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RENEWED STRUCTURE OF NEUTROSOPHIC SOFT GRAPHS

AND ITS APPLICATION IN DECISION-MAKING PROBLEM

Yıldıray ÇELİK

Department of Mathematics, Ordu University, 52200 Ordu, TÜRKİYE

Abstract. This study is designed with the renewed concept of neutrosophic

soft graph (briefly ns-graph) which is a combination of graphs and neutrosophic
soft sets. We re-define notions of ns-graphs and ns-subgraphs with the different

perspective from the study in [4]. Also, we introduce some new operations on

ns-graphs and detailed them with convenient examples. Moreover, we present
an application of ns-graphs to determine of optimal object by using given data

with the help of an algorithm. This algorithm we developed is new inventive-
ness domain for problems which are involving uncertainty, and effectively finds

the optimal result between the states where vagueness exists. We also provide

a comparative analysis with the existing method given in [4].

1. Introduction

It is clear that the uncertainty arising from different areas cannot be explained
and expressed with precise definitions. Different types of uncertainty are common
in many fields such as economics, biology, physics, engineering, medicine and so-
cial sciences. Since uncertainty is a complex and broad concept that is not clearly
defined, many fields dealing with uncertainty have failed to model this situation
successfully with classical mathematical methods. In valuing a phenomenon in real
life, we use intermediate values, that is, fuzzy values. For example, when evaluat-
ing the temperature of the air, we make ratings such as cold, slightly cold, warm,
slightly hot and hot. Therefore, classical set theory falls short of expressing inter-
mediate state values. This inadequate situation in classical set theory was first tried
to be overcome with fuzzy set theory [21]. A fuzzy set A is characterized with the
help of a membership function µA(x), a mapping from the universal set X to the
unit interval [0,1], where x in the fuzzy set A has a certain degree of membership.
Although a phenomenon can be represented with only one of 0 and 1 values in
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classical set theory, it can take infinite values in fuzzy logic. Thus, a phenomenon
can have uncertain values in the fuzzy approach. Fuzzy logic controllers have been
applied many areas from electrical household appliances to auto electronics, from
business machines we use daily to production engineering, from industrial control
technologies to automation. Atanassov [5] put forward the intuitionistic fuzzy set
theory which is a generalized type of the fuzzy set theory. In intuitionistic fuzzy
sets, unlike fuzzy sets, the elements have degrees of non-membership. However, in
these theories, the uncertainty of an element is not discussed, although the values
of an element such as whether it is a member or not. Based on this, Smarandache
[19] introduced the neutrosophic set theory which is an extended and special case
of fuzzy set theory. The neutrosophic sets are stated by three functions. These are
truth, indeterminacy and falsity membership function. The neutrosophic models
produce more suitable solutions for the complex systems. In addition, an individual
may not always be fully informed about a subject. In this case, the indeterminacy
membership function comes into play and it provides a very large place for model-
ing events involving many uncertainties. Maji [14] defined the neutrosophic soft set
concept and examined the properties of this concept. Broumi [7] worked on general-
ized netrosophic soft sets. Deli [11] gave the notion of interval-valued neutrosophic
soft set and also applied this concept to the a decision-making problem.

Some great scientific theories grew out of answers to simple questions. Graf
theory is one of them. Graf theory was first put forward by Euler [12]. Graph
theory which is an important mathematical tool for solving complicated problems
in many different fields. Graphs are used to put forth a rellevance between elements
in a given set, where every element can be expressed with the help of vertices and
their relation edges. Since graph theory provides conveniences in modeling compli-
cated systems, it has many number of applications. A simple graph is showed by
G∗ = (ν, ε) where ν and ε represents sets of vertices and edges, respectively. After
Euler’s introduction of the graph concept, Rosenfeld [17] introduced the fuzzy graph
theory. Bhattacharya [6] gave some properties of fuzzy graphs. Mordeson and Peng
[16] have defined some operations on fuzzy graphs. Later, many researchers dis-
cussed the concept of fuzzy sets on the graph theory and defined different structures.
Akram and Dudek [1] gave the concept of interval-valued fuzzy graphs and exam-
ined their related properties. Broumi et al. [9] gave the concept of interval valued
pentapartitioned neutrosophic graphs. Broumi et al. [8] defined interval-valued fer-
matean neutrosophic graphs and presented some operations on this. Thumbakara
and George [20] gave the concepts of soft graph and soft subgraph, and examined
the properties of these structures. Akram and Nawaz [2] described some new al-
gebraic operations on soft graphs. Mohinta and Samanta [15] defined the concept
of fuzzy soft graph. Later, Akram and Nawaz [3] studied different types of fuzzy
soft graphs. Zihni et al. [22] gave the concept of interval-valued fuzzy soft graph
and examined its basic properties. Çelik [10] gave the concept of bipolar fuzzy soft
graph and investigated some operations on this concept. Kandasamy et al. [13]
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gave the concept of neutrosophic graph and made various applications of neutro-
sophic graphs. Akram et al. [4] combined neutrosophic soft set concept and graph
theory, then define notion of neutrosophic soft graph (ns-graph). They also applied
the ns-graphs to the a decision-making problem. Shah and Hussain [18] gave new
features on ns-graphs.

In the current study, the renewed concept of ns-graphs is defined and some
new operations not previously defined such us extended union, restricted union,
extended intersection, restricted intersection and complement are presented. Also
illustrative examples related these operations are given. Hence an application of ns-
graphs for a decision-making problem is examined with the method we developed.
Moreover a comparative analysis between proposed method and existing method
given in [4] are revealed.

2. Preliminaries

Definition 1. [19] Let X ̸= ∅ be an universe. Then a neutrosophic set A on X
is given by A = {⟨x, TA(x), IA(x), FA(x)⟩, x ∈ X}, where the functions TA, IA and
FA are fuzzy sets on X under the conditions 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for
all x ∈ X. The family of all neutrosophic sets on X is denoted by N (X).

