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ABSTRACT
Unexpected events in the environment elicit the orienting response that protects humans from dangerous 
situations and there is great importance in identifying these events, especially in aging. The aims of the current 
study are attempting to find which classification model exhibits the best performance by means of event-related 
spectral perturbation (ERSP) features based on EEG and to understand which frequency bands, and time 
windows, contribute most to the classification of external stimuli. The data of 20 healthy elderly participants were 
included in the study and the 3-Stimulation auditory oddball paradigm was applied to participants. Different 
classifiers including Support Vector Machine (SVM) with Linear and Polynomial kernels, Linear Discriminant 
Analysis (LDA), and Naive Bayes were fed by ERSP features obtained from varying frequency bands and time 
domains. The classification process was fulfilled using custom-written scripts via the FieldTrip Toolbox (version 
no: 20220104) integrated with the MVPA-light toolbox running under Matlab R2018b. The best performance was 
obtained by linear SVM which was fed by theta response (4 – 8 HZ) in the early time window (0.1 – 0.5 s) with 
90% accuracy in the case of standard stimuli distinguished from novel stimuli. Delta responses also exhibit 
distinctive characteristics for standard and novel stimuli by running LDA (87% accuracy) and polynomial SVM 
(86% accuracy). These findings show that the delta and theta responses have contributed to detecting standard and 
novel sounds with remarkable performances of SVM and LDA.
Keywords: Delta, theta, auditory stimuli, machine learning

ÖZ
Çevrede meydana gelen beklenmedik olaylar, insanı tehlikeli durumlardan koruyan yönlendirici tepkiyi ortaya 
çıkarır ve bu olayların tespit edilmesi özellikle yaşlanma sürecinde büyük önem taşır. Mevcut çalışmanın amacı, 
EEG’ye dayalı olaya ilişkin spektral pertürbasyon (ERSP) özellikleri aracılığıyla hangi sınıflandırma modelinin 
en iyi performansı gösterdiğini bulmaya çalışmak ve hangi frekans bantlarının ve zaman pencerelerinin dış 
uyaranın sınıflandırılması için en çok katkıda bulunduğunu anlamaktır. 20 sağlıklı yaşlı katılımcının verileri 
çalışmaya dahil edilmiştir ve katılımcılara 3-Stimülasyon işitsel oddball paradigması uygulanmıştır. Lineer ve 
Polinom çekirdek fonksiyonlu Destek Vektör Makinesi (DVM), Lineer Diskriminant Analizi (LDA) ve Naive 
Bayes gibi farklı sınıflandırıcılar, değişen frekans bantlarından ve zaman alanlarından elde edilen ERSP 
öznitelikleri ile beslenmiştir. Sınıflandırma işlemi, Matlab R2018b altında çalışan MVPA-light araç kutusu ile 
entegre FieldTrip Toolbox (sürüm no: 20220104) aracılığıyla özel yazılmış komutlar kullanılarak 
gerçekleştirilmiştir. En iyi performans erken zaman penceresinde (0.1 – 0.5 s) teta yanıtı (4 – 8 HZ) ile beslenen 
lineer DVM tarafından standart uyaranların yeni uyaranlardan ayırt edilmesi durumunda %90 doğrulukla elde 
edilmiştir. Delta yanıtları ayrıca LDA (%87 doğruluk) ve polinom DVM (%86 doğruluk) çalıştırarak standart ve 
yeni uyaranlar için ayırt edici özellikler sergilemektedir. Bu bulgular, delta ve teta yanıtlarının, DVM ve LDA’nın 
dikkate değer performanslarıyla standart ve yeni seslerin algılanmasına katkıda bulunduğunu göstermektedir.
Anahtar Kelimeler: Delta, teta, işitsel uyaran, makine öğrenmesi
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1. INTRODUCTION

Human brains are affected by different types of stimuli and produce stimuli-specific responses. According to the literature, 
unexpected novel events like a car horn in traffic elicit the Orienting Response (OR), which leads to the automatic detection 
of sudden changes in the environment (Debener, Makeig, Delorme, & Engel, 2005; Berti, Vossel, & Gamer, 2017) by disrupting 
ongoing thoughts and actions, and prepares the human on a physiological, behavioral, and cognitive level (Lynn, 1966). In 
other words, the sensory change detection mechanism based on the OR protects humans from dangerous situations despite 
the fact that a considerable number of studies support that OR is influenced by habituation (Barry, 2009; Cavanagh, Kumar, 
Mueller, Richardson, & Mueen, 2018).

