

1

 DOI: 10.53608/estudambilisim.1233344

(Geliş Tarihi / Received Date: 12.01.2023, Kabul Tarihi/ Accepted Date: ,03.04.2023)
B. Alagha , "XSS Attack Detection with N-Gram Based Prediction Model", Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim

Dergisi, c. 4, sayı. 2, ss. 1-9, May. 2023, doi:10.53608/estudambilisim.1233344

(Research Article)

XSS Attack Detection with N-Gram Based Predictive Model

Bilal ALAGHA*1

1 Eskişehir Osmangazi Üniversitesi, Mühendislik Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümü, 26040,

Eskişehir, ORCID No : https://orcid.org/0000-0001-8347-1841

Keywords:

XSS Attacks,

Predictive Model,

Machine Learning,

Word Tokenization,

N-Gram,

Algorithm,

Abstract: The increment developments in technology has empowered the web

applications. Meanwhile, the existence of Cross-Site Scripting (XSS) vulnerabilities in

web applications has become a concern for users. In spite of the numerous current

detection approaches, attackers have been exploiting XSS vulnerabilities for years,

causing harm to the internet users. In this paper, a text-mining based approach to detect

XSS attacks in web applications is introduced. This approach is built to extract a set of

features from a publicly available source code files, which are then used to build a

prediction model. The findings include few comparisons between Word Tokenization and

N-Gram in accuracy, time spend to build the model and AUC-ROC curve. The results

show that N-Gram tokenization outperforms the Word Tokenization.

(Araştırma Makalesi)

N-Gram Tabanlı Tahmin Modeli ile XSS Saldırısı Algılama

Anahtar Kelimeler:

XSS Saldırıları,

Tahmin Modeli,

Makine Öğrenme,

Kelime Simgeleştirme,

N-Gram,

Algoritma,

Özet: Teknolojideki hızlı gelişmeler web uygulamalarını güçlendirmiştir. Bu arada, web

uygulamalarında Siteler Arası Betik Çalıştırma (XSS olarak da bilinir) güvenlik

açıklarının varlığı, kullanıcılar için bir endişe haline gelmiştir. Çok sayıda mevcut

algılama yaklaşımına rağmen saldırganlar yıllardır XSS güvenlik açıklarından

yararlanarak internet kullanıcılarına zarar veriyor. Bu makalede, web uygulamalarındaki

XSS Saldırısını tespit etmek için metin madenciliği tabanlı bir yaklaşım tanıtılmaktadır.

Bu yaklaşım, halka açık bir kaynak kod dosyalarından bir dizi özellik çıkarmak için

oluşturulmuştur. Bu dosyalar, daha sonra bir tahmin modeli oluşturmaya yardımcı olmak

için kullanılır. Bulgular, N-Gram ve Kelime Simgeleştirme arasında doğruluk, modeli

oluşturmak için harcanan zaman ve AUC-ROC eğrisi birkaç karşılaştırma içerir. Sonuç

olarak N-Gram Kelime Simgeleştirmesinden daha iyi performans göstermektedir.

1. INTRODUCTION

Security of information is always a challenging task, and

new challenges are discovered consistently. The

communication between web server and web browser

used to be secure, and the communication among people

and devices over HTTPS protocol is widely known.

However, lately, we have witnessed an increase in

exploitation of web application vulnerabilities. One of

those vulnerabilities is the Cross Site Scripting (also

known as XSS). It is challenging to eliminate those

vulnerabilities because it is difficult for web applications

to clear all user input appropriately. By utilizing XSS,

attackers can access their victims’ cookies and perform

keylogging and phishing attacks to see their sensitive

information such as passwords, credit card numbers, and

other sensitive information [1].

These days, everyone can evaluate the security level of

any website. Publicly available testing tools such as

sitecheck.sucuri.net, which developed by Sucuri Inc. Such

tools enable us to scan web servers and evaluate them on

scale from minimal to critical [2]. The methodology used

in such websites is not scientific, but it gives an overview

on the security level that web servers have.

J ESTUDAM Information, 2023; 4(2): 1-9. ESTUDAM Bilişim Derg, 2023; 4(2): 1-9.