Definition 2. [14] Let X be an initial universe. Let E be a set of parameters. Then,
a pair (f,E) is called a neutrosophic soft set (briefly ns-set) over X representing a
mapping by f : E → N (X).

Definition 3. [14] Let (f,E) ∈ N (X). Then, for all e ∈ E and x ∈ X,

(a) (f,E) is called a null ns-set if Tf(e)(x) = 0, If(e)(x) = 1 and Ff(e)(x) = 1.
(b) (f,E) is called a whole ns-set if Tf(e)(x) = 1, If(e)(x) = 0 and Ff(e)(x) = 0.

Definition 4. [14] Let (f,E1) and (g,E2) be two ns-sets over X, then (f,E1) is
said to be a ns-subset of (g,E2) if

i. E1 ⊆ E2

ii. Tf(e)(x) ≤ Tg(e)(x), If(e)(x) ≥ Ig(e)(x), Ff(e)(x) ≥ Fg(e)(x) for all e ∈ E1 and
x ∈ X.

3. Renewed Structure of Ns-graphs with Some New Operations

Definition 5. A ns-graph is an order 4-tuple GN = (G∗, f, g, E) such that

i. G∗ = (ν, ε) is a simple graph
ii. E ̸= ∅ is a set of parameters
iii. (f,E) is a ns-set over ν
iv. (g,E) is a ns-set over ε
v. h(e) = (f(e), g(e)) is a neutrosophic graph for all e ∈ E. That is, for all e ∈ E

and xy ∈ ε,

Tge(xy) ≤ min{Tfe(x), Tfe(y)}
Ige(xy) ≥ max{Ife(x), Ife(y)}
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Fge(xy) ≥ max{Ffe(x), Ffe(y)}

Note that (f,E) is called a ns-vertex and (g,E) is called a ns-edge.

Example 1. Let G∗ = (ν, ε) be a simple graph with ν = {v1, v2, v3} and ε =
{v1v2, v1v3, v2v3}. Let E = {e1, e2, e3} be a set of parameters. Let consider ns-sets
f and g over ν and ε,
respectively, as given in Table 1.

Table 1. Ns-sets (f,E) and (g,E)

f v1 v2 v3
e1 (0.2,0.4,0.5) (0.4,0.5,0.6) (0,1,1)
e2 (0.2,0.7,0.8) (0.3,0.5,0.6) (0.5,0.6,0.7)
e3 (0.3,0.3,0.5) (0.2,0.2,0.3) (0.3,0.4,0.9)

g v1v2 v2v3 v1v3
e1 (0.1,0.6,0.7) (0,1,1) (0,1,1)
e2 (0.1,0.7,0.9) (0,1,1) (0.2,0.8,0.9)
e3 (0.2,0.4,0.6) (0.1,0.5,0.9) (0.3,0.5,0.9)

Clearly GN = (G∗, f, g, E) is a ns-graph over G∗.

Definition 6. Let G∗ = (ν, ε) be a simple graph. A ns-graph G
′

N = (G∗, f1, g1, E1)
is called a ns-subgraph of GN = (G∗, f, g, E2) if

i. E1 ⊆ E2

ii. f1
e ⊆ fe, that is Tf1e(x) ≤ Tfe(x), If1e(x) ≥ Ife(x), Ff1e(x) ≥ Ffe(x)

iii. g1e ⊆ ge, that is, Tg1e(x) ≤ Tge(x), Ig1e(x) ≥ Ige(x), Fg1e(x) ≥ Fge(x)

for all e ∈ E1, x ∈ ν.

Example 2. Let consider a ns-graph GN = (G∗, f, g, E) as taken in Example 1.

Let consider another ns-graph G
′

N = (G∗, f1, g1, E1) as in the Table 2 with the
parameter set E1 = {e1, e2}.

Table 2. Ns-sets (f1, E1) and (g1, E1)

f1 v1 v2 v3
e1 (0.2,0.5,0.6) (0.3,0.6,0.8) (0,1,1)
e2 (0.1,0.7,0.9) (0.1,0.5,0.7) (0.2,0.8,0.9)

g1 v1v2 v2v3 v1v3
e1 (0.1,0.7,0.8) (0,1,1) (0,1,1)
e2 (0.1,0.9,0.9) (0,1,1) (0.1,0.8,0.9)
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v1

(0.2, 0.4, 0.5)

v2

(0.4, 0.5, 0.6)
(0.1, 0.6, 0.7)

Neutrosophic graph h(e1) = (f(e1), g(e1))

v1

(0.2, 0.7, 0.8)

v2

(0.3, 0.5, 0.6)
(0.1, 0.7, 0.9)

v3

(0.5, 0.6, 0.7)

(0.2, 0.8, 0.9)

Neutrosophic graph h(e2) = (f(e2), g(e2))

v1

(0.3, 0.3, 0.5)

v2

(0.2, 0.2, 0.3)
(0.2, 0.4, 0.6)

v3

(0.3, 0.4, 0.9)

(0.3, 0.5, 0.9) (0.1, 0.5, 0.9)

Neutrosophic graph h(e3) = (f(e3), g(e3))

Figure 1. Ns-graph GN = (G∗, f, g, E)

v1

(0.2, 0.5, 0.6)

v2

(0.3, 0.6, 0.8)
(0.1, 0.7, 0.8)

Neutrosophic graph h′(e1)

v1

(0.1, 0.7, 0.9)

v2

(0.1, 0.5, 0.7)
(0.1, 0.9, 0.9)

v3

(0.2, 0.8, 0.9)

(0.1, 0.8, 0.9)

Neutrosophic graph h′(e2)

Figure 2. Ns-graph G
′

N = (G∗, f1, g1, E1)

It is evident that G
′

N = (G∗, f1, g1, E1) is a ns-subgraph of GN = (G∗, f, g, E).
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Definition 7. Let GN = (G∗, f, g, E) be a ns-graph over G∗ = (ν, ε). Then GN is
called strong ns-graph iff

Tge(xy) = min{Tfe(x), Tfe(y)}
Ige(xy) = max{Ife(x), Ife(y)}
Fge(xy) = max{Ffe(x), Ffe(y)}

for all e ∈ E and xy ∈ ε.

