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Abstract: The increment developments in technology has empowered the web 

applications. Meanwhile, the existence of Cross-Site Scripting (XSS) vulnerabilities in 

web applications has become a concern for users. In spite of the numerous current 

detection approaches, attackers have been exploiting XSS vulnerabilities for years, 

causing harm to the internet users. In this paper, a text-mining based approach to detect 

XSS attacks in web applications is introduced. This approach is built to extract a set of 

features from a publicly available source code files, which are then used to build a 

prediction model. The findings include few comparisons between Word Tokenization and 

N-Gram in accuracy, time spend to build the model and AUC-ROC curve. The results 

show that N-Gram tokenization outperforms the Word Tokenization. 
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N-Gram Tabanlı Tahmin Modeli ile XSS Saldırısı Algılama 
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Özet: Teknolojideki hızlı gelişmeler web uygulamalarını güçlendirmiştir. Bu arada, web 

uygulamalarında Siteler Arası Betik Çalıştırma (XSS olarak da bilinir) güvenlik 

açıklarının varlığı, kullanıcılar için bir endişe haline gelmiştir. Çok sayıda mevcut 

algılama yaklaşımına rağmen saldırganlar yıllardır XSS güvenlik açıklarından 

yararlanarak internet kullanıcılarına zarar veriyor. Bu makalede, web uygulamalarındaki 

XSS Saldırısını tespit etmek için metin madenciliği tabanlı bir yaklaşım tanıtılmaktadır. 

Bu yaklaşım, halka açık bir kaynak kod dosyalarından bir dizi özellik çıkarmak için 

oluşturulmuştur. Bu dosyalar, daha sonra bir tahmin modeli oluşturmaya yardımcı olmak 

için kullanılır. Bulgular, N-Gram ve Kelime Simgeleştirme arasında doğruluk, modeli 

oluşturmak için harcanan zaman ve AUC-ROC eğrisi birkaç karşılaştırma içerir. Sonuç 

olarak N-Gram Kelime Simgeleştirmesinden daha iyi performans göstermektedir. 
  
 

1. INTRODUCTION 

 
Security of information is always a challenging task, and 

new challenges are discovered consistently. The 

communication between web server and web browser 

used to be secure, and the communication among people 

and devices over HTTPS protocol is widely known. 

However, lately, we have witnessed an increase in 

exploitation of web application vulnerabilities. One of 

those vulnerabilities is the Cross Site Scripting (also 

known as XSS). It is challenging to eliminate those 

vulnerabilities because it is difficult for web applications 

to clear all user input appropriately. By utilizing XSS, 

attackers can access their victims’ cookies and perform 

keylogging and phishing attacks to see their sensitive 

information such as passwords, credit card numbers, and 

other sensitive information [1]. 

 

These days, everyone can evaluate the security level of 

any website. Publicly available testing tools such as 

sitecheck.sucuri.net, which developed by Sucuri Inc. Such 

tools enable us to scan web servers and evaluate them on 

scale from minimal to critical [2]. The methodology used 

in such websites is not scientific, but it gives an overview 

on the security level that web servers have. 

 

J ESTUDAM Information,  2023; 4(2): 1-9.  ESTUDAM Bilişim Derg, 2023; 4(2): 1-9.  
 

 

*Bilal Alagha: 503020210017@ogrenci.ogu.edu.tr 

 

https://orcid.org/0000-0001-8347-1841
https://sitecheck.sucuri.net/


B. Alagha / XSS Attack Detection with N-Gram Based Predictive Model 
 

2 

 

Implementation of a text-mining technique to detect XSS 

attacks is the main idea of this article. Text-mining 

consists of the discovery of previously unknown 

information from existing resources [3]. It uses techniques 

from information retrieval, information extraction, and 

Natural Language Processing (also known as NLP) and 

connects them with the algorithms, statistics and machine 

learning technique [4]. 

