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Abstract

Shigesada-Kawasaki-Teramoto (SKT) is the most known equation in population ecology
for nonlinear cross-diffusion systems. The full order model (FOM) of the SKT system
is constructed using symmetric interior penalty discontinuous Galerkin method (SIPG)
in space and the semi-implicit Euler method in time. The reduced order models (ROMs)
are solved using proper orthogonal decomposition (POD) Galerkin projection. Discrete
empirical interpolation method (DEIM) is used to solve the nonlinearities of the SKT
system. Numerical simulations show the accuracy and efficiency of the POD and POD-
DEIM reduced solutions for the SKT system.

1. Introduction

The nonlinear cross-diffusion systems has a general form which is given by z = (z1, ...,zM) : Ω× [0,T )→ RM such that

∂z
∂ t

= ∆β (z)+ f (z) in Ω× ([0,T ] (1.1)

∂β (z)
∂n

= 0 on ∂Ω× (0,T )

z(·,0) = z0 in Ω,

where Ω⊂Rd ;(d = 1,2) is a bounded domain, ∂Ω is a smooth boundary, T is a positive constant, z0 = (z0
1, ...,z

0
M) : Ω→RM are population

densities, β = (β1, ...,βM), f = ( f1, ..., fM) : RM → RM are nonlinear functions of population densities, and n is the unit outward normal
vector to the boundary ∂Ω [1].
The most known and popular nonlinear cross-diffusion system is the Shigeseda-Kawasaki-Teramato (SKT) equation with Lotka-Volterra
kinetics [2] in population ecology. The SKT system represents the spatial and temporal behavior of two species under population pressure
due to intra and interspecific interference. The interaction of two species may cause different diffusion rates. This leads to destabilization of
the constant steady-state and occurs a pattern formation like labyrinth, spot and stripe. The SKT system with Lotka-Volterra kinetics is
defined as [3]

∂ z1

∂ t
= ∆(a1 +b1z1 + c1z2)z1︸ ︷︷ ︸

β1

+Γ(µ1− γ11z1− γ12z2)z1︸ ︷︷ ︸
f1

, (1.2)

∂ z2

∂ t
= ∆(a2 +b2z2 + c2z1)z1︸ ︷︷ ︸

β2

+Γ(µ2− γ21z1− γ22z2)z2︸ ︷︷ ︸
f2

(1.3)

where β1,β2 are the nonlinear cross-diffusion and f1, f2 are the Lotka-Volterra kinetics, and ai, bi, ci, γi j(i, j = 1,2) are nonnegative
constants. The constants µi denote the intrinsic growth rates, γii the intraspecific competition coefficients, and γi j,(i 6= j) the interspecific
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competition rates. The ith species keeps away from high-density areas of the jth species due to cross-diffusion terms. The parameter Γ

