ⟶ 𝐸𝑛+1 0 ≤ 𝑗 ≤ 𝑛,

 

 

which are called face operators and degeneracies respectively. These homomorphisms are required to 

satisfy the following axioms: 

 

1. 𝑑𝑖
𝑛−1𝑑𝑗

𝑛 = 𝑑𝑗−1
𝑛−1𝑑𝑖

𝑛 for 0 ≤ 𝑖 < 𝑗 ≤ 𝑛,

2. 𝑠𝑖
𝑛+1𝑠𝑗

𝑛 = 𝑠𝑗+1
𝑛+1𝑠𝑖

𝑛 for 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,

3. 𝑑𝑖
𝑛+1𝑠𝑗

𝑛 = 𝑠𝑗−1
𝑛−1𝑑𝑖

𝑛 for 0 ≤ 𝑖 < 𝑗 ≤ 𝑛,

4. 𝑑𝑖
𝑛+1𝑠𝑗

𝑛 = 𝑖𝑑      for 𝑖 = 𝑗 or 𝑖 = 𝑗 + 1,

5. 𝑑𝑖
𝑛+1𝑠𝑗

𝑛 = 𝑠𝑗
𝑛−1𝑑𝑖−1

𝑛        for 0 ≤ 𝑗 < 𝑖 − 1 ≤ 𝑛.

 

 
A homomorphism of simplicial algebras 𝒇: 𝑬 → 𝑭 is a set of k-algebra homomorphisms 𝑓𝑛: 𝐸𝑛 → 𝐹𝑛 

commuting with all the face operators. We have thus defined the category of simplicial algebras, which we 

will denote by SimpAlg. 

 

2.1. The Moore Complex of a Simplicial Algebra 
 

Recall that given a simplicial algebra E, the Moore complex (𝐍𝐄, ∂) of  E is the chain complex defined by  

 

(𝐍𝐄)𝑛 = ⋂ Ker𝑑𝑖
𝑛

𝑛−1

𝑖=0

 

with ∂𝑛: 𝑁𝐸𝑛 → 𝑁𝐸𝑛−1 induced from 𝑑𝑛
𝑛 by restriction. 

 

The 𝑛𝑡ℎ homotopy module 𝜋𝑛(E) of E is the 𝑛𝑡ℎ homology of the Moore complex of E, i.e., 

 
𝜋𝑛(𝐄) ≅ 𝐻𝑛(𝐍𝐄, ∂)

= ⋂ Ker𝑑𝑖
𝑛/𝑑𝑛+1

𝑛+1

𝑛

𝑖=0

(⋂ Ker𝑑𝑖
𝑛+1

𝑛

𝑖=0

).
 

 

By a k-truncated simplicial algebra, we mean a simplicial algebra 𝐭𝐫𝐤𝐄 obtained by forgetting 

dimensions of order > k in a simplicial algebra E. We denote the category of k-truncated simplicial 

algebras by 𝐓𝐫𝐤𝐒𝐢𝐦𝐩𝐀𝐥𝐠. Recall from [9] some facts about the skeleton functor. In the category of 

algebras, Alg, there is a truncation functor  

 

𝐭𝐫𝐤: 𝐒𝐢𝐦𝐩𝐀𝐥𝐠 ⟶ 𝐓𝐫𝐤𝐒𝐢𝐦𝐩𝐀𝐥𝐠 

which admits a right adjoint 

 

𝐜𝐨𝐬𝐤𝐤: 𝐓𝐫𝐤𝐒𝐢𝐦𝐩𝐀𝐥𝐠 ⟶ 𝐒𝐢𝐦𝐩𝐀𝐥𝐠 

 

called the k-coskeleton functor, and a left adjoint 

 

𝐬𝐤𝐤: 𝐓𝐫𝐤𝐒𝐢𝐦𝐩𝐀𝐥𝐠 ⟶ 𝐒𝐢𝐦𝐩𝐀𝐥𝐠 

called the k-skeleton functor. 
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3. CROSSED MODULES 

 

J.H.C.Whitehead [16] described crossed modules in various contexts especially in his investigations into 

the algebraic structure of relative homotopy groups. In this section, we introduce the definition and 

elementary theory of crossed modules of commutative algebras given by T.Porter, [14]. More details 

about this may be found in [3, 4, 5]. 

 

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C, 

together with a commutative action of R on C and an R-algebra morphism 

 

∂: 𝐶 ⟶ 𝑅, 
such that for all 𝑐 ∈ 𝐶, 𝑟 ∈ 𝑅 

 

𝐶𝑀1) ∂(𝑟 ⋅ 𝑐) = 𝑟 ∂𝑐. 
 