Although there are many neuroimaging techniques like fMRI, PET/SPECT, or MEG, EEG is the most widely used to 
investigate brain responses in the cognitive domain due to its being technically and economically more practical. Moreover, 
different neurophysiological features like Event-related Potential (ERP) and Event-related oscillations (EROs) were investigated 
to understand the mechanism of attentional processes (Başar-Eroğlu, Başar, Demiralp, & Schürmann, 1992; Basar, Demiralp, 
Schürmann, Basar-Eroglu, & Ademoglu, 1999; Başar, Başar-Eroglu, Karakaş, & Schürmann, 2001; Başar-Eroğlu & Demiralp, 
2001; Berti et al., 2017; Behforuzi et al., 2019) of rare stimuli in various paradigms. Especially event-related delta and theta 
oscillations have been associated with perception and attention (Harmony, 2013; Güntekin & Başar, 2016; Karakaş, 2020). 
There are a number of feature extraction methods available for measuring ERO. Event-related spectral perturbation (ERSP) 
(Delorme & Makeig, 2004) is one of the most important measurements of oscillatory activities to understand the mechanisms 
of cognitive processes (Makeig, 1993; Wei, Zhao, Yan, Duan, & Li, 1998).

Neuro-cognitive processes for unexpected events are affected by age (Li & Lindenberger, 2002; Berti et al., 2017). According 
to the studies based on ERO in the literature, the decrease of delta ERO in a visual oddball paradigm (Emek-Savaş, Güntekin, 
Yener, & Başar, 2016) and cued Go/Nogo Paradigm (Schmiedt-Fehr & Başar-Eroglu, 2011) was associated with aging. On 
the other hand, the findings of Huizeling, Wang, Holland, & Kessler (2021) revealed that older adults present different ERO 
patterns during attentional control to compensate for cognitive decline. Moreover, Schmiedt-Fehr, Dühl, & Basar-Eroglu 
(2011) supported that there may be modality-specific changes with age, and the brain responses of older adults could be 
affected more during visual stimuli in comparison to auditory stimuli in early stages, whereas Ho et al., (2012) found that 
the healthy elderly group showed higher delta power than the young group during auditory stimuli. 

When the findings in the literature were considered, it could be said that there is no consensus about the mechanism of 
attentional processing of elderly subjects among researchers. Especially with the rise in machine learning (ML) approaches 
and methods that have outstanding robustness and adaptability, researchers can objectively and efficiently differentiate neural 
responses to external stimuli (Saeidi et al., 2021). In the last decade, various ML techniques have been applied to EEG signals 
for understanding affective processing (Alarcao & Fonseca, 2017; Wang & Wang, 2021; Rahman et al., 2021), attentional 
processing (Lotte et al., 2018), and even for detecting medical conditions (Hosseini, Hosseini, & Ahi, 2021; Chung & Teo, 
2022). Among the different features of EEG data used in the literature, ERO in the Time-Frequency domain provides more 
information about temporal, spectral, and spatial dynamics of cognitive processes (Aliakbaryhosseinabadi, Kamavuako, 
Jiang, Farina, & Mrachacz-Kersting, 2019). However, various studies showed that ERP features also had promising classification 
performances for stimuli classification (Parvar et al., 2014; Tjandrasa & Djanali, 2018; Akhter, Lawal, Tanvir, & Ahmed, 
2020; Borra & Magosso, 2021).