*Bilal Alagha: 503020210017@ogrenci.ogu.edu.tr

https://orcid.org/0000-0001-8347-1841
https://sitecheck.sucuri.net/

B. Alagha / XSS Attack Detection with N-Gram Based Predictive Model

2

Implementation of a text-mining technique to detect XSS

attacks is the main idea of this article. Text-mining

consists of the discovery of previously unknown

information from existing resources [3]. It uses techniques

from information retrieval, information extraction, and

Natural Language Processing (also known as NLP) and

connects them with the algorithms, statistics and machine

learning technique [4].

XSS attacks occupy the first positions as one of the most

common types of web application attacks, which

considered to be critical and direct threats to web

application security. According to the Positive

Technologies report, 62% of web application

vulnerabilities considered to be high-severity

vulnerabilities compared to the total number of web

application vulnerabilities in 2021 [5]. Surprisingly, XSS

is classified as one of the top 10 vulnerabilities in web

applications [6].

In this paper, an N-Gram based predictive approach to

detect XSS attacks in web applications is introduced. It

employs a text-mining technique to extract the features

from source code files. These features are then used in the

generation of a prediction model, which classifies the

source code files into vulnerable and invulnerable

categories.

2. LITERATURE REVIEW

There are many different methods proposed by

researchers to detect XSS attacks and prevent their

vulnerabilities. For example, Doupé et al. [7] implement

a prototype of "deDacota" to analyze and rewrite

ASP.NET web applications. This system is then applied

to six open-source and real-world ASP.NET applications.

Finally, all known XSS vulnerabilities are eliminated

through the verification process.

Weissbacher et al. [8] state that 417 out of 815 websites

have CSP enabled because the "phpMyAdmin" web

application is hosted. In order to avoid this situation, each

domain is only connected once until a successful

connection is made. If a redirect URL response is

received, then the crawler follows that URL to visit the

actual site.

Scholte et al. [9] present “IPAAS” system, which is a

technique for preventing the exploitation of XSS and SQL

injection vulnerabilities based on automated data type

detection of input parameters. IPAAS automatically

augments otherwise insecure web application

development environments with input validators that

result in great security developments for real systems.

IPAAS for PHP is implemented and evaluated on five

web applications with known XSS and SQL injection

vulnerabilities. The evaluation shows that IPAAS would

have disallowed 83% of SQL injection vulnerabilities and

65% vulnerabilities resulting from XSS.

Scholte et al. [10] present the design, implementation and

evaluation of a client-side countermeasure, which is

capable to stand against XSS attacks that are DOM-based.

The mechanism relies on the combination of a taint-

enhanced JavaScript engine and taint-aware parsers,

which block the parsing of attacker controlled syntactic

content. In case of client-side vulnerabilities, the approach

detects injected syntactic content and, thus, is superior in

blocking DOM-based XSS.

Salas and Martins [11] propose an approach that makes

use of two Security Testing techniques, namely

Penetration Testing and Fault Injection. These techniques

help emulate XSS attack against web services. This

technology, combined with WS-Security and Security

Tokens, can identify the sender and guarantee the

legitimate access control to the SOAP messages

exchanged. The vulnerability scanner soapUI is used,

which is one of the most recognized tools of Penetration

Testing. In contrast, WSInject is a new fault injection tool,

which introduce faults or errors on web services to

analyze the behavior in an environment not robust. This

approach can analyze the robustness of web services by

Fault Injection with WSInject. The results of the

Penetration Testing phase assist to improve the rules for

the analysis of vulnerabilities. The security provided by

WS-Security standard with the add-on Security Token

against XSS attack is also verified. In both phases, the use

of WS-Security reduces the number of vulnerabilities to a

large degree.

Niakanlahiji and Jafarian [12] present WebMTD, a

proactive moving target defense mechanism that thwarts

a broad class of code injection attacks on web

applications, including XSS, HTML code injection, and

server-side code injection attacks. Relying on built-in

features of current web browsers, WebMTD randomizes

certain attributes of web elements to differentiate the

application code from the injected code and prevent the

execution.