Example 3. Let G∗ = (ν, ε) be a simple graph with ν = {v1, v2, v3} and ε =
{v1v2, v1v3, v2v3}. Let E = {e1, e2, e3} be a set of parameters. Let consider ns-sets
f and g over ν and ε,
respectively, as given in Table 3.

Table 3. Ns-sets (f,E) and (g,E)

f v1 v2 v3
e1 (0.2,0.4,0.5) (0.4,0.5,0.6) (0,1,1)
e2 (0.2,0.7,0.8) (0.3,0.5,0.6) (0.5,0.6,0.7)
e3 (0.3,0.3,0.5) (0.2,0.2,0.3) (0.3,0.4,0.9)

g v1v2 v2v3 v1v3
e1 (0.2,0.5,0.6) (0,1,1) (0,1,1)
e2 (0.2,0.7,0.8) (0.3,0.6,0.7) (0.2,0.7,0.8)
e3 (0.2,0.3,0.5) (0.2,0.4,0.9) (0.3,0.4,0.9)

Clearly GN = (G∗, f, g, E) is strong ns-graph.

Definition 8. Let GN = (G∗, f, g, E) be a ns-graph over G∗ = (ν, ε). Then the
complement of GN = (G∗, f, g, E) is denoted by GN = (G∗, f̄ , ḡ, E) and is defined
by

i. Tf̄e(x) = Tfe(x), If̄e(x) = Ife(x), Ff̄e(x) = Ffe(x)
ii. Tḡe(x, y) = min{Tfe(x), Tfe(y)} − Tge(x, y)

Iḡe(x, y) = max{Ife(x), Ife(y)} − Ige(x, y)
Fḡe(x, y) = max{Ffe(x), Ffe(y)} − Fge(x, y)

for all e ∈ E and xy ∈ ε.

Definition 9. Let GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2) be two ns-

graphs over the simple graph G∗ = (ν, ε). The extended union of GN and G
′

N is

denoted by GN

⋃
G

′

N = (G∗, f, g, E), where E = E1 ∪E2. T , I and F membership

values of vertices and edges of GN

⋃
G

′

N are defined by as follow.
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v1

(0.2, 0.4, 0.5)

v2

(0.4, 0.5, 0.6)
(0.2, 0.5, 0.6)

Neutrosophic graph h(e1) = (f(e1), g(e1))

v1

(0.2, 0.7, 0.8)

v2

(0.3, 0.5, 0.6)
(0.2, 0.7, 0.8)

v3

(0.5, 0.6, 0.7)

(0.2, 0.7, 0.8) (0.3, 0.6, 0.7)

Neutrosophic graph h(e3) = (f(e3), g(e3))

v1

(0.3, 0.3, 0.5)

v2

(0.2, 0.2, 0.3)
(0.2, 0.3, 0.5)

v3

(0.3, 0.4, 0.9)

(0.3, 0.4, 0.9) (0.2, 0.4, 0.9)

Neutrosophic graph h(e3) = (f(e3), g(e3))

Figure 3. Strong ns-graph GN = (G∗, f, g, E)

i. For all e ∈ E and x ∈ ν

Tfe(x) =


Tf1

e
(x) e ∈ E1\E2

Tf2
e
(x) e ∈ E2\E1

max{Tf1
e
(x), Tf2

e
(x)} e ∈ E1 ∩ E2

Ife(x) =


If1

e
(x) e ∈ E1\E2

If2
e
(x) e ∈ E2\E1

min{If1
e
(x), If2

e
(x)} e ∈ E1 ∩ E2

Ffe(x) =


Ff1

e
(x) e ∈ E1\E2

Ff2
e
(x) e ∈ E2\E1

min{Ff1
e
(x), Ff2

e
(x)} e ∈ E1 ∩ E2
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ii. For all e ∈ E and xy ∈ ε

Tge(xy) =


Tg1

e
(xy) e ∈ E1\E2

Tg2
e
(xy) e ∈ E2\E1

max{Tg1
e
(xy), Tg2

e
(xy)} e ∈ E1 ∩ E2

Ige(xy) =


Ig1

e
(xy) e ∈ E1\E2

Ig2
e
(xy) e ∈ E2\E1

min{Ig1
e
(xy), Ig2

e
(xy)} e ∈ E1 ∩ E2

Fge(xy) =


Fg1

e
(xy) e ∈ E1\E2

Fg2
e
(xy) e ∈ E2\E1

min{Fg1
e
(xy), Fg2

e
(xy)} e ∈ E1 ∩ E2

Example 4. Let G∗ = (ν, ε) be a simple graph with ν = {v1, v2, v3, v4, v5}. Let
consider a ns-graph GN = (G∗, f1, g1, E1) with the parameter set E1 = {e1, e2, e3}
as in the Table 4.

Table 4. Ns-sets (f1, E1) and (g1, E1)

f1 v1 v2 v3 v4 v5
e1 (0.1,0.2,0.3) (0,1,1) (0.2,0.3,0.4) (0.2,0.5,0.7) (0,1,1)
e2 (0.1,0.3,0.7) (0,1,1) (0.4,0.6,0.7) (0.1,0.2,0.3) (0,1,1)
e3 (0.5,0.6,0.7) (0,1,1) (0.6,0.8,0.9) (0.3,0.4,0.6) (0,1,1)

g1 v1v2 v1v3 v1v4 v1v5 v2v3
e1 (0,1,1) (0.1,0.4,0.5) (0.1,0.6,0.7) (0,1,1) (0,1,1)
e2 (0,1,1) (0.1,0.7,0.8) (0.1,0.4,0.8) (0,1,1) (0,1,1)
e3 (0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1) (0,1,1)

g1 v2v4 v2v5 v3v4 v3v5 v4v5
e1 (0,1,1) (0,1,1) (0.1,0.6,0.8) (0,1,1) (0,1,1)
e2 (0,1,1) (0,1,1) (0.1,0.8,0.9) (0,1,1) (0,1,1)
e3 (0,1,1) (0,1,1) (0.3,0.8,0.9) (0,1,1) (0,1,1)
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v1