The current study aimed to examine mainly two aspects of the classification of three sound stimuli applied to healthy elderly 
subjects. First, to attempt to find which classification model exhibits the best performance by means of ERSP features. 
Second, to understand which frequency bands, and time windows, contribute most to the classification of external stimuli. 
For this purpose, different classifiers were run on delta and theta responses at different time windows (please see Section 
2.3). It was hypothesized that novel sound stimuli would be differentiated from the other type of sound stimuli with the delta 
and theta powers, especially in the early time window. Also, it was estimated that higher performances would be obtained 
by means of Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) classifiers.
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2. METHODS AND MATERIALS

2.1 Dataset

In the current study, a public dataset (Cavanagh, 2021) was adopted (available at https://openneuro.org/datasets/ds003490/
versions/1.1.0) including EEG signals of 25 healthy elderly subjects. The data of 20 participants (8 female, 12 male) were 
included in the study, disregarding the remaining 5 participants due to persistent artifacts or noise in their recordings. Out 
of these 5 participants, the epoch numbers of 2 participants were below 20, and the data of 3 participants were too noisy 
(muscle artifacts and spikes). The mean age was 68.8 (Standard deviation: 17.5) years. The inclusion criteria for the participants 
were as follows; Mini-Mental State Exam (MMSE) score ≥ 26. All participants provided written informed consent (Cavanagh 
et al., 2018). 

The 3-auditory oddball paradigm was applied to participants during EEG recording. In the paradigm, there were three stimuli 
named standard (440 Hz sinusoidal tones, and 80 dB), target (660 Hz sinusoidal tones, and 80 dB), and novel distractors that 
are naturalistic sounds (Bradley & Lang, 1999), varying with each presentation (65 dB with an inter-quartile range of +/− 6.5 
dB). The total number of stimuli is 200, including 140 standard, 30 target, and 30 novel. Each stimulus was presented for 
200 ms and a random inter-trial interval (ITI) was selected from a uniform distribution of 0.5 to 1 second for the novel 
condition, and 950 to 1450 ms for both the standard and target conditions. The subjects mentally counted the target sounds 
(Cavanagh et al., 2018).

The EEGs of participants were recorded using the 64 channel Brain Vision system with a sampling rate of 500 Hz. During 
the recording, a CPz electrode served as reference, and an AFz electrode served as ground.

2.2 EEG Data Analysis

All the steps of EEG data analysis including preprocessing, feature extraction, and classification were fulfilled using custom-
written scripts via the FieldTrip Toolbox (version no: 20220104) (Oostenveld, Fries, Maris, & Schoffelen, 2011) running under 
Matlab R2018b (MathWorks, Natick, MA, U.S.A.).

2.2.1 Preprocessing

Unlike the reference study by Cavanagh et al. (2018), a different pre-processing pipeline has been applied to data. The 
processing steps were described below;

1-	 Importing	data: All conditions for each subject were imported to the Matlab platform by segmenting the data around 
the stimulus onset (−2000 to 2000 ms) and selecting 30 channels (F7, F5, F3, F1, Fz, F2, F4, F6, F8, T7, C5, C3, C1, Cz, 
C2, C4, C6, C8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, O1, Oz, O2) apart from 64 channels. During the importing process, 
the data were re-referenced to an average reference of selected channels. Also, each epoch was baseline corrected 
according to the mean amplitude of−200 to 0 ms pre-stimulus time window. Finally, the discrete Fourier transform (DFT) 
filter was applied for removing the line noise.

2-	 Removing	artifacts: The trials that contain fast muscular artifacts, jumps, and uncommon patterns were eliminated 
manually to enhance the efficiency of the next step, Independent Component Analysis (ICA).

3-	 Applying	ICA:	To remove eye movements, heartbeat effects, and spiky patterns, the fast ICA method1 was used. 
After decomposing the data into sources, components that spectrally and topographically correspond to related artifacts 
were selected and removed, and the cleaned data was reconstructed. 

4-	 Detrending:	In this step, slow low-frequency drifts were removed per trial. 

5-	 Divide	data	into	separate	conditions:	The data that include all types of stimuli (target, standard, novel) were divided 
into separate sub-data based on the conditions per participant.