 

XSS attacks occupy the first positions as one of the most 

common types of web application attacks, which 

considered to be critical and direct threats to web 

application security. According to the Positive 

Technologies report, 62% of web application 

vulnerabilities considered to be high-severity 

vulnerabilities compared to the total number of web 

application vulnerabilities in 2021 [5]. Surprisingly, XSS 

is classified as one of the top 10 vulnerabilities in web 

applications [6]. 

 

In this paper, an N-Gram based predictive approach to 

detect XSS attacks in web applications is introduced. It 

employs a text-mining technique to extract the features 

from source code files. These features are then used in the 

generation of a prediction model, which classifies the 

source code files into vulnerable and invulnerable 

categories. 

 

2. LITERATURE REVIEW 

 

There are many different methods proposed by 

researchers to detect XSS attacks and prevent their 

vulnerabilities. For example, Doupé et al. [7] implement 

a prototype of "deDacota" to analyze and rewrite 

ASP.NET web applications. This system is then applied 

to six open-source and real-world ASP.NET applications. 

Finally, all known XSS vulnerabilities are eliminated 

through the verification process. 

 

Weissbacher et al. [8] state that 417 out of 815 websites 

have CSP enabled because the "phpMyAdmin" web 

application is hosted. In order to avoid this situation, each 

domain is only connected once until a successful 

connection is made. If a redirect URL response is 

received, then the crawler follows that URL to visit the 

actual site. 

 

Scholte et al. [9] present “IPAAS” system, which is a 

technique for preventing the exploitation of XSS and SQL 

injection vulnerabilities based on automated data type 

detection of input parameters. IPAAS automatically 

augments otherwise insecure web application 

development environments with input validators that 

result in great security developments for real systems. 

IPAAS for PHP is implemented and evaluated on five 

web applications with known XSS and SQL injection 

vulnerabilities. The evaluation shows that IPAAS would 

have disallowed 83% of SQL injection vulnerabilities and 

65% vulnerabilities resulting from XSS. 

 

Scholte et al. [10] present the design, implementation and 

evaluation of a client-side countermeasure, which is 

capable to stand against XSS attacks that are DOM-based. 

The mechanism relies on the combination of a taint-

enhanced JavaScript engine and taint-aware parsers, 

which block the parsing of attacker controlled syntactic 

content. In case of client-side vulnerabilities, the approach 

detects injected syntactic content and, thus, is superior in 

blocking DOM-based XSS. 

 

Salas and Martins [11] propose an approach that makes 

use of two Security Testing techniques, namely 

Penetration Testing and Fault Injection. These techniques 

help emulate XSS attack against web services. This 

technology, combined with WS-Security and Security 

Tokens, can identify the sender and guarantee the 

legitimate access control to the SOAP messages 

exchanged. The vulnerability scanner soapUI is used, 

which is one of the most recognized tools of Penetration 

Testing. In contrast, WSInject is a new fault injection tool, 

which introduce faults or errors on web services to 

analyze the behavior in an environment not robust. This 

approach can analyze the robustness of web services by 

Fault Injection with WSInject. The results of the 

Penetration Testing phase assist to improve the rules for 

the analysis of vulnerabilities. The security provided by 

WS-Security standard with the add-on Security Token 

against XSS attack is also verified. In both phases, the use 

of WS-Security reduces the number of vulnerabilities to a 

large degree. 

 

Niakanlahiji and Jafarian [12] present WebMTD, a 

proactive moving target defense mechanism that thwarts 

a broad class of code injection attacks on web 

applications, including XSS, HTML code injection, and 

server-side code injection attacks. Relying on built-in 

features of current web browsers, WebMTD randomizes 

certain attributes of web elements to differentiate the 

application code from the injected code and prevent the 

execution. 

 

Athanasopoulos et al. [13] introduce xJs framework to 

reduce XSS attacks. The fundamental norm is to transfer 

JavaScript code blocks to another domain on the web 

server at runtime and to reverse the transposition on the 

client browser. The XOR operation is used to transfer 

JavaScript blocks in static HTML documents. Upon 

requesting an HTML document, xJS XORs each script 

block on the web page with a private key. Afterwards, it 

contains the key in an HTTP response header. On the 

client’s browser, the encrypted code block will be XORed 

again with the transmitted private key in order to retrieve 

the original code blocks. 