(0.1, 0.2, 0.3)

v4

(0.2, 0.5, 0.7)
(0.1, 0.6, 0.7)

v3

(0.2, 0.3, 0.4)

(0.1, 0.4, 0.5) (0.1, 0.6, 0.8)

Neutrosophic graph h(e1)

v1

(0.1, 0.3, 0.7)

v4

(0.1, 0.2, 0.3)
(0.1, 0.4, 0.8)

v3

(0.4, 0.6, 0.7)

(0.1, 0.7, 0.8) (0.1, 0.8, 0.9)

Neutrosophic graph h(e2)

v1

(0.5, 0.6, 0.7)

v4

(0.3, 0.4, 0.6)
(0.2, 0.7, 0.9)

v3

(0.6, 0.8, 0.9)

(0.3, 0.8, 0.9)

Neutrosophic graph h(e3)

Figure 4. Ns-graph GN = (G∗, f1, g1, E1)

Now let consider another ns-graph G
′

N = (G∗, f2, g2, E2) with the parameter set
E2 = {e2, e4} as in the Table 5.

Table 5. Ns-sets (f2, E2) and (g2, E2)

f2 v1 v2 v3 v4 v5
e2 (0,1,1) (0.1,0.2,0.4) (0.2,0.3,0.4) (0,1,1) (0.4,0.6,0.7)
e4 (0,1,1) (0.3,0.6,0.8) (0.5,0.7,0.9) (0,1,1) (0.3,0.4,0.5)

g2 v1v2 v1v3 v1v4 v1v5 v2v3
e2 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.1,0.4,0.8)
e4 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9)

g2 v2v4 v2v5 v3v4 v3v5 v5v6
e2 (0,1,1) (0,1,1) (0,1,1) (0.2,0.8,0.9) (0,1,1)
e4 (0,1,1) (0.2,0.6,0.8) (0,1,1) (0.3,0.9,0.9) (0,1,1)
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v2

(0.1, 0.2, 0.4)

v3

(0.2, 0.3, 0.4)
(0.1, 0.4, 0.8)

v5

(0.4, 0.6, 0.7)

(0.2, 0.8, 0.9)

Neutrosophic graph h′(e2)

v2

(0.3, 0.6, 0.8)

v3

(0.5, 0.7, 0.9)
(0.2, 0.7, 0.9)

v5

(0.3, 0.4, 0.5)

(0.2, 0.6, 0.8) (0.3, 0.9, 0.9)

Neutrosophic graph h′(e4)

Figure 5. Ns-graph G
′

N = (G∗, f2, g2, E2)

The parameter set of GN

⋃
G

′

N = (G∗, f, g, E) is E = E1 ∪ E2 = {e1, e2, e3, e4}.
Moreover the ns-graph GN

⋃
G

′

N = (G∗, f, g, E) is obtained as in the Table 6 and
Table 7.

Table 6. Ns-set (f,E)

f v1 v2 v3 v4 v5
e1 (0.1,0.2,0.3) (0,1,1) (0.2,0.3,0.4) (0.2,0.5,0.7) (0,1,1)
e2 (0.1,0.3,0.7) (0.1,0.2,0.4) (0.2,0.4,0.4) (0.1,0.2,0.3) (0.4,0.6,0.7)
e3 (0.5,0.6,0.7) (0,1,1) (0.6,0.8,0.9) (0.3,0.4,0.6) (0,1,1)
e4 (0,1,1) (0.3,0.6,0.8) (0.5,0.7,0.9) (0,1,1) (0.3,0.4,0.5)

Table 7. Ns-set (g,E)

g v1v2 v1v3 v1v4 v1v5 v2v3
e1 (0,1,1) (0.1,0.4,0.5) (0.1,0.6,0.7) (0,1,1) (0,1,1)
e2 (0,1,1) (0.1,0.7,0.8) (0.1,0.4,0.8) (0,1,1) (0.1,0.4,0.8)
e3 (0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1) (0,1,1)
e4 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9)

g v2v4 v2v5 v3v4 v3v5 v4v5
e1 (0,1,1) (0,1,1) (0.1,0.6,0.8) (0,1,1) (0,1,1)
e2 (0,1,1) (0,1,1) (0.1,0.8,0.9) (0.2,0.8,0.9) (0,1,1)
e3 (0,1,1) (0,1,1) (0.2,0.8,0.9) (0,1,1) (0,1,1)
e4 (0,1,1) (0.2,0.6,0.8) (0,1,1) (0.3,0.9,0.9) (0,1,1)
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v1

(0.1, 0.2, 0.3)

v3

(0.2, 0.3, 0.4)
(0.1, 0.4, 0.5)

v4

(0.2, 0.5, 0.7)

(0.1, 0.6, 0.7) (0.1, 0.6, 0.8)

Neutrosophic graph h′′(e1)

v1

(0.1, 0.3, 0.7)

v3

(0.2, 0.4, 0.4)
(0.1, 0.7, 0.8)

v2

(0.1, 0.2, 0.4)

v4

(0.1, 0.2, 0.3)

v5

(0.4, 0.6, 0.7)

(0.1, 0.4, 0.8) (0.1, 0.8, 0.9)

(0.1, 0.4, 0.8)

(0.2, 0.8, 0.9)

Neutrosophic graph h′′(e2)

v1

(0.5, 0.6, 0.7)

v3

(0.6, 0.8, 0.9)

v4

(0.3, 0.4, 0.6)

(0.2, 0.7, 0.9) (0.2, 0.8, 0.9)

Neutrosophic graph h′′(e3)

v2

(0.3, 0.6, 0.8)

v3

(0.5, 0.7, 0.9)
(0.2, 0.7, 0.9)

v5

(0.3, 0.4, 0.5)