1 https://github.com/fieldtrip/fieldtrip/blob/master/external/fastica/fastica.m
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6-	 Removing	residual	bad	trials:	The trials in each sub-data were checked by visual inspection, and bad trials were 
manually removed from the data.  

7-	 Equalizing	the	number	of	epochs	among	conditions: The trials were then matched between conditions for each 
participant separately. The minimum number of trials was determined across all conditions per participant and after 
calculating the number of remaining trials for any conditions that were large, the calculated number of randomly selected 
trials was removed from the sub-data. In case a participant had less than 20 trials for a condition, the data were excluded 
from the dataset. 

2.2.2 Feature Extraction: ERSP Analysis

To obtain the feature sets based on ERSP values for the classifier, the sensor-level time-frequency decomposition with complex 
Morlet wavelets was conducted on each trial of clean data for each condition, each selected channel (F3, Fz, F4, C3, Cz, C4, 
P3, Pz, P4, O1, Oz, O2), and for all participants. A Morlet function with three cycles was used to calculate the time-frequency 
transform between 1 and 15 Hz with 0.5 Hz frequency resolution, and the wavelet coefficients were estimated for 10 ms steps 
between −2000 s and 2000 ms. Time-frequency representations (TFRs) were baseline-corrected with respect to the −1000 
to −500 ms pre-stimulus period for slow oscillations (delta and theta bands). 

2.3 Classification Analysis

The Fieldtrip integrated MVPA-light toolbox (Treder, 2020) was used to assess whether the ERSP features of EEG could be 
used to detect novel stimuli in healthy elderly subjects. For this purpose, several classifiers were employed, including Linear 
SVM, Polynomial SVM, LDA, and Naive Bayes (NB) with default hyperparameters2 of the MVPA-light toolbox. These 
hyperparameters can be listed as follows: For SVM, a default search grid was used to automatically determine the best c 
parameter. When the polynomial kernel was used, gamma was set to 1/(number of features), coef0 was set to 1 and degree 
was set to 2. For LDA, shrinkage regularization was used and the shrinkage regularization parameter (lambda) was calculated 
automatically using the Ledoit-Wolf formula3. For NB, probabilities were modeled using Gaussians and every class had an 
equal probability. The class means and variances were estimated for every feature for training. At testing time, the maximum 
a posteriori (MAP) rule was applied to assign a sample to the class with the maximum posterior probability.

Prior to training the classifier, nested z-scoring was used to avoid the flow of information from the test set flowing into the 
processing of the train set. Also, a 10-fold cross-validation method was used to train classifiers that were applied for the 
average of time-frequency points in a specific time and frequency ranges using selected EEG channels as features. The 
training process with cross-validation was repeated 5 times with new randomly assigned folds to obtain robust results. After 
that, all test folds and repetitions were averaged to reach the final result. The performance of the classifier was evaluated 
using the confusion matrix and accuracy metrics.

During the classification analysis, the spectral-temporal searchlight analysis was implemented by using different frequency 
bands, and time of interest to distinguish novel stimuli from target and standard stimuli. For each classification model, EEG 
channels were included as features in the delta (1.5 – 4 Hz) frequency band with 0.1– 0.7 s time windows of interest,  theta 
(4 – 8 Hz and 5.5 – 8 Hz) with 0.1 – 0.5 s and 0.5-0.7 s time windows of interest. The time windows and frequency ranges 
were determined by visual inspection of grand averages (please see Fig. 1 and Fig. 2).

3. RESULTS

Fig. 1 and Fig. 2 depict the grand averages of ERSP values in the delta and theta frequency bands, respectively, over the 
average across all electrodes (please see Section 2.2.2) for all types of sound stimuli applied to healthy elderly subjects. In 
both Figures, the left plot represents target stimuli, the middle plot represents standard stimuli, and the right box represents 
novel stimuli.

2 https://github.com/fieldtrip/fieldtrip/blob/master/ft_statistics_mvpa.m
3 https://github.com/treder/MVPA-Light/blob/master/external/cov1para.m
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Figure	1.	Time-Frequency Representations for all stimuli: Grand average of ERSP values in Delta frequency band over 
the averaged across all electrodes. Red dashed lines represent the ranges for frequency (1.5 – 4 Hz) and time (0.1 – 0.7 s) 

that were used by the classifiers as features.