Athanasopoulos et al. [13] introduce xJs framework to

reduce XSS attacks. The fundamental norm is to transfer

JavaScript code blocks to another domain on the web

server at runtime and to reverse the transposition on the

client browser. The XOR operation is used to transfer

JavaScript blocks in static HTML documents. Upon

requesting an HTML document, xJS XORs each script

block on the web page with a private key. Afterwards, it

contains the key in an HTTP response header. On the

client’s browser, the encrypted code block will be XORed

again with the transmitted private key in order to retrieve

the original code blocks.

Gundy et al. [14] introduce Noncespaces technique to

prevent XSS attacks. In Noncespaces, a random XML

namespace is generated for each XHTML document that

is requested, and all trusted XHTML element tags in it is

then edited to begin with the generated namespace.

XHTML elements with proper namespace is then

rendered or executed. Noncespaces approach can

effectively prevent XSS attack, it requires only checking

the tag names on a web page.

B. Alagha / XSS Attack Detection with N-Gram Based Predictive Model

3

Gupta et al. [15] present the Document Object Model

(DOM)-Guard, a mobile cloud-based framework that

alleviates the DOM-based XSS vulnerabilities from the

contemporary platforms of mobile cloud-based HTML5

web applications. DOM-Guard is a runtime DOM tree

generator and context-aware sanitization-based

framework that scans for XSS vulnerabilities that are

DOM-based in the mobile cloud-based HTML5 web

applications.

Pelizzi and Sekar [16] present XSSFilt system, which is a

modern client-side XSS defense system that addresses the

disadvantages of built-in filters of Internet Explorer and

Google Chrome browsers. The architecture of XSSFilt is

presented, which is a browser-resident XSS defense.

Unlike the previous browser resident defenses, which

relies on exact string matching, XSSFilt system uses

approximate string matching. Additionally, policies to

detect attacks involving the whole or partial scripts

injections are presented.

Table 1. presents a summary of the detection approaches

and some contributions of few researchers in XSS attacks

and vulnerabilities detection.

Table 1. Summary of detection approaches and some researchers’ contributions

Approach Author Area of focus Type of XSS Comment

Mitropoulos et al.

[17]

Attack Detection and

Prevention

Reflected and

Stored XSS

No false positives encountered during

the test

Client-side Gupta et al. [18]

Attack Detection and

Vulnerability

Detection

DOM based XSS
System used training and detection

modes

Weissbacher et al.

[19]

Attack Detection and

Prevention
Not specified

ZigZag approach to defend benign-but-

buggy JavaScript applications against

CSV attacks

 Maurya [20]
Attack Detection and

Prevention
Stored XSS

Uses one-level (i.e. whole HTML tags

are allowed) and two-level (i.e. specific

tags are allowed) whitelist

Server-side Gupta et al. [21] Attack Detection Reflected XSS

Framework detects the XSS worms

with low false positives and false

negatives

Guo et al. [22]
Vulnerability

Detection

Reflected and

Stored XSS

Optimized attack vector repertory; an

optimization model to reduce the size

of XSS attack vectors, and detect XSS

vulnerabilities

Sundareswaran et

al. [23]
Attack Prevention All

XSS-Dec, a security-by-Proxy

approach to protect end-users against

XSS attacks

Client-Server
Panja et al. [24]

Attack Detection and

Prevention
All

Maintains a cache, which may be

corrupted or injected

 Goswami et al. [25] Attack Detection
Reflected and

Stored XSS

Combined attribute clustering

algorithm and rank aggregation to

cluster the malicious and benign scripts

 This paper Attack Detection Not Specified
N-Gram Tokenization outperforms the

word tokenization

3. CROSS SITE SCRIPTING (XSS) ATTACK

TYPES

XSS can be classified into three categories—Stored

XSS, Reflected XSS, and DOM-based XSS [26]. Figure

1 depicts the XSS attack taxonomy.

Figure 1. Taxonomy of XSS attacks [27]

1) Reflected XSS: an attacker injects browser

executable code within URI or HTTP parameters. It

only harms users who click the maliciously crafted

link to redirect to the third-party web page embedded

with malicious code.

2) Stored XSS: a malicious script is injected directly

into a web application with a backend server. The

script is stored in the server so that any user who

visits the application will be harmed.

3) DOM based XSS: it is an XSS attack modifying the

DOM (Document Object Model) in user browser

where the original script on user side will be executed

in the manner different to its original intension. That

is, the web page itself including the HTTP response

does not change, but the code of the user side

contained in the page executes differently due to the

malicious modifications to the DOM environment.