(0.2, 0.6, 0.8)
(0.3, 0.9, 0.9)

Neutrosophic graph h′′(e4)

Figure 6. Ns-graph GN

⋃
G

′

N = (G∗, f, g, E)

Definition 10. Let GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2) be two

ns-graph over G∗ = (ν, ε). The restricted union of GN and G
′

N is denoted by

GN

⊔
G

′

N = (G∗, f, g, E), where E = E1 ∩ E2. T , I and F membership values of

vertices and edges of GN

⊔
G

′

N are defined by as follow.

i. For all e ∈ E and x ∈ ν

Tfe(x) = max{Tf1
e
(x), Tf2

e
(x)}

Ife(x) = min{If1
e
(x), If2

e
(x)}

Ffe(x) = min{Ff1
e
(x), Ff2

e
(x)}

ii. For all e ∈ E and xy ∈ ε

Tge(xy) = max{Tg1
e
(xy), Tg2

e
(xy)}

Ige(xy) = min{Ig1
e
(xy), Ig2

e
(xy)}
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Fge(xy) = min{Fg1
e
(xy), Fg2

e
(xy)}

Example 5. Let consider ns-graphs GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2)
as taken in Example 4. Clearly E = E1 ∩ E2 = {e2}. Also the restricted union of

GN and G
′

N is obtained as follow.

Table 8. Ns-sets (f,E) and (g,E)

f v1 v2 v3 v4 v5
e2 (0.1,0.3,0.7) (0.1,0.2,0.4) (0.4,0.3,0.4) (0.1,0.2,0.3) (0.4,0.6,0.7)

g v1v4 v3v4 v1v3 v2v3 v3v5
e2 (0.1,0.4,0.8) (0.1,0.8,0.9) (0.1,0.7,0.8) (0.1,0.4,0.8) (0.2,0.8,0.9)

v1

(0.1, 0.3, 0.7)

v3

(0.4, 0.3, 0.4)
(0.1, 0.7, 0.8)

v2

(0.1, 0.2, 0.4)

v4

(0.1, 0.2, 0.3)

v5

(0.4, 0.6, 0.7)

(0.1, 0.4, 0.8) (0.1, 0.8, 0.9)

(0.1, 0.4, 0.8)

(0.2, 0.8, 0.9)

Neutrosophic graph h′′(e2)

Figure 7. Ns-graph GN

⊔
G

′

N = (G∗, f, g, E)

Definition 11. Let GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2) be two ns-

graph over G∗ = (ν, ε). The extended intersection of GN and G
′

N is denoted by

GN

⋂
G

′

N = (G∗, f, g, E), where E = E1 ∪ E2. T , I and F membership values of

vertices and edges of GN

⋂
G

′

N are defined by as follow.

i. For all e ∈ E and x ∈ ν

Tfe(x) =


Tf1

e
(x), e ∈ E1\E2

Tf2
e
(x), e ∈ E2\E1

min{Tf1
e
(x), Tf2

e
(x)}, e ∈ E1 ∩ E2

Ife(x) =


If1

e
(x), e ∈ E1\E2

If2
e
(x), e ∈ E2\E1

max{If1
e
(x), If2

e
(x)}, e ∈ E1 ∩ E2
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Ffe(x) =


Ff1

e
(x), e ∈ E1\E2

Ff2
e
(x), e ∈ E2\E1

max{Ff1
e
(x), Ff2

e
(x)}, e ∈ E1 ∩ E2

ii. For all e ∈ E and xy ∈ ε

Tge(xy) =


Tg1

e
(xy) e ∈ E1\E2

Tg2
e
(xy) e ∈ E2\E1

min{Tg1
e
(xy), Tg2

e
(xy)}, e ∈ E1 ∩ E2

Ige(x) =


Ig1

e
(xy) e ∈ E1\E2

Ig2
e
(xy) e ∈ E2\E1

max{Ig1
e
(xy)Ig2

e
(xy)}, e ∈ E1 ∩ E2

Fge(xy) =


Fg1

e
(xy) e ∈ E1\E2

Fg2
e
(xy) e ∈ E2\E1

max{Fg1
e
(xy), Fg2

e
(xy)}, e ∈ E1 ∩ E2

Example 6. Let G∗ = (ν, ε) be a simple graph with V = {v1, v2, v3, v4} and
E = {v1v2, v1v4, v2v4}. Let E1 = {e1, e2} be a set of parameters. Consider a
ns-graph GN = (G∗, f1, g1, E1) over G∗ = (ν, ε) as taken in the Table 9.

Table 9. Ns-sets (f1, E1) and (g1, E1)

f1 v1 v2 v3 v4
e1 (0.1,0.2,0.3) (0.2,0.4,0.5) (0,1,1) (0.1,0.5,0.7)
e2 (0.2,0.3,0.7) (0.4,0.6,0.7) (0,1,1) (0.3,0.4,0.6)

g1 v1v2 v1v3 v1v4 v2v3 v2v4 v3v4
e1 (0.1,0.5,0.6) (0,1,1) (0.1,0.5,0.7) (0,1,1) (0,1,1) (0,1,1)
e2 (0.2,0.7,0.8) (0,1,1) (0.1,0.6,0,7) (0,1,1) (0.2,0.7,0.9) (0,1,1)
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v1

(0.1, 0.2, 0.3)

v2

(0.2, 0.4, 0.5)
(0.1, 0.5, 0.6)

v4

(0.1, 0.5, 0.7)

(0.1, 0.5, 0.7)

Neutrosophic graph h(e1)

v1

(0.2, 0.3, 0.7)

v2

(0.4, 0.6, 0.7)
(0.2, 0.7, 0.8)

v4

(0.3, 0.4, 0.6)

(0.2, 0.7, 0.9)(0.1, 0.6, 0.7)

Neutrosophic graph h(e2)

Figure 8. Ns-graph GN = (G∗, f1, g1, E1)

Now let consider another ns-graph G
′

N = (G∗, f2, g2, E2) with the parameter set
E2 = {e2, e3} as taken in the Table 10.