 

Figure	2. Time-Frequency Representations for all stimuli: Grand average of ERSP values in Theta frequency band over 
the averaged across all electrodes. Red dashed lines represent the ranges for frequency (4 – 8 Hz) and time (0.1 – 0.5 s), 

black dashed lines represent the ranges for frequency (5.5 – 8 Hz) and time (0.1 – 0.5 s), red solid lines represent the ranges 
for frequency (4 – 8 Hz) and time (0.5 – 0.7 s), black solid lines represent the ranges for frequency (5.5 – 8 Hz) and time 

(0.5 – 0.7 s). The time-frequency points in all these ranges were used by the classifiers as features separately.

The plots in Fig. 1 and Fig. 2 give us clues for the frequency and time ranges in order to perform spectral-temporal searchlight 
analyses for the classification process. Whereas one time-frequency range was used in the delta band (Fig. 1), four time-
frequency ranges were determined in the theta band (Fig. 2). The ranges were also determined in light of the literature given 
in Section 1.

Fig. 3 depicts the results of the classification analyses by means of the accuracy metric for Linear SVM, Polynomial SVM, 
LDA, and NB classifiers (the bars from left to right) where different time-frequency points were used as features. The first 
(front) row shows the performances for delta (1.4-4 Hz) as the frequency of interest at 0.1-0.7 s times of interest, the second 
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row shows the performances for theta (4-8 Hz) as the frequency of interest at 0.1-0.5 s times of interest, the third row shows 
the performances for theta (4-8 Hz) as the frequency of interest at 0.5-0.7 s times of interest, the fourth row shows the 
performances for theta (5.5-8 Hz) as the frequency of interest at 0.1-0.5 s times of interest, and the last (at the back) row shows 
the performances for theta (5.5-8 Hz) as the frequency of interest at 0.5-0.7 s times of interest. Fig. 3A represents the accuracy 
values for classifying target and novel stimuli, whereas Fig. 3B represents the accuracy values for classifying standard and 
novel stimuli.

 

Figure	3. The classification performances by means of accuracy metric for Linear SVM, Polynomial SVM, LDA, and NB 
classifiers where different times and frequencies were used as features. (a) The performances to distinguish target and 

novel stimuli (b) The performances to distinguish standard and novel stimuli.

As seen from the bar graph (Fig. 3A), the best feature of EEG to distinguish novel stimuli from target stimuli is late theta 
(5.5 – 8 Hz at 0.5-0.7s) via all classifier models. Fig. 2 also supports this finding. However, early theta (0.1 – 0.5 s) in the 
same frequency range could not show the same performance. Moreover, when the theta frequency band was taken wider (4 
– 8 Hz), the performances could not reach higher levels at both time windows. To distinguish novel stimuli from standard 
stimuli, whereas the performances of linear SVM, polynomial SVM, and LDA were close to each other, NB had a lower 
performance for all feature sets (Fig. 3B). Fig. 3A and 3B clearly showed that the performances of all classifiers were higher 
for distinguishing novel stimuli from standard stimuli than distinguishing novel stimuli from target stimuli by means of 
almost all feature sets, except late theta (5.5 – 8 Hz at 0.5-0.7s). All accuracies and confusion matrices (TP and TN rates) of 
the classification analysis obtained by running searchlight analyses by means of the temporal and spectral features of ERSP 
are summarized in Table 1.
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Table 1
Classification	metrics	after	running	spectral-temporal	searchlight	analyses