 

Gundy et al. [14] introduce Noncespaces technique to 

prevent XSS attacks. In Noncespaces, a random XML 

namespace is generated for each XHTML document that 

is requested, and all trusted XHTML element tags in it is 

then edited to begin with the generated namespace. 

XHTML elements with proper namespace is then 

rendered or executed. Noncespaces approach can 

effectively prevent XSS attack, it requires only checking 

the tag names on a web page. 
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Gupta et al. [15] present the Document Object Model 

(DOM)-Guard, a mobile cloud-based framework that 

alleviates the DOM-based XSS vulnerabilities from the 

contemporary platforms of mobile cloud-based HTML5 

web applications. DOM-Guard is a runtime DOM tree 

generator and context-aware sanitization-based 

framework that scans for XSS vulnerabilities that are 

DOM-based in the mobile cloud-based HTML5 web 

applications. 

 

Pelizzi and Sekar [16] present XSSFilt system, which is a 

modern client-side XSS defense system that addresses the 

disadvantages of built-in filters of Internet Explorer and 

Google Chrome browsers. The architecture of XSSFilt is 

presented, which is a browser-resident XSS defense. 

Unlike the previous browser resident defenses, which 

relies on exact string matching, XSSFilt system uses 

approximate string matching. Additionally, policies to 

detect attacks involving the whole or partial scripts 

injections are presented. 

 

Table 1. presents a summary of the detection approaches 

and some contributions of few researchers in XSS attacks 

and vulnerabilities detection. 

 

 

Table 1. Summary of detection approaches and some researchers’ contributions 

Approach Author Area of focus Type of XSS Comment 

 
Mitropoulos et al. 

[17] 

Attack Detection and 

Prevention 

Reflected and 

Stored XSS 

No false positives encountered during 

the test 

Client-side Gupta et al. [18] 

Attack Detection and 

Vulnerability 

Detection 

DOM based XSS 
System used training and detection 

modes 

 
Weissbacher et al. 

[19] 

Attack Detection and 

Prevention 
Not specified 

ZigZag approach to defend benign-but-

buggy JavaScript applications against 

CSV attacks 

 Maurya [20] 
Attack Detection and 

Prevention 
Stored XSS 

Uses one-level (i.e. whole HTML tags 

are allowed) and two-level (i.e. specific 

tags are allowed) whitelist 

Server-side Gupta et al. [21] Attack Detection Reflected XSS 

Framework detects the XSS worms 

with low false positives and false 

negatives 

 

Guo et al. [22] 
Vulnerability 

Detection 

Reflected and 

Stored XSS 

Optimized attack vector repertory; an 

optimization model to reduce the size 

of XSS attack vectors, and detect XSS 

vulnerabilities 

 
Sundareswaran et 

al. [23] 
Attack Prevention All 

XSS-Dec, a security-by-Proxy 

approach to protect end-users against 

XSS attacks 

Client-Server 
Panja et al. [24] 

Attack Detection and 

Prevention 
All 

Maintains a cache, which may be 

corrupted or injected 

 Goswami et al. [25] Attack Detection 
Reflected and 

Stored XSS 

Combined attribute clustering 

algorithm and rank aggregation to 

cluster the malicious and benign scripts 

 This paper Attack Detection Not Specified 
N-Gram Tokenization outperforms the 

word tokenization 

 

3. CROSS SITE SCRIPTING (XSS) ATTACK 

TYPES 

 

XSS can be classified into three categories—Stored 

XSS, Reflected XSS, and DOM-based XSS [26]. Figure 

1 depicts the XSS attack taxonomy. 

 

 

Figure 1. Taxonomy of XSS attacks [27] 

 

1) Reflected XSS: an attacker injects browser 

executable code within URI or HTTP parameters. It 

only harms users who click the maliciously crafted 

link to redirect to the third-party web page embedded 

with malicious code. 