represents the relative strength of the reaction terms. SKT systems are not a simple nonlinear problem when it comes to dealing with the
cross-diffusivities. Therefore, it is more useful fo the analysis of SKT systems to remove the cross-diffsuion component. Murakawa [1, 4]
proposed an approximation to the SKT system (1.2) by a semilinear reaction-diffusion system. In this approximation, the system has a
simple reaction and linear diffusion terms. Nonlinear problems are difficult to solve compared to semilinear problems. Various methods can
be considered for discretizing semilinear systems, such as the finite element approximation [5], the finite difference method [6], and the finite
volume approximation [7].
In this paper, symmetric interior penalty discontinuous Galerkin finite elements (SIPG) method [8] for spatial discretization and semi-implicit
Euler method for temporal discretization [1, 3, 9] are considered. The SIPG approximation uses discontinuous polynomials and captures
singularities locally. Even though fully implicit methods provide better accuracy and stability, they are not easy to implement when dealing
with semilinear reaction-diffusion systems. The semi-implicit Euler method is easy to implement and is a stable numerical method. Recently,
model order reduction techniques are developed for the dimension reduction of large dynamic systems in engineering and science. The main
idea of reduced order modelling is to construct basis functions in a low-dimensional reduced space and then project the full order model
equation onto the reduced space to obtain a reduced order system. The most known and most commonly used technique is proper orthogonal
decomposition (POD) [10, 11]. In POD method, the Galerkin projection is used to approximate reduced solutions. POD is a useful method
for linear problems, but for nonlinear problems, the dimension of the solutions of the reduced order model (ROM) has the same dimension
as the solutions of the full order model (FOM) [12]. To reduce the computational cost of the nonlinear terms in the reduced order model,
some methods have been developed. The empirical interpolation method(EIM) [13] and the discrete empirical interpolation method(DEIM)
[14] are the most commonly used methods. The DEIM method is introduced for nonlinear functions. The nonlinear kinetics depends on
single variables in the finite difference method while it depends on the mesh and the degree of the polynomial in the finite element methods.
Therefore, the POD-DEIM is developed for efficiency [15, 16]. The reduced basis functions in POD-DEIM are computed in the offline phase
by applying singular value decomposition (SVD) to large snapshot matrices. Randomized singular value decomposition (rSVD) [17, 18] is
used as a fast and accurate method. By using rSVD in the offline phase, the computational cost is reduced. This paper is divided into the
following sections: In Section 2, the full discrete solution of the SKT system in space and time discretization is obtained. The model order
reduction methods POD and DEIM are described in Section 3. Numerical simulations are presented for the SKT equation in two-dimensional
case in Section 4.

2. Full Order Model

The SKT system (1.2- 1.3) has a nonlinear diffusion part. To remove the nonlinear diffusion part, a semi-linear reaction-diffusion system is
proposed to approximate (1.2- 1.3) [9]:

∂u
∂ t

=
1
ν

∆u− 1
ε
(u−β (νu+v))+

1
ε

f (νu+v) in Ω× (0,T ],

∂v
∂ t

=
ν

ε
u−β (νu+v), in Ω× (0,T ], (2.1)

∂u
∂n

= 0, on ∂Ω× (0,T ],

u(·,0) = u0,ε , v(·,0) = v0,ε in Ω.

where u and v are the population densities and z = u+ v is taken in equation (1.2). Then, the weak solutions uε and vε are approximations
to β (z) and (z− νβ (z)), where ν and ε are positive parameters. The initial conditions are approximated as u0,ε ≈ β (z0) and v0,ε ≈
(z0−νβ (z0)). In (2.1), the system (1.1) is approximated by a system of M semilinear PDEs coupled with M ordinary differential equations
(ODEs), which has the advantage of solving semi-linear problems instead of nonlinear systems.
The semi-discrete systems (2.1) is discretized by semi-implicit Euler method in time [1]:

Un
i −Ui

n−1

τ
=

1
µ

∆Un
i −

1
ε
(Un−1

i −β (µUn−1
i +V n−1

i ))+
1
µ

f (µUn−1
i +V n−1

i ) in Ω

∂Un
i

∂ν
= 0 on ∂Ω

V n
i −V n−1

i
τ

=
µ

ε
(Un−1

i −β (µUn−1
i +V n−1

i )) in Ω

where the time step size τ is given by T
NT

and n = 1,2, ...,NT , i = 1,2. The scheme can be rewritten by setting Zn
i = µUn

i +V n
i , choosing

ε = τ and adding µUn
i on both sides to the third relation, then the following semi-linear scheme is obtained

Un
i −

τ

µ
∆Un

i = β (Zn−1
i )+

τ

µ
f (Zn−1

i ) in Ω,

∂Un
i

∂ν
= 0 on ∂Ω, (2.2)

Zn
i = Zn−1

i +µ(Un
i −β (Zn−1

i )) in Ω,

where Zn
i and Un

i solutions are approximations to z(·,nτ) and β (z(·,nτ)), respectively. A simple system of equations is obtained to solve.
Here M independent linear equations is solved in Un

i and then Zn
i is calculated.
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Symmetric interior penalty Galerkin(SIPG) method is used to obtain a fully discrete system to (1.2) in space discretization. The continuous
weak solutions (2.2) solve the variational formulation

(Un
i ,wi)+a(

τ

µ
;Un

i ,wi) = (β (Zn−1
i ),wi)+(

τ

µ
;Zn−1

i ,wi)

where the L2 inner product is defined as (·, ·) = (·, ·)Ω on the domain Ω, and a( τ

µ
;Un

i ,wi) = (d∇u,∇w) is the bilinear form.