Classes Frequency  
Bands

Time  
Windows

Linear

SVM
Polynomial SVM LDA NB

TP/TN

(%)
Acc

TP/TN

(%)
Acc

TP/TN

(%)
Acc

TP/TN

(%)
Acc

Target vs Novel

Delta 0.1 - 0.7 s 70/55 0.60 82/40 0.65 80/57 0.65 48/67 0.59

Theta 
4-8 Hz

0.1 - 0.5 s 61/58 0.57 78/54 0.65 67/36 0.50 36/89 0.66

0.5- 0.7 s 63/66 0.63 67/76 0.71 77/52 0.66 53/83 0.68

Theta 
5.5-8 Hz

0.1 - 0.5 s 59/53 0.56 75/46 0.60 66/43 0.53 47/48 0.50

0.5- 0.7 s 75/85 0.82 75/87 0.82 76/80 0.76 60/85 0.75

Standard vs 
Novel

Delta 0.1- 0.7 s 88/69 0.82 89/86 0.86 90/84 0.87 74/83 0.77

Theta 
4-8 Hz

0.1- 0.5 s 95/87 0.90 84/73 0.78 94/72 0.82 43/79 0.65

0.5- 0.7 s 68/75 0.74 66/86 0.71 80/52 0.68 46/86 0.67

Theta 
5.5-8 Hz

0.1 - 0.5 s 80/79 0.80 87/52 0.69 85/59 0.73 44/36 0.42

0.5- 0.7 s 81/79 0.83 77/85 0.80 95/66 0.77 44/88 0.65

Acc: Accuracy, TP/TN: True Positive/True Negative

The findings revealed that the best performance (0.90 accuracy) was achieved with Linear SVM for the classification of 
novel stimuli and standard stimuli by means of early theta (4 – 8 Hz at 0.1 – 0.5 s). Also, the TP and TN values of the confusion 
matrix showed that the classifier was better at predicting standard stimuli (95%) than it was at predicting novel stimuli (87%). 
When the delta frequency band was used as a feature set, the performance of LDA (0.87 accuracy) and polynomial SVM 
(0.86 accuracy) surpassed the performance of linear SVM. Among all confusion matrix values for the classification of novel 
and standard stimuli, the most balanced prediction rates were achieved by polynomial SVM where the delta frequency band 
was used as the feature set (Table 1).

Moreover, both SVM classifiers were quite successful to differentiate two rare stimuli, target and novel. Linear SVM and 
polynomial SVM were much better at predicting novel stimuli (85%, and 87% respectively) than at predicting target stimuli 
(75% for both) with a 0.82 accuracy rate.

4. DISCUSSION AND CONCLUSION

The current study evaluated the delta and theta responses upon application of the 3-Stimulation auditory oddball paradigm 
by means of ERSP measurement, and the classification analyses were performed with varying selected features in frequency 
and time domains to understand which features have a higher contribution at identifying novel sounds. Moreover, different 
classifiers were used including SVM with Linear and Polynomial kernels, LDA, and NB to reveal which classifier exhibits 
good distinction for unexpected stimuli with which features. To the best of my knowledge, this is the first study that attempts 
to detect novel sounds with different traditional machine learning techniques fed with the ERSP features of EEG in various 
time-frequency ranges.

The most remarkable performances of the current study were obtained in the case that standard stimuli distinguished from 
novel stimuli and SVM, with both kernel types showing better performances followed by LDA. Furthermore, the other 
important observations of the spectral-temporal searchlight analyses revealed that the best classification performance was 
achieved by linear SVM (0.90 accuracy) which was fed by theta response (4 – 8 HZ) in the early time window (0.1 – 0.5 s). 
Delta responses also have distinctive characteristics for standard and novel stimuli. However, LDA (0.87 accuracy) and 
polynomial SVM (0.86 accuracy) were more powerful than the rest of the classifiers with delta response features. On the 
other hand, in the case to classify both rare stimuli, target, and novel, the best prominent feature was late theta (5.5-8 Hz), 
where SVM (both kernels) was used (0.82 accuracy). In general, the results revealed that novel sounds were distinguished 
from standard tones better than from target tones since whereas both novel and target tones were rare sounds which were 
the attended and/or oriented noises, standard tones were frequent sounds.