B. Alagha / XSS Attack Detection with N-Gram Based Predictive Model

4

Since these three categories were confusing, the research

community proposed and started using two new major

terms to help organize these categories—Server-Side XSS

and Client-Side XSS [28], which are also depicted in

Figure 1.

1) Server XSS: it occurs when an untrusted user injects

data in an HTTP response generated by the server.

The source of this data could be from the request, or

from a stored location. Therefore, we get both

Reflected Server XSS and Stored Server XSS.

2) Client XSS: it occurs when an untrusted user injects

the malicious payload to update the DOM, typically

with a malignant JavaScript call, or via some

untrusted data source that is utilized by the JavaScript

on the page. That is, any vulnerability or attack that

does not use a web server to serve the payload to the

victim is Client XSS.

4. MATERIALS AND METHODS

The goal of this study is to allow users to safely display

websites that contain safe scripts. In this section, the

dataset, experimental setting and performance measures

that is used to evaluate the predictive model are discussed.

4.1. Dataset

To evaluate the performance of different approaches, an

open source dataset repository is used [29]. This dataset

has 10080 PHP source code files, 5728 of them are safe

(i.e. invulnerable) and 4352 files are unsafe (i.e.

vulnerable). Evaluation of the proposed method is

performed on this dataset; it provides various cases to

evaluate the efficiency of predictive models. This dataset

contains a set of PHP source codes with their vulnerability

labels.

4.2. Machine Learning Algorithms

A feature set with different machine learning algorithms

generates different prediction models and produces

different results. In this experiment, three machine

learning algorithms are used- IBk (also known as Instance

Based Learner), Random Tree and Decision Stump- with

the default parameter values to evaluate their prediction

performance. The IBk algorithm [30] uses a distance

measure to locate k “close” instances in the training data

for each test instance. It uses those selected instances to

make a prediction. A Random Tree [31] is a graphical tree

that is formed by a stochastic process, and it includes

some types. Decision Stump [32-33] is a machine learning

classification model that has a single level decision tree.

4.3. Feature Extraction Algorithms

Feature extraction is an essential task for building

predictive models. The proper set of features provides

better performance for predictive models. Figure 2 depicts

the proposed approach, which uses Attribute Selected

Classifier. It selects attributes based on the training data

only, even when working with cross-validation. Then it

trains the classifier on the training data, and then it

evaluates the whole process on the testing data. Here,

Correlation Attribute Evaluator is used, it evaluates the

worth of an attribute by measuring the correlation

between it and the class.

Figure 2. Flow chart of the proposed vulnerability prediction

approach

4.4. Tokenization

In text-mining, tokenization is the process of replacing

data with unique identification symbols that retain all the

essential information about the data without

compromising its security. In this paper, the following

tokenizers are used to evaluate the accuracy of the

predictive model:

4.4.1. Word tokenization

It is the process of splitting a large text into words. This is

necessary in NLP tasks, where each word needs to be

captured and subjected to further analysis. Hvitfeldt and

Silge [34] have details about word tokens (Figure 3).

Figure 3. Word tokenization [34]

B. Alagha / XSS Attack Detection with N-Gram Based Predictive Model

5

4.4.2. N-Gram

It is a contiguous sequence of N items from a text. N-

Gram is used as a basis for operating an N-Gram based

model, which is beneficial in NLP as a method of

predicting upcoming text. Cavnar and Trenkle [35] have

detailed explanation of N-Gram. Hvitfeldt and Silge [34]

also provide a code explanation of it (Figure 4).

Figure 4. N-Gram model [34]

4.5. Experimental Setting

In this paper, features for the dataset are extracted, and

different machine-learning models are used. The

experiments are completed using the machine-learning

Weka tool [36]. Weka is an open source, platform-

independent and publicly available tool, which includes

the implementation of different machine learning

algorithms for data mining and machine learning

experiments [37].

To evaluate the performance of different approaches, a

10-fold cross-validation methodology is applied, and the

experiment is repeated 10 times. Each time, one part of

the files is used as test and the remainder parts are used as

training. The final performance is reported by the

weighted average of the accuracy.