Table 10. Ns-sets (f2, E2) and (g2, E2)

f2 v1 v2 v3 v4
e2 (0,1,1) (0.3,0.5,0.6) (0.2,0.4,0.5) (0.4,0.5,0.9)
e3 (0,1,1) (0.2,0.4,0.5) (0.1,0.2,0.6) (0.1,0.5,0.7)

g2 v1v2 v1v3 v1v4 v2v3 v2v4 v3v4
e2 (0,1,1) (0,1,1) (0,1,1) (0.1,0.6,0.7) (0.2,0.6,0.9) (0.2,0.7,0.9)
e3 (0,1,1) (0,1,1) (0,1,1) (0.1,0.5,0.8) (0.1,0.7,0.8) (0.1,0.8,0.9)

v2

(0.3, 0.5, 0.6)

v3

(0.2, 0.4, 0.5)
(0.1, 0.6, 0.7)

v4

(0.4, 0.5, 0.9)

(0.2, 0.6, 0.9) (0.2, 0.7, 0.9)

Neutrosophic graph h′(e2)

v2

(0.2, 0.4, 0.5)

v3

(0.1, 0.2, 0.6)
(0.1, 0.5, 0.8)

v4

(0.1, 0.5, 0.7)

(0.1, 0.7, 0.8) (0.1, 0.8, 0.9)

Neutrosophic graph h′(e3)

Figure 9. Ns-graph G
′

N = (G∗, f2, g2, E2)
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Clearly the parameter set of GN

⋂
G

′

N is E = E1 ∪ E2 = {e1, e2, e3}. If the mem-

bership values of vertices and edges of GN

⋂
G

′

N are calculated, then the ns-graph

GN

⋂
G

′

N = (G∗, f, g, E) is obtained as in the Table 11.

Table 11. Ns-sets (f,E) and (g,E)

f v1 v2 v3 v4
e1 (0.1,0.2,0.3) (0.2,0.4,0.5) (0,1,1) (0.1,0.5,0.7)
e2 (0,1,1) (0.3,0.6,0.7) (0,1,1) (0.3,0.5,0.9)
e3 (0,1,1) (0.2,0.4,0.5) (0.1,0.2,0.6)) (0.1,0.5,0.7)

g v1v2 v1v3 v1v4 v2v3 v2v4 v3v4
e1 (0.1,0.5,0.6) (0,1,1) (0.1,0.5,0.7) (0,1,1) (0,1,1) (0,1,1)
e2 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1)
e3 (0,1,1) (0,1,1) (0,1,1) (0.1,0.5,0.8) (0.1,0.7,0.8) (0.1,0.8,0.9)

v1

(0.1, 0.2, 0.3)

v2

(0.2, 0.4, 0.5)
(0.1, 0.5, 0.6)

v4

(0.1, 0.5, 0.7)

(0.1, 0.5, 0.7)

Neutrosophic graph h′′(e1)

v2

(0.3, 0.6, 0.7)

v4

(0.3, 0.5, 0.9)
(0.2, 0.7, 0.9)

Neutrosophic graph h′′(e2)

v2

(0.2, 0.4, 0.5)

v3

(0.1, 0.2, 0.6)
(0.1, 0.5, 0.8)

v4

(0.1, 0.5, 0.7)

(0.1, 0.7, 0.8) (0.1, 0.8, 0.9)

Neutrosophic graph h′′(e3)

Figure 10. Ns-graph GN

⋂
G

′

N = (G∗, f, g, E)

Definition 12. Let GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2) be two ns-

graph over G∗ = (ν, ε). The restricted intersection of GN and G
′

N is denoted by

GNG
′

N = (G∗, f, g, E), where E = E1 ∩ E2. T , I and F membership values of

vertices and edges of GNG
′

N are defined by as follow.

i. For all e ∈ E and x ∈ ν

Tfe(x) = min{Tf1
e
(x), Tf2

e
(x)}

Ife(x) = max{If1
e
(x), If2

e
(x)}

Ffe(x) = max{Ff1
e
(x), Ff2

e
(x)}

ii. For all e ∈ E and xy ∈ ε

Tge(xy) = min{Tg1
e
(xy), Tg2

e
(xy)}

Ige(xy) = max{Ig1
e
(xy), Ig2

e
(xy)}
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Fge(xy) = max{Fg1
e
(xy), Fg2

e
(xy)}

Example 7. Let consider ns-graphs GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2)
as taken in Example 6. Clearly E = E1∩E2 = {e2}. Also the restricted intersection

of GN and G
′

N is obtained as follow.

Table 12. Ns-sets (f,E) and (g,E)

f v1 v2 v3 v4
e2 (0,1,1) (0.3,0.6,0.7) (0,1,1) (0.3,0.5,0.9)

g (v1v2) (v1v3) (v1v4) (v2v3) (v2v4) (v3v4)
e2 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1)

v2

(0.3, 0.6, 0.7)

v5

(0.3, 0.5, 0.9)
(0.2, 0.7, 0.9)

Neutrosophic graph h′′(e2)

Figure 11. Ns-graph GNG
′

N = (G∗, f, g, E)

Definition 13. Let GN = (G∗, f, g, E) be an neutrosophic soft graph of G∗ = (ν, ε)
and E = {e1, e2, . . . , en} be a set of parameters. The ∨−union of subgraphs of GN

is denoted by h(e) = h(e1)∨h(e2)∨ . . .∨h(en) and for all xy ∈ ε

Th(e)(xy) = max{Tg(e1)(xy), Tg(e2)(xy), . . . , Tg(en)(xy)}
Ih(e)(xy) = min{Ig(e1)(xy), Ig(e2)(xy), . . . , Ig(en)(xy)}
Fh(e)(xy) = min{Fg(e1)(xy), Fg(e2)(xy), . . . , Fg(en)(xy)}