78Acta Infologica, Volume 7, Number 1, 2023

Detection of Orienting Response to Novel Sounds in Healthy Elderly Subjects: A Machine Learning Approach Using EEG Features

The findings in this study were in line with the previous studies that show the relation between delta (Güntekin and Başar, 
2016) and theta (Karakaş, 2020) oscillatory responses and attentional processes. According to the literature, for stronger 
orientation coding,  the main effects (peak latency) of the stimulus were found mostly at 300–500 ms post-stimulus onset 
for delta oscillations; however, general stimulus effects were found at time localization from 190 to 960 ms. For theta 
oscillations, whereas the main effects (peak latency) of the stimulus were found at 320–400 ms post-stimulus onset, a 
significant difference between target and non-target processing was obtained within 60–700 ms (Demiralp et al., 1999). In 
another study by Başar-Eroğlu et al. (1992), in responses to 3rd attended tones, there was a significant increase in the theta 
frequency band (frontal and parietal locations; 0-250 ms).

There were also common points with the studies that applied the ML approach. Aliakbaryhosseinabadi et al. (2019) ran the 
LDA classifier with three types of feature sets (time domain, frequency domain, and the combination of these two sets) 
obtained by the application of three modalities (auditory, visual, and audiovisual). However, the study focused on young 
adults rather than the elderly group. According to the results of this study, spectro-temporal features (combined feature set) 
had a higher accuracy than the other two feature sets for all modalities. Moreover, spectro-temporal features obtained upon 
application of auditory stimuli enable the classifier to attain remarkable performances for all brain regions, separately, in 
contrast to the current study which considered all the brain regions in one feature set. However, brain oscillations are selectively 
distributed in the whole brain (Başar, 2006). Therefore, feeding the classifier with a single feature set that includes the 
features obtained from all brain regions could provide more robust results. 

Another study that attempted to classify standard and novel sounds by means of spatio-temporal patterns of discriminant 
electrophysiological responses to auditory stimuli was done by Aellen, Göktepe-Kavis, Apostolopoulos, & Tzovara (2021). 
In the study, the performances of deep learning (convolutional neural networks (CNN) with different techniques) and 
‘traditional’ machine learning algorithms (Logistic Regression and SVM with ’rbf’ kernel) were compared. The findings 
revealed that the AUC scores of the different CNN architectures (Shallow CNN: 0.75; Deep CNN: 0.73; ResNet: 0.72) were 
significantly higher than the AUC of logistic regression (0.63) and the AUC of SVM (0.58). Although the study applied deep-
learning techniques, the performance of the current study where EROs in the time-frequency domain were used as features 
in the ‘traditional’ machine learning approach was much better than in this study where only time-domain features were 
used. Moreover, in the current study, the preprocessing step that makes the data more suitable for ML (Akhter et al., 2020) 
was more comprehensive than in the study by Aellen et al. (2021).

There is great importance in identifying rare stimuli, which have an impact on attentional processing in the environment 
(Liebherr et al., 2021), especially as adults grow older (Riis et al., 2008). The current study has revealed promising classification 
results to identify the novel sounds. Also, unlike many classification studies in the literature, exhaustive preprocessing steps 
were applied before feature extraction, including various artifact removal methods for robust classification results. However, 
the performances would be improved by overcoming several limitations of the study and using different feature sets. As a 
major problem, it is not possible to understand the aging effect in the identification of novel stimuli. To overcome this 
limitation, it absolutely would be better to include the young healthy group in the study, even dividing them into subgroups. 
This inclusion will also be helpful to decide the best model in cases of different ages.

Moreover, undoubtedly, the faster brain oscillations, like alpha, beta, and gamma, in response to sound stimuli are also related 
to cognitive processes (Mäkinen, May, & Tiitinen, 2004; Başar & Güntekin, 2012; Başar, 2013; Villena-González, Palacios-
García, Rodríguez, & López, 2018). For example, beta oscillations in response to novel stimuli elicited an OR (Haenschel, 
Baldeweg, Croft, Whittington, & Gruzelier, 2000). Therefore, it would be informative to examine the distinctive features of 
high frequencies for the identification of sound stimuli in future studies. It should also be acknowledged that the current 
study addressed the sound stimuli classification with a small sample set. It obviously would be better to increase the number 
of subjects for more robust results and to use different learning techniques such as deep learning.
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