4.6. Performance Measure

As a prediction approach, some performance measures are

used in order to evaluate the performance of the

experiments. These measures are illustrated in Table 2

and described as follows [38]:

1) True Positive Rate (TPR): it represents the number of

actual vulnerable files correctly predicted as

vulnerable by this predictive model.

2) False Positive Rate (FPR): it represents the number

of actual invulnerable files wrongly predicated as

vulnerable by this predictive model.

3) True Negative Rate (TNR): it represents the number

of actual invulnerable files correctly predicted as

invulnerable.

4) False Negative Rate (FNR): it represents the number

of actual vulnerable files wrongly predicated as

invulnerable.

The most effective predictive model should have the

highest possible values of TPR and TNR, and the lowest

possible values of FNR and FPR.

Table 2. Confusion matrix

vulnerable Invulnerable

vulnerable TP FN

Invulnerable FP TN

I have also assessed the model performance by the

following indicators [38]:

1) Accuracy: it is the fraction of accurately determined

vulnerable or invulnerable files to total number of

files. It indicates the percentage of correct results.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1)

2) Precision: it is the fraction of accurately determined

vulnerable files to total number of files that are

predicted as vulnerable. It is the probability that a file

classified as vulnerable is indeed vulnerable.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (2)

3) Recall: it is the fraction of the number of accurately

determined vulnerable files to the actual number of

vulnerable files.

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

(TP + FN)
 (3)

4) F-measure: it is a measure of a test's accuracy. It is

calculated from the precision and recall of the test.

The traditional F-measure [39] is the harmonic mean

of precision and recall:

F1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

(2𝑇𝑃+𝐹𝑃+𝐹𝑁)
 (4)

A more general F-measure, Fβ [40], that uses positive

real factor β, where β is chosen such that recall is

considered β times as important as precision, is:

Fβ = (1 + 𝛽2) ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 . 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑅𝑒𝑐𝑎𝑙𝑙
 (5)

5. RESULTS

Table 3 illustrates the results of the evaluation measures,

i.e. TPR, FPR, precision, recall and F-measure, using

word tokenization in machine learning algorithms. The

best results can be obtained when using Decision Stump

classifier.

Table 3. Average results of the obtained TPR, FPR, Precision,

Recall and F-measure using word tokenizer
 TPR

FPR Precision Recall F-Measure

IBk 0.943 0.057 0.944 0.943 0.943

Random

Tree
0.985 0.015 0.985 0.985 0.985

Decision

Stump
1.000 0.000 1.000 1.000 1.000

B. Alagha / XSS Attack Detection with N-Gram Based Predictive Model

6

However, the approach performs even better when using

N-Gram tokenization over word tokenization in various

machine learning algorithms. For example, the false

positive rate is 0.014 and the F-measure is 0.986 using IBk

classifier, which is better than the best performance of the

word tokenization that produces a false positive of 0.057

and an F-measure of 0.943. Even though the range

between both tokenizers is not significant, but it may go

up using larger N. In this experiment, the N values are

selected from 1 to 3. The evaluation measures obtained as

a result of using N-Gram tokenizer are depicted in Table

4.

Table 4. Average results of the obtained TPR, FPR, Precision,

Recall and F-measure using N-Gram tokenizer, where N=[1-3]

TPR FPR Precision Recall

F-

Measure

IBk 0.986 0.014 0.986 0.986 0.986

Random

Tree
0.993 0.007 0.993 0.993 0.993

Decision

Stump
1.000 0.000 1.000 1.000 1.000

In order to extract the best features, Attribute Selected

Classifier for feature extraction is applied, it selects

attributes based on the training data only. The Correlation

Attribute Evaluation with Ranker search is then used to

evaluate the worth of the attributes. The predictive model

is prepared using various algorithms, which are IBk,

Random Tree and Decision Stump. Experimental results,

as shown in Figure 5, indicate that Decision Stump

outperforms the other algorithms used in this experiment,

even though it is closed to their results.

Figure 5. Weighted Avg. Vs Machine Learning Classifier for

two different tokenizers

Decision Stump is a machine learning model that consists

of a one-level decision tree [41], which uses part of

training data for testing. During training time, it acquires

knowledge about that data, so if the same data is given to

it again, it produces the same results. Thus, this classifier

produces better results than the other machine learning

classifiers.