{Dh} is a disjoint partition of the domain Ω with triangles {Ti}Nel
i=1 ∈Dh where Nel is the number of elements in the partition. The space of

discrete solution and test functions is defined as

Dh = {w ∈ L2(Ω) : wK ∈ Pd(K), ∀K ∈Th},

where Pd(K) is the set of polynomials defined on K ∈Dh of degree at most d. (2.2) is multiplied by test functions wi, integrated over each
mesh element, Green’s theorem is used and the variational formulation is obtained:

(Un
ih,wi)+ah(

τ

µ
;Un

ih,wi) = (β (Zn−1
ih ),wi)+(

τ

µ
;Zn−1

ih ,wi) (2.3)

with the SIPG bilinear form as follows

ah(
τ

µ
;Un,w) = ∑K∈D

∫
τ

µ
∇U ·∇wdx−∑E∈ε0

h∪εD
h

∫
E { τ

µ
∇U} · [w]ds+

∑E∈ε0
h∪εD

h

∫
E { τ

µ
∇w} · [U ]+∑E∈ε0

h∪εD
h

σ

h
τ

µ

∫
E [u] · [w]ds

where h denotes the length of edge e, ε0
h denotes the set of interior faces (edges), [], and {} denotes the jump and the average, respectively.

The semi-discrete solutions are given as

Uih =
ne

∑
k=1

nl

∑
m=1

uk
m(t)ϕ

k
m(x), i = 1,2,

where uk
m is the unknown vectors, ϕk

m are the basis functions in Dh, for k = 1,2, ...,ne, and m = 1,2, ...,nl . The number ne is the number of
triangles in Dh, and nl is the local dimension on each element given by nl = (d +1)(d +2)/2, where d is the degree of polynomial order.
Then the SIPG system (2.3) leads to a full order solution (FOM):

MU +
τ

µ
AU = β1(Zn−1

1 )+
τ

µ
f (Zn−1

1 ) (2.4)

MZn
1 = MZn−1

1 +µ(MUn−β1(Zn−1
1 )) (2.5)

MV +
τ

µ
AV = β2(Zn−1

2 )+
τ

µ
g(Zn−1

2 ) (2.6)

MZn
2 = MZn−1

2 +µ(MV n−β2(Zn−1
2 )),

where M ∈ RN×N is the mass matrix, and A ∈ RN×N is the stiffness matrix. The number N = Nloc×Nel indicates the degree of freedom
in the DG method, where Nloc is the number of local dimensions in each triangle and Nel represents the number of elements. Moreover,
F(Z) = β1(Zn−1)+ τ

µ
f (Zn−1) and G(Z) = β2(Zn−1)+ τ

µ
g(Zn−1) ∈ RN are nonlinear forms. Then the solutions of 2.4 and 2.6 have the

following form:

U(t) =
N

∑
i=1

ui(t)ϕi(x) = ϕu(t), V (t) =
N

∑
i=1

vi(t)ϕi(x) = ϕv(t) (2.7)

where ui(t),vi(t) are the unknown coefficients and ϕi are the DG basis functions.

3. Reduced Order Model

In this section, the reduced order model (ROM) is introduced for nonlinear cross-diffusion systems. Proper orthogonal decomposition (POD)
method with Galerkin projection [12] and the discrete empirical interpolation method (DEIM) for nonlinear reaction terms are considered for
the SKT system.