This is a crossed R-module if in addition, for all 𝑐, 𝑐′ ∈ 𝐶,  
 

𝐶𝑀2) ∂𝑐 ⋅ 𝑐′ = 𝑐𝑐′. 
 

The last condition is called the Peiffer identity. We denote such a crossed module by (𝐶, 𝑅, ∂). Clearly 

any crossed module is a pre-crossed module. 

 

A morphism of crossed modules from (𝐶, 𝑅, ∂) to (𝐶′, 𝑅′, ∂′) is a pair of k-algebra morphisms, 

 

𝜃: 𝐶 ⟶ 𝐶′, 𝜓: 𝑅 ⟶ 𝑅′, 
 

such that 

 

𝜃(𝑟 ⋅ 𝑐) = 𝜓(𝑟) ⋅ 𝜃(𝑐) and ∂′𝜃(𝑐) = 𝜓 ∂(𝑐). 
 

In this case, we shall say that 𝜃 is a crossed R-module morphism if 𝑅 = 𝑅′ and 𝜓 is the identity. We 

therefore can define the category of crossed modules denoting it as XMod. 

 

Examples 

 

1. Let I be any ideal of a k-algebra R. Consider an inclusion map 

 

𝑖𝑛𝑐. : 𝐼 ⟶ 𝑅. 
 

Then (𝐼, 𝑅, 𝑖𝑛𝑐. ) is a crossed module. Conversely given any crossed R-module ∂: 𝐶 → 𝑅, one can easily 

verify that ∂𝐶 = 𝐼 is an ideal in R. 

 

2. Let M be any R-module. It can be considered as an R-algebra with zero multiplication, and then 

𝟎: 𝑀 → 𝑅 is a crossed R-module by 𝟎(𝑐) ⋅ 𝑐′ = 0𝑐′ = 0 = 𝑐𝑐′, for all 𝑐, 𝑐′ ∈ 𝐶. 

  

Conversely, given any crossed modüle ∂: 𝐶 → 𝑅, then 𝐾𝑒𝑟 ∂ is an 𝑅/ ∂𝐶 − module. 

 

3. Assume given a simplicial algebra E and a simplicial ideal I. The inclusion 

 

𝑖𝑛𝑐. : 𝐈 ↪ 𝐄, 
induces a map 
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∂: 𝜋0(𝐈) ⟶ 𝜋0(𝐄), 
 

and E acting on I by multiplication induces an action of 𝜋0(𝐄) on 𝜋0(𝐈). Then  (𝜋0(𝐈), 𝜋0(𝐄), ∂) is a 

crossed module. 

 

Proposition 1 If (C,R,∂) is a crossed R-module, then 

i) 𝐾𝑒𝑟 ∂ is a central ideal of C, 

ii) both 𝐶/𝐶2 and 𝐾𝑒𝑟 ∂ have natural 𝑅/ ∂𝐶-module structure (See [13]). 

 

Theorem 2 The category of crossed modules is equivalent to the category of simplicial algebras with 

Moore complex of length 1. (See Arvasi and Porter, [3]) 

 

Proof. Let E be a simplicial algebra with Moore complex of length 1. Put 𝑀 = 𝑁𝐸1, 𝑁 = 𝑁𝐸0 and ∂1 =
𝑑1 (restricted to M). Then 𝑁𝐸0 acts on 𝑁𝐸1 by multiplication via 𝑠0. Since the Moore complex is of 

length 1, we have ∂2𝑁𝐸2 = 𝐾𝑒𝑟𝑑0𝐾𝑒𝑟𝑑1 = 0 and the generators of this ideal are of the form 

𝑥(𝑠0𝑑1𝑦 − 𝑦) with 𝑥, 𝑦 ∈ 𝑁𝐸1. It then follows that for all 𝑥, 𝑥′ ∈ 𝑀, 

 

∂1(𝑥) ⋅ 𝑥′ = 𝑑1(𝑥) ⋅ 𝑥′

= 𝑠0𝑑1(𝑥)𝑥′  by the action,

= 𝑥𝑥′          since ∂2𝑁𝐸2 = 0.

 

 

Thus ∂1: 𝑀 → 𝑁  is a crossed module. This yields a functor 

 

𝐍𝟏: 𝐒𝐢𝐦𝐩𝐀𝐥𝐠≤1 ⟶ 𝐗𝐌𝐨𝐝. 
 