Definition 14. Let GN = (G∗, f, g, E) be an neutrosophic soft graph of G∗ = (ν, ε)
and E = {e1, e2, . . . , en} be a set of parameters. The ∧−intersection of subgraphs
of GN is denoted by h(e) = h(e1)∧h(e2)∧ . . .∧h(en) and for all xy ∈ ε

Th(e)(xy) = min{Tg(e1)(xy), Tg(e2)(xy), . . . , Tg(en)(xy)}
Ih(e)(xy) = max{Ig(e1)(xy), Ig(e2)(xy), . . . , Ig(en)(xy)}
Fh(e)(xy) = max{Fg(e1)(xy), Fg(e2)(xy), . . . , Fg(en)(xy)}
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4. An Application of Ns-Graphs in a Decision-Making Problem

Ns-graphs are important mathematical tool to cope with uncertainties occurs in
real life problems. In this section, we have applied the concept of ns-graph to a
decision-making problem and then we have gave an algorithm for optimal object
selection by using given data. Suppose that ν = {v1, v2, v3, v4, v5} be the set of five
mobile phones under consideration. A customer is going to purchase a mobile phone
on the basis certain parameters set E = {e1 = performance ,
e2 = material quality , e3 = price}. Let (f,E) and (g,E) be two neutrosophic
soft sets on ν and ε = {v1v2, v1v3, v1v4, v1v5, v2v3, v2v4, v2v5, v3v4, v3v5, v4v5}, re-
spectively, as in the table 13. Where (f,E) describes the value of mobile phones
according to given parameters, (g,E) describes the value obtained by comparing
two mobile phones based upon each parameter.

Table 13. Ns-sets (f,E) and (g,E)

f v1 v2 v3 v4 v5
e1 (0.1,0.5,0.3) (0.2,0.4,0.5) (0.5,0.6,0.1) (0.3,0.2,0.1) (0.5,0.7,0.1)
e2 (0.3,0.5,0.1) (0.3,0.2,0.1) (0.7,0.5,0.4) (0.2,0.1,0.8) (0.4,0.3,0.6)
e3 (0.2,0.3,0.2) (0.4,0.3,0.5) (0.6,0.4,0.3) (0.3,0.2,0.6) (0.1,0.4,0.5)

g v1v2 v1v3 v1v4 v1v5 v2v3
e1 (0.1,0.6,0.6) (0,1,1) (0,1,1) (0.1,0.8,0.4) (0.1,0.8,0.6)
e2 (0.2,0.5,0.3) (0,1,1) (0,1,1) (0.1,0.6,0.8) (0.3,0.6,0.5)
e3 (0.1,0.4,0.6) (0,1,1) (0,1,1) (0.1,0.5,0.6) (0.3,0.5,0.7)

g v2v4 v2v5 v3v4 v3v5 v4v5
e1 (0.2,0.7,0.7) (0.1,0.8,0.5) (0.2,0.7,0.2) (0.3,0.7,0.5) (0,1,1)
e2 (0,1,1) (0.3,0.4,0.7) (0.2,0.6,0.8) (0,1,1) (0,1,1)
e3 (0.2,0.4,0.8) (0.1,0.7,0.8) (0.1,0.6,0.6) (0,1,1) (0.1,0.5,0.7)

The matrice representations of neutrosophic graphs h(e1), h(e2) and h(e3) cor-
responding to the parameters e1, e2 and e3, respectively, are represented by as
follows.

h(e1) =


(0, 1, 1) (0.1, 0.6, 0.6) (0, 1, 1) (0, 1, 1) (0.1, 0.8, 0.4)

(0.1, 0.6, 0.6) (0, 1, 1) (0.1, 0.8, 0.6) (0.2, 0.7, 0.7) (0.1, 0.8, 0.5)

(0, 1, 1) (0.1, 0.8, 0.6) (0, 1, 1) (0.2, 0.7, 0.2) (0.3, 0.7, 0.5)

(0, 1, 1) (0.2, 0.7, 0.7) (0.2, 0.7, 0.2) (0, 1, 1) (0, 1, 1)

(0.1, 0.8, 0.4) (0.1, 0.8, 0.5) (0.3, 0.7, 0.5) (0, 1, 1) (0, 1, 1)
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h(e2) =


(0, 1, 1) (0.2, 0.5, 0.3) (0, 1, 1) (0, 1, 1) (0.1, 0.6, 0.8)

(0.1, 0.6, 0.6) (0, 1, 1) (0.3, 0.6, 0.5) (0, 1, 1) (0.3, 0.4, 0.7)

(0, 1, 1) (0.3, 0.6, 0.5) (0, 1, 1) (0.2, 0.6, 0.8) (0, 1, 1)

(0, 1, 1) (0, 1, 1) (0.2, 0.6, 0.8) (0, 1, 1) (0, 1, 1)

(0.1, 0.6, 0.8) (0.3, 0.4, 0.7) (0, 1, 1) (0, 1, 1) (0, 1, 1)



h(e3) =


(0, 1, 1) (0.1, 0.4, 0.6) (0, 1, 1) (0, 1, 1) (0.1, 0.5, 0.6)

(0.1, 0.4, 0.6) (0, 1, 1) (0.3, 0.5, 0.7) (0.2, 0.4, 0.8) (0.1, 0.7, 0.8)

(0, 1, 1) (0.3, 0.5, 0.7) (0, 1, 1) (0.1, 0.6, 0.6) (0, 1, 1)

(0, 1, 1) (0.2, 0.4, 0.8) (0.1, 0.6, 0.6) (0, 1, 1) (0.1, 0.5, 0.7)

(0.1, 0.5, 0.6) (0.1, 0.7, 0.8) (0, 1, 1) (0.1, 0.5, 0.7) (0, 1, 1)


If the operations ∨ and ∧ are applied, we get resultant neutrosophic graphs h(e)
and h′(e). Their incidence matrice are given by as follows.

h(e) =


(0,1,1) (0.2,0.4,0.3) (0,1,1) (0,1,1) (0.1,0.5,0.4)