2) Stored XSS: a malicious script is injected directly 

into a web application with a backend server. The 

script is stored in the server so that any user who 

visits the application will be harmed. 

3) DOM based XSS: it is an XSS attack modifying the 

DOM (Document Object Model) in user browser 

where the original script on user side will be executed 

in the manner different to its original intension. That 

is, the web page itself including the HTTP response 

does not change, but the code of the user side 

contained in the page executes differently due to the 

malicious modifications to the DOM environment. 
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Since these three categories were confusing, the research 

community proposed and started using two new major 

terms to help organize these categories—Server-Side XSS 

and Client-Side XSS [28], which are also depicted in 

Figure 1. 

 

1) Server XSS: it occurs when an untrusted user injects 

data in an HTTP response generated by the server. 

The source of this data could be from the request, or 

from a stored location. Therefore, we get both 

Reflected Server XSS and Stored Server XSS. 

2) Client XSS: it occurs when an untrusted user injects 

the malicious payload to update the DOM, typically 

with a malignant JavaScript call, or via some 

untrusted data source that is utilized by the JavaScript 

on the page. That is, any vulnerability or attack that 

does not use a web server to serve the payload to the 

victim is Client XSS. 

 

4. MATERIALS AND METHODS 

 

The goal of this study is to allow users to safely display 

websites that contain safe scripts. In this section, the 

dataset, experimental setting and performance measures 

that is used to evaluate the predictive model are discussed. 

 

4.1. Dataset 

 

To evaluate the performance of different approaches, an 

open source dataset repository is used [29]. This dataset 

has 10080 PHP source code files, 5728 of them are safe 

(i.e. invulnerable) and 4352 files are unsafe (i.e. 

vulnerable). Evaluation of the proposed method is 

performed on this dataset; it provides various cases to 

evaluate the efficiency of predictive models. This dataset 

contains a set of PHP source codes with their vulnerability 

labels. 

 

4.2. Machine Learning Algorithms 

 

A feature set with different machine learning algorithms 

generates different prediction models and produces 

different results. In this experiment, three machine 

learning algorithms are used- IBk (also known as Instance 

Based Learner), Random Tree and Decision Stump- with 

the default parameter values to evaluate their prediction 

performance. The IBk algorithm [30] uses a distance 

measure to locate k “close” instances in the training data 

for each test instance. It uses those selected instances to 

make a prediction. A Random Tree [31] is a graphical tree 

that is formed by a stochastic process, and it includes 

some types. Decision Stump [32-33] is a machine learning 

classification model that has a single level decision tree. 

 

4.3. Feature Extraction Algorithms 

 

Feature extraction is an essential task for building 

predictive models. The proper set of features provides 

better performance for predictive models. Figure 2 depicts 

the proposed approach, which uses Attribute Selected 

Classifier. It selects attributes based on the training data 

only, even when working with cross-validation. Then it 

trains the classifier on the training data, and then it 

evaluates the whole process on the testing data. Here, 

Correlation Attribute Evaluator is used, it evaluates the 

worth of an attribute by measuring the correlation 

between it and the class. 

 
Figure 2. Flow chart of the proposed vulnerability prediction 

approach 

 

4.4. Tokenization 

 

In text-mining, tokenization is the process of replacing 

data with unique identification symbols that retain all the 

essential information about the data without 

compromising its security. In this paper, the following 

tokenizers are used to evaluate the accuracy of the 

predictive model: 

 

4.4.1. Word tokenization 

 

It is the process of splitting a large text into words. This is 

necessary in NLP tasks, where each word needs to be 

captured and subjected to further analysis. Hvitfeldt and 

Silge [34] have details about word tokens (Figure 3). 

 

 

 
 

Figure 3. Word tokenization [34] 
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4.4.2. N-Gram 

 

It is a contiguous sequence of N items from a text. N-

Gram is used as a basis for operating an N-Gram based 

model, which is beneficial in NLP as a method of 

predicting upcoming text. Cavnar and Trenkle [35] have 

detailed explanation of N-Gram. Hvitfeldt and Silge [34] 

also provide a code explanation of it (Figure 4). 