Conversely, let ∂1: 𝑀 → 𝑁 be a crossed module. By using the action of N on M, one forms the semidirect 

product 𝑀 ⋊ 𝑁 together with homomorphisms 

 

𝑑0(𝑚, 𝑛) = 𝑛, 𝑑1(𝑚, 𝑛) = ∂1𝑚 + 𝑛, 𝑠0(𝑛) = (0, 𝑛). 
 

Define 𝐸0 = 𝑁 and 𝐸1 = 𝑀 ⋊ 𝑁. Then we have a 1-truncated simplicial algebra 𝐄≤𝟏.  
 

There is a functor 𝑡1] from the category of 1-truncated simplicial algebras to that of simplicial algebras. 

This enables us to define a functor 
 

𝐗𝐌𝐨𝐝 ⟶ 𝐒𝐢𝐦𝐩𝐀𝐥𝐠≤1, 
 

given by sending {𝑀, 𝑁, ∂} to 𝐄 = 𝑡1]𝐄≤𝟏. E is a simplicial algebra whose Moore complex is 

of length 1. The correspondence gives rise to an equivalence of categories. 

 

4. APPLICATIONS 

 

GAP [10] is an open-source system for discrete computational algebra. The system consists of a library 

of implementations of mathematical structures: groups, vector spaces, modules, algebras, graphs, codes, 

designs, etc.; plus databases of groups of small order, character tables, etc. The system has world wide 

usage in the area of education and scientific research. GAP is free software and user contributions to the 

system are supported. These contributions are organized in a form of GAP packages and are distributed 

together with the system. Contributors can submit additional packages for inclusion after a reviewing 

process. 
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The Small Groups library provides access to descriptions of the groups of small order up to 

isomorphism. There is no equivalent library of small algebras in GAP. For (commutative) algebras, we 

will concentrate on group rings of abelian groups over finite fields, because these algebras are 

conveniently implemented in GAP. We recall some basic properties of group algebras as follows. 

 

Group Algebras : Let k be a field and G a multiplicative group, finite or infinite. It is well known that 

the group algebra kG is an associative k-algebra with a set {𝑒𝑔: 𝑔 ∈ 𝐺} as a basis and with multiplication 

defined distributively using the group multiplication in G. 

 

For 𝜎: 𝐺 → 𝐻 a group homomorphism, let the map 𝐤𝜎 be the group algebra homomorphism where: 

 

𝒌𝜎 ∶  𝒌𝐺 → 𝒌𝐻 

              𝑒𝑔 ↦ 𝑒𝜎(𝑔). 

 

In particular 𝐤id𝐺 = id𝐤𝐺,  and if 𝜎′: 𝐻 → 𝐽 is a second group homomorphism, then 𝐤(𝜎 ∗ 𝜎′) = 𝐤𝜎 ∗
𝐤𝜎′. These facts are summarized in the following proposition (see [8]). 

 

Proposition 3 𝐤(. ): 𝐆𝐫 → 𝐀𝐥𝐠 is a functor. 

 

The group algebra functor provides a canonical construction for k-algebra from any given group. 

Conversely, there are at least two canonical ways of extracting a group from a given k-algebra. One is 

to forget the multiplication and take the additive (abelian) group of the algebra; this gives the forgetful 

functor 𝐀𝐥𝐠 → 𝐀𝐛. Alternatively, the subset of the algebra consisting of elements which are invertible 

under multiplication forms a subgroup (with the operation of multiplication) called the group of units of 

the algebra; this gives a functor 𝐮(. ): 𝐀𝐥𝐠 → 𝐆𝐫. In general, the group of units of a non-commutative 

algebra need not be abelian. 

 

Proposition 4 The group algebra functor 𝐤(. ): 𝐆𝐫 → 𝐀𝐥𝐠 is left adjoint to the unit group functor 

𝐮(. ): 𝐀𝐥𝐠 → 𝐆𝐫. 

 

Proof. Let G be a group and A a k-algebra, and suppose 𝑓: 𝐺 → 𝑢(𝐴). Define a map 

𝜔𝐺,𝐴: 𝐆𝐫(𝐺, 𝑢(𝐴)) → 𝐀𝐥𝐠(𝐤𝐺, 𝐴) by 

 

𝜔𝐺,𝐴(𝑓)(𝐞𝑔): = 𝐞𝑓(𝑔) 

 

(this defines 𝜔𝐺,𝐴 completely, since {𝐞𝑔: 𝑔 ∈ 𝐺} is a basis for kG and, for every 𝑔 ∈ 𝐺, 𝜔𝐺,𝐴(𝑓)(𝐞𝑔) ∈

𝐤𝑢(𝐴) ⊆ 𝐴 ). 