Another significant thing to note is that N-Gram takes

much more time to build the vulnerability prediction

model. For instance, the N-Gram tokenizer takes 25.61

seconds to build the model using the Decision Stump, but

it only takes 5.69 seconds to build it with word

tokenization. N-Gram takes more time to build the model,

but it definitely produces better values than word

tokenization. Figure 6 demonstrates the time spent by

both tokenizers to build the model.

Figure 6. Time (in seconds) taken to build the model using

different tokenizers.

It is important to analyze the performance measurement

in machine learning. Thus, when it comes to checking or

visualizing the performance of a classification model,

ROC Curve and AUC can be used to achieve this purpose

[42].

The standard ROC curves are presented in Figure 7-8,

with the false positive rates on the x-axes and true positive

rates on the y-axes. The white area under the curves

represents the AUC [43]. The higher the AUC, the better

the model is at distinguishing between classes [42]. As of

this concept, the AUC is better using N-Gram

tokenization over word tokenization.

6. DISCUSSION AND CONCLUSION

In information security, it is important to detect

vulnerabilities in web applications. Insecure web

applications may cause of stealing personal information

(e.g. user cookies) as described earlier in this paper. This

paper presented an approach for detecting XSS attacks

through text-mining based predictive model. A publicly

available dataset is used during the experiment.

Experiment results demonstrate that the proposed features

can detect vulnerable scripts in web applications with high

TPR and low FPR. Experimental results indicate that

Decision Stump outperforms the other classifiers used in

this experiment, and great results are demonstrated in

word tokenization and N-Gram using it. The results also

prove that N-Gram tokenizer obtains a higher accuracy

compared to word tokenization, although it takes much

more time.

A certain limitation was that even though the proposed

approach performs well with certain types of machine

learning algorithms, it exhausts computer components

(e.g. it consumes too much memory and sometimes the

program crashes) when using N-Gram with different

types of algorithms, and probably without getting results.

One way to overcome this issue is to use a large memory

size, and the other algorithms are left for future testing. In

the future, the same N-Gram tokenizer will be used to test

the effect of using higher N (i.e. N>3) with various

machine learning algorithms on attack detection results.

W
ei

g
h

te
d

 A
v

g
.

B. Alagha / XSS Attack Detection with N-Gram Based Predictive Model

7

 (a) (b)

 (c) (d)

Figure 7. AUC-ROC Curve using Word Tokenization with (a) IBk, (b) Random Tree, and N-Gram with (c) IBk, (d) Random Tree.

(a)

(b)

Figure 8. AUC-ROC Curve with Decision Stump in case of

using: (a) Word Tokenization, (b) N-Gram

Acknowledgment

First and foremost, praises and thanks to Allah, the

Almighty, for His showers of blessings throughout my

research work to complete the research successfully.

I am indebted to Prof. Dr. Eyyüp GÜLBANDILAR,

professor in computer engineering department at

Eskişehir Osmangazi University, and Asst. Prof. İlker

ÖZÇELİK, assistant professor in software engineering

department at Eskişehir Osmangazi University.

My deep and sincere gratitude for them for giving me

the opportunity to do research and providing invaluable

guidance throughout this research. They also provided me

personal and professional guidance and taught me a great

deal about scientific research.

REFERENCES

[1] Ying, M., Li, S. Q. 2016. CSP adoption: current

status and future prospects. Security and

Communication Networks, 9(17), 4557-4573.

[2] sucuri.net. 2022. Sucuri Security.

sitecheck.sucuri.net.

[3] Hearst, M. A. 1999. Untangling text data mining.

In Proceedings of the 37th Annual meeting of the

B. Alagha / XSS Attack Detection with N-Gram Based Predictive Model

8

Association for Computational Linguistics (pp. 3-

10).

[4] Feldman, R., Dagan, I. 1995. Knowledge

Discovery in Textual Databases (KDT). In KDD,

Vol. 95, pp. 112-117.