(0.1,0.4,0.6) (0,1,1) (0.3,0.5,0.5) (0.2,0.4,0.7) (0.3,0.4,0.5)

(0,1,1) (0.3,0.5,0.5) (0,1,1) (0.2,0.6,0.2) (0.3,0.7,0.5)

(0,1,1) (0.2,0.4,0.7) (0.2,0.6,0.2) (0,1,1) (0.1,0.5,0.7)

(0.1,0.5,0.4) (0.3,0.4,0.5) (0.3,0.7,0.5) (0.1,0.5,0.7) (0,1,1)



h′(e) =


(0, 1, 1) (0.1, 0.6, 0.6) (0, 1, 1) (0, 1, 1) (0.1, 0.8, 0.8)

(0.1, 0.6, 0.6) (0, 1, 1) (0.1, 0.8, 0.7) (0, 1, 1) (0.1, 0.8, 0.8)

(0, 1, 1) (0.1, 0.8, 0.7) (0, 1, 1) (0.1, 0.7, 0.8) (0, 1, 1)

(0, 1, 1) (0, 1, 1) (0.1, 0.7, 0.8) (0, 1, 1) (0, 1, 1)

(0.1, 0.8, 0.8) (0.1, 0.8, 0.8) (0, 1, 1) (0, 1, 1) (0, 1, 1)


For a given neutrosophic set A = {

〈
x, TA(x), IA(x), FA(x)

〉
}, the possible member-

ship degree of an element x is calculated by S(x) = 1
3 [TA(x) + 1− IA(x) + 1− FA(x)].

Based on this formula, we construct the tabular representation of score value of
incidence matrices and calculate choice value for each mobile phone vk for k =
1, 2, 3, 4, 5 as follows.
If the arithmetic average of v′k and v′′k are calculated, we find the average score
values of h(e) and h′(e) as follow.
It is evident that the maximum score value is 1.150. Then the best choice for
customer is mobile phone v2.

Algorithm

1. Input the set E which express choice of parameters.
2. Determine the ns-sets (f,E) and (g,E).
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Table 14. Score value of incidence matrice h(e)

v1 v2 v3 v4 v5 v′k
v1 0.0 0.500 0.0 0.0 0.400 0.900
v2 0.367 0.0 0.434 0.366 0.467 1.634
v3 0.0 0.434 0.0 0.467 0.366 1.267
v4 0.0 0.366 0.467 0.0 0.300 1.500
v5 0.400 0.467 0.366 0.300 0.0 1.533

Table 15. Score value of incidence matrice h′(e)

v1 v2 v3 v4 v5 v′′k
v1 0.0 0.300 0.0 0.0 0.167 0.467
v2 0.300 0.0 0.200 0.0 0.167 0.667
v3 0.0 0.200 0.0 0.200 0.0 0.400
v4 0.0 0.0 0.200 0.0 0.0 0.200
v5 0.167 0.167 0.0 0.0 0.0 0.334

Table 16. Avarage score values of h(e) and h′(e)

v′k v′′k vk
v1 0.900 0.467 0.683
v2 1.634 0.667 1.150
v3 1.267 0.400 0.833
v4 1.500 0.200 0.850
v5 1.533 0.334 0.933

3. Construct the ns-graph GN = (G∗, f, g, E).
4. Compute the resultant neutrosophic graphs h(e) and h′(e) with h(e) = ∨

k∈Λ
h(ek)

and h′(e) = ∧
k∈Λ

h(ek), respectively, for all k ∈ Λ.

5. Construct incidence matrice forms of h(e) and h′(e).
6. Calculate the score Sk of vk for all k ∈ Λ.
7. Determine decision as vk if v

′

k = max vk.

5. Comparative Study and Discussion

In this section, for determining of optimal object, a comparative study based on
the results of numerical computation is discussed. For this, based on the applica-
tion discussed above, we present a comparative analysis between the our proposed
method and the existing method in [4]. The method given in [4] just takes into
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consideration “AND” or “OR” operations to obtain resultant ns-graph which is
used determine of optimal object. However if these two operations are applied sep-
arately, different results occur in the selection of the optimal object. So this leads
to uncertainty in determining the most appropriate choice. Our proposed approach
just takes into consideration both of ∧-intersection and ∨-union operations to ob-
tain resultant ns-graphs, because we observe that these two operations should be
interdependent in determining the possible choice. When the existing method given
in [4] is compared with the current proposed method, ranking orders both of them
are appeared as in Table 17.

Table 17. Comparison

Model Ranking order
Existing method given in [4] v1 > v3 > v2 > v4 > v5

v5 > v3 > v2 > v4 > v1

Proposed method v2 > v5 > v4 > v3 > v1

In existing method, the obtained ranking results are quite close where the first and
fifth ranking order are changed but the second, third and fourth ranks are consis-
tent. Nevertheless, obtaining two different rankings causes problems in decision-
making process. In proposed method, the obtained ranking result is unique and
more effective in determining the appropriate choice. Clearly, the proposed method
consider the problem in all aspects and reveals a final result although existing
method provides a set of alternatives as a final selection to consider the problem.

6. Conclusions

When compared with soft graph and fuzzy soft graph models, ns-graphs are more
useful mathematical tools. Ns-graphs can be used in many areas with uncertainty.
We have introduced the concept of ns-graphs of a simple graph with some new
notions such as union and intersection, and gave illustrative examples related to
these notions. Also we have applied the concept of ns-graph to a decision-making
problem, and then a case study has been given to show the application of the tech-
nique. Hence a comparative analysis is conducted to show the applicability and
validity of the proposed approach. The proposed method can be used in dealing
with decision making process involving uncertainty especially in solving the real
scientific and engineering problems. For future research, another algorithm can be
developed by incorporate the complement of ns-graphs. Therefore we will work for
the extension of the this method in different neutrosophic structures and decision-
making applications. We plan to extend this research work to (i) Vague ns-graphs,
(ii) Intuitionistic ns-graphs, and (iii) Bipolar ns-graphs.
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