 

Suppose  𝜓: 𝐤𝐺 → 𝐴. Then 𝜓 is completely determined by {𝜓(𝐞𝑔): 𝑔 ∈ 𝐺}, and for each 𝑔 ∈ 𝐺 

 

1𝐴 = 𝜓(𝐞𝑔𝐞𝑔−1) = 𝜓(𝐞𝑔)𝜓(𝐞𝑔−1) 

 

so 𝜓(𝐞𝑔) ∈ 𝑢(𝐴). Define the map 𝜛𝐺,𝐴: 𝐀𝐥𝐠(𝐤𝐺, 𝐴) → 𝐆𝐫(𝐺, 𝑢(𝐴)) by 

 

𝜛𝐺,𝐴(𝜓)𝑔 = 𝜓(𝐞𝑔). 

 

Now [𝜛𝐺,𝐴𝜔𝐺,𝐴(𝑓)](𝑔) and [𝜔𝐺,𝐴𝜛𝐺,𝐴(𝜓)](𝑔) = 𝜓(𝑔), so 𝜔𝐺,𝐴  is a bijection and 

 

𝐆𝐫(𝐺, 𝑢(𝐴)) ≅ 𝐀𝐥𝐠(𝐤𝐺, 𝐴) 
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as required. It is easy to see that 𝜔 and 𝜛 are natural in G and A. The remaining cases are proved 

similarly (see [8]). 

 

Remark : The functor k(.) does not extend to actions and semidirect products. In particular, an action 

of a group R on a group S does not extend naturally to an action of kR on kS. 

 

We have developed functions for GAP4 which construct simplicial algebras. Functions to construct 

simplicial algebras SimplicialAlgebra, SimplicialAlgebraTr1ByFaceDegenere, 

SimplicialAlgebraTr1ByEndomorphisms, SimplicialAlgebraTr1, IsSimplicialAlgebraTr1 and 

IsSimplicialAlgebra. Attributes of a simplicial algebra constructed in this way include Source, Range, 

Face, Degenere, Size and Name. 

 

In the following GAP session, we construct a simplicial algebra by using the group algebra 𝐺𝐹2𝐶6 and 

𝐺𝐹2𝐶3. Also we show usage of the attributes listed above. 

 
gap> K := GF(2); 
GF(2) 
gap> G := SmallGroup(6,2); 
<pc group of size 6 with 2 generators> 
gap> StructureDescription(G); 
"C6" 
gap> H := SmallGroup(3,1); 
<pc group of size 3 with 1 generators> 
gap> StructureDescription(H); 
"C3" 
gap> KG := GroupRing(K,G); 
<algebra-with-one over GF(2), with 2 generators> 
gap> IsAlgebra(KG); 
true 
gap> KH := GroupRing(K,H); 
<algebra-with-one over GF(2), with 1 generators> 
gap> IsAlgebra(KH); 
true 
gap> f := AllHomsOfAlgebras(KG,KH);; 
gap> g := AllHomsOfAlgebras(KH,KG);; 
gap> SA := SimplicialAlgebraTr1ByFaceDegenere(f[6],f[6],g[6]); 
[AlgebraWithOne( GF(2), [ (Z(2)^0)*f1, (Z(2)^0)*f2 ] ) -> 
AlgebraWithOne( GF(2), [ (Z(2)^0)*f1 ] )] 
gap> IsSimplicialAlgebra(SA); 
true 
gap> IsSimplicialAlgebraTr1(SA); 
true 
gap> Face(SA); 
[ [ (Z(2)^0)*f1*f2 ] -> [ (Z(2)^0)*f1 ], [ (Z(2)^0)*f1*f2 ] -> 
[ (Z(2)^0)*f1 ] ] 
gap> Degenere(SA); 
[ [ (Z(2)^0)*f1 ] -> [ (Z(2)^0)*f2 ] ] 
gap> Size(SA); 
[ 64, 8 ] 
gap> Display(SA); 
1-Truncated Simplicial Algebra [..=>..] :- 
: source algebra has generators: 
[ (Z(2)^0)*<identity> of ..., (Z(2)^0)*f1, (Z(2)^0)*f2 ] 
: range algebra has generators: 
[ (Z(2)^0)*<identity> of ..., (Z(2)^0)*f1 ] 
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: face operator d10 maps source generators to: 
[ (Z(2)^0)*<identity> of ..., (Z(2)^0)*<identity> of ..., 
(Z(2)^0)*f1 ] 
: face operator d11 maps source generators to: 
[ (Z(2)^0)*<identity> of ..., (Z(2)^0)*<identity> of ..., 
(Z(2)^0)*f1 ] 
: degenere operator s00 maps range generators to: 
[ (Z(2)^0)*<identity> of ..., (Z(2)^0)*f2 ] 

 

We have developed the function AllSimplicialAlgebrasTr1 which constructs all 1-truncated simplicial 

algebras. On the other hand, the function IsMooreComplex1 is used to verify the Moore complex of 

length 1. 