[5] positive technologies. 2022. Threats and

Vulnerabilities in Web Applications 2020–2021.

www.ptsecurity.com/ww-en/analytics/web-

vulnerabilities-2020-2021/

[6] OWASP. 2021. OWASP Top Ten.

owasp.org/www-project-top-ten/

[7] Doupe, A., Cui, W., Jakubowski, M. H., Peinado,

M., Kruegel, C., Vigna, G. 2013. deDacota: toward

preventing server-side XSS via automatic code and

data separation. In Proceedings of the 2013 ACM

SIGSAC conference on Computer &

communications Security, pp. 1205-1216.

[8] Lavrenovs, A., Melón, F. J. R. 2018. HTTP security

headers analysis of top one million websites.

In 2018 10th International Conference on Cyber

Conflict (CyCon) (pp. 345-370). IEEE.

[9] Scholte, T., Robertson, W., Balzarotti, D., Kirda, E.

2012. Preventing input validation vulnerabilities in

web applications through automated type analysis.

In 2012 IEEE 36th annual computer software and

applications conference (pp. 233-243). IEEE.

[10] Stock, B., Lekies, S., Mueller, T., Spiegel, P.,

Johns, M. 2014. Precise client-side protection

against DOM-based cross-site scripting. In 23rd

{USENIX} Security Symposium ({USENIX}

Security 14) (pp. 655-670).

[11] Salas, M. I. P., Martins, E. 2014. Security testing

methodology for vulnerabilities detection of xss in

web services and ws-security. Electronic Notes in

Theoretical Computer Science, 302, 133-154.

[12] Niakanlahiji, A., Jafarian, J. H. 2017. Webmtd:

defeating web code injection attacks using web

element attribute mutation. In Proceedings of the

2017 Workshop on Moving Target Defense, pp. 17-

26.

[13] Athanasopoulos, E., Pappas, V., Krithinakis, A.,

Ligouras, S., Markatos, E. P., Karagiannis, T. 2010.

xJS: practical XSS prevention for web application

development. In Proceedings of the 2010 USENIX

conference on Web application development, p. 13.

[14] Van Gundy, M., Chen, H. 2012. Noncespaces:

Using randomization to defeat cross-site scripting

attacks. Computers & Security, 31(4), 612-628.

[15] Gupta, B. B., Soni, H., Siwan, P., Kumar, A.,

Gupta, S. 2018. DOM-guard: defeating DOM-

based injection of XSS worms in HTML5 web

applications on Mobile-based cloud platforms.

In Computer and Cyber Security, pp. 425-454.

Auerbach Publications.

[16] Pelizzi, R., Sekar, R. 2012. Protection, usability and

improvements in reflected XSS filters.

In proceedings of the 7th ACM Symposium on

Information, Computer and Communications

Security, pp. 5-5.

[17] Mitropoulos, D., Stroggylos, K., Spinellis, D.,

Keromytis, A. D. 2016. How to train your browser:

Preventing XSS attacks using contextual script

fingerprints. ACM Transactions on Privacy and

Security (TOPS), 19(1), 1-31.

[18] Gupta, S., Gupta, B. B., Chaudhary, P. 2018.

Hunting for DOM-Based XSS vulnerabilities in

mobile cloud-based online social network. Future

Generation Computer Systems, 79, 319-336.

[19] Weissbacher, M., Robertson, W., Kirda, E.,

Kruegel, C., Vigna, G. 2015. Zigzag:

Automatically hardening web applications against

client-side validation vulnerabilities. In 24th

{USENIX} Security Symposium ({USENIX}

Security 15), pp. 737-752.

[20] Maurya, S. 2015. Positive security model based

server-side solution for prevention of cross-site

scripting attacks. In 2015 Annual IEEE India

Conference (INDICON), pp. 1-5. IEEE.

[21] Gupta, S., Gupta, B. B. 2016. Enhanced XSS

defensive framework for web applications

deployed in the virtual machines of cloud

computing environment. Procedia Technology, 24,

1595-1602.

[22] Guo, X., Jin, S., Zhang, Y. 2015. XSS vulnerability

detection using optimized attack vector repertory.

In 2015 International Conference on Cyber-

Enabled Distributed Computing and Knowledge

Discovery, pp. 29-36. IEEE.

[23] Sundareswaran, S., Squicciarini, A. C. 2012. XSS-

Dec: A hybrid solution to mitigate cross-site

scripting attacks. In Data and Applications Security

and Privacy XXVI: 26th Annual IFIP WG 11.3

Conference, DBSec 2012, Paris, France, July 11-

13, 2012. Proceedings 26, pp. 223-238. Springer

Berlin Heidelberg.