 

 
Figure 4. N-Gram model [34] 

 

4.5. Experimental Setting 

 

In this paper, features for the dataset are extracted, and 

different machine-learning models are used. The 

experiments are completed using the machine-learning 

Weka tool [36]. Weka is an open source, platform-

independent and publicly available tool, which includes 

the implementation of different machine learning 

algorithms for data mining and machine learning 

experiments [37]. 

 

To evaluate the performance of different approaches, a 

10-fold cross-validation methodology is applied, and the 

experiment is repeated 10 times. Each time, one part of 

the files is used as test and the remainder parts are used as 

training. The final performance is reported by the 

weighted average of the accuracy. 

 

4.6. Performance Measure 

 

As a prediction approach, some performance measures are 

used in order to evaluate the performance of the 

experiments. These measures are illustrated in Table 2 

and described as follows [38]: 

 

1) True Positive Rate (TPR): it represents the number of 

actual vulnerable files correctly predicted as 

vulnerable by this predictive model. 

2) False Positive Rate (FPR): it represents the number 

of actual invulnerable files wrongly predicated as 

vulnerable by this predictive model. 

3) True Negative Rate (TNR): it represents the number 

of actual invulnerable files correctly predicted as 

invulnerable. 

4) False Negative Rate (FNR): it represents the number 

of actual vulnerable files wrongly predicated as 

invulnerable. 

 

The most effective predictive model should have the 

highest possible values of TPR and TNR, and the lowest 

possible values of FNR and FPR. 

 

 

Table 2. Confusion matrix 

 
vulnerable Invulnerable 

vulnerable TP FN 

Invulnerable FP TN 

 

I have also assessed the model performance by the 

following indicators [38]: 

 

1) Accuracy: it is the fraction of accurately determined 

vulnerable or invulnerable files to total number of 

files. It indicates the percentage of correct results. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1) 

 

2) Precision: it is the fraction of accurately determined 

vulnerable files to total number of files that are 

predicted as vulnerable. It is the probability that a file 

classified as vulnerable is indeed vulnerable. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (2) 

 

3) Recall: it is the fraction of the number of accurately 

determined vulnerable files to the actual number of 

vulnerable files. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

(TP + FN)
 (3) 

 

4) F-measure: it is a measure of a test's accuracy. It is 

calculated from the precision and recall of the test. 

The traditional F-measure [39] is the harmonic mean 

of precision and recall: 

 

F1 = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

(2𝑇𝑃+𝐹𝑃+𝐹𝑁)
 (4) 

 

A more general F-measure, Fβ [40], that uses positive 

real factor β, where β is chosen such that recall is 

considered β times as important as precision, is: 

 

Fβ = (1 + 𝛽2) ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 .  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

5. RESULTS 

 

Table 3 illustrates the results of the evaluation measures, 

i.e. TPR, FPR, precision, recall and F-measure, using 

word tokenization in machine learning algorithms. The 

best results can be obtained when using Decision Stump 

classifier. 

 
Table 3. Average results of the obtained TPR, FPR, Precision, 

Recall and F-measure using word tokenizer 
 TPR 

FPR Precision Recall F-Measure 

IBk 0.943 0.057 0.944 0.943 0.943 

Random 

Tree 
0.985 0.015 0.985 0.985 0.985 

Decision 

Stump 
1.000 0.000 1.000 1.000 1.000 
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However, the approach performs even better when using 

N-Gram tokenization over word tokenization in various 

machine learning algorithms. For example, the false 

positive rate is 0.014 and the F-measure is 0.986 using IBk 

classifier, which is better than the best performance of the 

word tokenization that produces a false positive of 0.057 

and an F-measure of 0.943. Even though the range 

between both tokenizers is not significant, but it may go 

up using larger N. In this experiment, the N values are 

selected from 1 to 3. The evaluation measures obtained as 

a result of using N-Gram tokenizer are depicted in Table 

4. 