 

In the following GAP session, we construct all 248 1-truncated simplicial algebras by using the group 

algebra 𝐺𝐹3𝐾𝑙4. 25 of all 248 1-truncated simplicial algebras are Moore complex of length 1. 

 
gap> allSA := AllSimplicialAlgebrasTr1(GF(3),Group((1,2),(3,4)));; 
gap> Length(allSA); 
248 
gap> MC1 := Filtered(allSA, SA -> IsMooreComplex1(SA)); 
gap> Length(MC1); 
25 

 

By using the natural equivalence of categories of crossed modules and the category of simplicial 

algebras with Moore complex of length 1, we have developed the functions 

XModAlgebraBySimplicialAlgebra and SimplicialAlgebraByXModAlgebra which constructs 

crossed modules and simplicial algebras from the given simplicial algebras and crossed modules, 

respectively. 

 

In the following GAP session, we get a crossed module from a simplicial algebras with Moore complex 

of length 1. 

 
gap> SA1 := allSA[1]; 
[AlgebraWithOne( GF(3), [ (Z(3)^0)*(1,2), (Z(3)^0)*(3,4) ] ) -> 
Algebra( GF(3), 
[ <zero> of ..., <zero> of ... ] )] 
gap> IsMooreComplex1(SA1); 
false 
gap> XModAlgebraBySimplicialAlgebra(SA1); 
SA must be 1-truncated simplicial algebra. 
fail 
gap> SA2 := allSA[17]; 
[AlgebraWithOne( GF(3), [ (Z(3)^0)*(1,2), (Z(3)^0)*(3,4) ] ) -> 
Algebra( GF(3), [ (Z(3)^0)*(), (Z(3)^0)*(1,2) ] )] 
gap> IsMooreComplex1(SA2); 
true 
gap> Display(SA2); 
SimplicialAlgebraTr1 [..=>..] :- 
: source algebra has generators: 
[ (Z(3)^0)*(), (Z(3)^0)*(1,2), (Z(3)^0)*(3,4) ] 
: range algebra has generators: 
[ (Z(3)^0)*(), (Z(3)^0)*(1,2) ] 
: face operator d10 maps source generators to: 
[ (Z(3)^0)*(), (Z(3)^0)*(1,2), (Z(3)^0)*() ] 
: face operator d11 maps source generators to: 
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[ (Z(3)^0)*(), (Z(3)^0)*(1,2), (Z(3))*() ] 
: degenere operator s00 maps range generators to: 
[ (Z(3)^0)*(), (Z(3)^0)*(1,2) ] 
gap> Size(SA2); 
[ 81, 9 ] 
gap> CM := XModAlgebraBySimplicialAlgebra(SA2); 
[Algebra( GF(3), [ (Z(3)^0)*()+(Z(3)^0)*(3,4), 
(Z(3)^0)*(1,2)+(Z(3)^0)*(1,2)(3,4)] ) -> 
Algebra( GF(3), [ (Z(3)^0)*(), (Z(3)^0)*(1,2) ] )] 
gap> IsXModAlgebra(CM); 
true 
gap> Display(CM); 
Crossed module [..->..] :- 
: Source algebra has generators: 
[ (Z(3)^0)*()+(Z(3)^0)*(3,4), (Z(3)^0)*(1,2)+(Z(3)^0)*(1,2)(3,4) ] 
: Range algebra has generators: 
[ (Z(3)^0)*(), (Z(3)^0)*(1,2) ] 
: Boundary homomorphism maps source generators to: 
[ (Z(3))*(), (Z(3))*(1,2) ] 
gap> SA3 := SimplicialAlgebraByXModAlgebra(CM); 
[AlgebraWithOne( GF(3), [ (Z(3)^0)*(1,2), (Z(3)^0)*(3,4) ] ) -> 
Algebra( GF(3), [ (Z(3)^0)*(), (Z(3)^0)*(1,2) ] )] 
gap> IsSimplicialAlgebra(SA3); 
true 
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