[24] Panja, B., Gennarelli, T., Meharia, P. 2015.

Handling cross site scripting attacks using cache

check to reduce webpage rendering time with

elimination of sanitization and filtering in light

weight mobile web browser. In 2015 First

Conference on Mobile and Secure Services

(MOBISECSERV), pp. 1-7. IEEE.

[25] Goswami, S., Hoque, N., Bhattacharyya, D. K.,

Kalita, J. 2017. An Unsupervised Method for

Detection of XSS Attack. Int. J. Netw.

Secur., 19(5), 761-775.

[26] Yusof, I., Pathan, A. S. K. 2016. Mitigating cross-

site scripting attacks with a content security

policy. Computer, 49(3), 56-63.

[27] Gupta, S., Gupta, B.B. 2017. Cross-Site Scripting

(XSS) attacks and defense mechanisms:

classification and state-of-the-art. International

http://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020-2021/
http://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020-2021/

B. Alagha / XSS Attack Detection with N-Gram Based Predictive Model

9

Journal of System Assurance Engineering and

Management, 8(1), 512-530.

[28] GitHub. 2023. OWASP Community Pages.

github.com/OWASP/www-

community/blob/master/pages/Types_of_Cross-

Site_Scripting.md (Accessed 2 Apr. 2023).

[29] Stivalet, Bertrand. 2022. PHP Vulnerability Test

Suite. github.com/stivalet/PHP-Vulnerability-test-

suite (Accessed 2 Apr. 2023).

[30] Chetty, N., Vaisla, K. S., Sudarsan, S. D. 2015.

Role of attributes selection in classification of

Chronic Kidney Disease patients. In 2015

international conference on computing,

communication and security (ICCCS), pp. 1-6.

IEEE.

[31] Gupta, S., Abraham, S., Sugumaran, V., Amarnath,

M. 2016. Fault diagnostics of a gearbox via acoustic

signal using wavelet features, J48 Decision Tree

and Random Tree Classifier. Indian J Sci

Technol, 9, 1-8.

[32] Sammut, C. 2011. Encyclopedia of machine

learning : with 78 tables. New York, Ny Springer.

[33] Wikipedia, 2023, Decision stump.

en.wikipedia.org/wiki/Decision_stump (Accessed

2 Apr. 2023).

[34] Hvitfeldt, E., Silge J. 2021. Supervised Machine

Learning for Text Analysis in R. Smltar.com,

smltar.com/. Accessed 19 Jan. 2021.

[35] Cavnar, W. B., Trenkle, J. M. 1994. N-gram-based

text categorization. In Proceedings of SDAIR-94,

3rd annual symposium on document analysis and

information retrieval (Vol. 161175).

[36] Frank, E., et al. 2016. Data Mining: Practical

Machine Learning Tools and Techniques.

www.cs.waikato.ac.nz/ml/weka.

[37] Witten, I H, Frank, E. 2005. Data Mining : Practical

Machine Learning Tools and Techniques.

Amsterdam ; Boston, Ma, Morgan Kaufman.

[38] Tung, Y. H., Tseng, S. S., Shih, J. F., Shan, H. L.

2013. A cost-effective approach to evaluating

security vulnerability scanner. In 2013 15th Asia-

Pacific Network Operations and Management

Symposium (APNOMS), pp. 1-3. IEEE.

[39] Taha, A. A., Hanbury, A. 2015. Metrics for

evaluating 3D medical image segmentation:

analysis, selection, and tool. BMC medical

imaging, 15(1), 1-28.

[40] Sasaki, Y. 2007. The Truth of the F-Measure. 26

Oct. 2007, pp. 1–5.

[41] Iba, W., Langley, P. 1992. Induction of one-level

decision trees. In Machine Learning Proceedings

1992 (pp. 233-240). Morgan Kaufmann.

[42] Narkhede, S. 2018. Understanding auc-roc

curve. Towards Data Science, 26(1), 220-227.

[43] Muschelli III, J. 2020. ROC and AUC with a binary

predictor: a potentially misleading metric. Journal

of classification, 37(3), 696-708.