 
Table 4. Average results of the obtained TPR, FPR, Precision, 

Recall and F-measure using N-Gram tokenizer, where N=[1-3] 

 
TPR FPR Precision Recall 

F-

Measure 

IBk 0.986 0.014 0.986 0.986 0.986 

Random 

Tree 
0.993 0.007 0.993 0.993 0.993 

Decision 

Stump 
1.000 0.000 1.000 1.000 1.000 

 

In order to extract the best features, Attribute Selected 

Classifier for feature extraction is applied, it selects 

attributes based on the training data only. The Correlation 

Attribute Evaluation with Ranker search is then used to 

evaluate the worth of the attributes. The predictive model 

is prepared using various algorithms, which are IBk, 

Random Tree and Decision Stump. Experimental results, 

as shown in Figure 5, indicate that Decision Stump 

outperforms the other algorithms used in this experiment, 

even though it is closed to their results. 

 

 
Figure 5. Weighted Avg. Vs Machine Learning Classifier for 

two different tokenizers 
 

Decision Stump is a machine learning model that consists 

of a one-level decision tree [41], which uses part of 

training data for testing. During training time, it acquires 

knowledge about that data, so if the same data is given to 

it again, it produces the same results. Thus, this classifier 

produces better results than the other machine learning 

classifiers. 

 

Another significant thing to note is that N-Gram takes 

much more time to build the vulnerability prediction 

model. For instance, the N-Gram tokenizer takes 25.61 

seconds to build the model using the Decision Stump, but 

it only takes 5.69 seconds to build it with word 

tokenization. N-Gram takes more time to build the model, 

but it definitely produces better values than word 

tokenization. Figure 6 demonstrates the time spent by 

both tokenizers to build the model. 

 

 
Figure 6. Time (in seconds) taken to build the model using 

different tokenizers. 

 

It is important to analyze the performance measurement 

in machine learning. Thus, when it comes to checking or 

visualizing the performance of a classification model, 

ROC Curve and AUC can be used to achieve this purpose 

[42]. 

 

The standard ROC curves are presented in Figure 7-8, 

with the false positive rates on the x-axes and true positive 

rates on the y-axes. The white area under the curves 

represents the AUC [43]. The higher the AUC, the better 

the model is at distinguishing between classes [42]. As of 

this concept, the AUC is better using N-Gram 

tokenization over word tokenization. 

 

6. DISCUSSION AND CONCLUSION 

 

In information security, it is important to detect 

vulnerabilities in web applications. Insecure web 

applications may cause of stealing personal information 

(e.g. user cookies) as described earlier in this paper. This 

paper presented an approach for detecting XSS attacks 

through text-mining based predictive model. A publicly 

available dataset is used during the experiment. 

Experiment results demonstrate that the proposed features 

can detect vulnerable scripts in web applications with high 

TPR and low FPR. Experimental results indicate that 

Decision Stump outperforms the other classifiers used in 

this experiment, and great results are demonstrated in 

word tokenization and N-Gram using it. The results also 

prove that N-Gram tokenizer obtains a higher accuracy 

compared to word tokenization, although it takes much 

more time. 

 

A certain limitation was that even though the proposed 

approach performs well with certain types of machine 

learning algorithms, it exhausts computer components 

(e.g. it consumes too much memory and sometimes the 

program crashes) when using N-Gram with different 

types of algorithms, and probably without getting results. 

One way to overcome this issue is to use a large memory 

size, and the other algorithms are left for future testing. In 

the future, the same N-Gram tokenizer will be used to test 

the effect of using higher N (i.e. N>3) with various 

machine learning algorithms on attack detection results. 
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                 (a)                                                                                            (b) 

 
 

                                              (c)                                                                                            (d)

  
Figure 7. AUC-ROC Curve using Word Tokenization with (a) IBk, (b) Random Tree, and N-Gram with (c) IBk, (d) Random Tree. 

 
 

 
(a) 

 
(b) 

Figure 8. AUC-ROC Curve with Decision Stump in case of 

using: (a) Word Tokenization, (b) N-Gram 
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