3.1. Proper orthogonal decomposition

The FOM solutions U(t) and V (t) (2.4) approximate the ROM solutions of dimension k� N onto subspaces spanned by a set of L2

-orthogonal basis functions {ψu}k
i=1 and {ψv}k

i=1

U(t) =
N

∑
i=1

Ũ(t)ψu, V (t) =
N

∑
i=1

Ṽ (t)ψv (3.1)

where Ũ(t) = (Ũ1(t), · · · ,Ũk(t)) and Ṽ (t) = (Ṽ1(t), · · · ,Ṽk(t)) are the coefficient vectors of the ROM solutions. The reduced basis functions
{ψu}k

i=1 and {ψv}k
i=1 are in the form of linear combination of the DG basis functions {ϕi}N

i=1
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ψu,i =
N

∑
j=1

Ψu, j,iϕ j(x), ψv,i =
N

∑
j=1

Ψv, j,iϕ j(x) (3.2)

The coefficient vectors of the reduced basis function ψu,i and ψv,i are in the columns of the matrices Ψu = [Ψu,·,1, · · · ,Ψu,·,k] and Ψv =
[Ψv,·,1, · · · ,Ψv,·,k].
The reduced basis functions are calculated by applying randomized singular value decomposition (rSVD) to the snapshot matrix

S1 = [U1, · · · ,UN ], S2 = [V1, · · · ,VN ]

where each component of S1 and S2 corresponds to the coefficient vectors of the discrete solutions of the FOM (2.4). The FOM and the
ROM coefficient vectors have a relation using the expansion (2.7),(3.1),(3.2)

U = ΨuŨ, V = ΨvṼ (3.3)

k−dimensional ROM is constructed by substituting (3.3) and projected onto the reduced subspace leading to the system

M̃uUn +
τ

µ
ÃuUn = Ψ

T
u (β1(z1

n−1)+
τ

µ
f1(z1

n−1))

M̃z1 z1
n = M̃z1 z1

n−1 +µ(Un−Ψ
T
u β1(z1

n−1))

M̃vVn +
τ

µ
ÃvVn = Ψ

T
v (β2(z2

n−1)+
τ

µ
f2(z2

n−1))

M̃z2 z2
n = M̃z2 z2

n−1 +µ(Vn−Ψ
T
v β2(z2

n−1))

with the reduced matrices

M̃u = Ψ
T
u MΨu, Ãu = Ψ

T
u AΨu, M̃z1 = Ψ

T
z1

MΨz1 ,

M̃v = Ψ
T
v MΨv, Ãv = Ψ

T
v AΨv, M̃z2 = Ψ

T
z2

MΨz2 ,

3.2. Discrete empirical interpolation method

Though the reduced system has a smaller dimension than the full system, the dimension of the nonlinear vectors is the same as the dimension
of the full system. DEIM is used to approximate the nonlinear vectors f (z(t)) = ΨT f (ΨZn−1)) and β (z(t)) = ΨT β (ΨZn−1)) from a
subspace generated by the nonlinear functions. F = [ f1, f2, ..., f j] ∈ RN×J and B = [β1,β2, ...,β j] ∈ Rn×J represent the snapshot matrices
of the nonlinear functions. rSVD is applied to the matrices F and B, and find m� N orthogonal basis functions {Qi}m

i=1 . Then the
approximation of the nonlinear functions is given by Q = [Q1,Q2, ...,Qm] ∈RN×m

f (ΨZ(t))≈ Qh(t), β (ΨZ(t))≈ Qh(t) (3.4)

with the coefficient vector h(t). The system (3.4) is overdetermined. m distinguished rows is taken from the system Qh(t) for the computation
of h(t) through the projection matrix P = [e℘1 , . . . ,e℘m ] ∈ RN×m with e℘i = [0, ...,0, 1︸︷︷︸

℘i

,0, ...,0] ∈ RN . Since PT Q is nonsingular, the

coefficient vector h(t) can be written as with the projection:

h(t) = (PT Q)−1PT f (ΨuZ(t)), h(t) = (PT Q)−1PT
β (ΨuZ(t)) (3.5)

Using the equations (3.4),(3.5) the nonlinear vectors can be approximated as follows

f (z(t))≈WF, β (z(t))≈WB

where the matrix W = ΨT
u Q(PT Q)−1 ∈ Rk×m is precomputable and F = PT f (ΨuZ(t)) ∈ Rm and B = PT β (ΨuZ(t)) ∈ Rm are the m-

dimensional nonlinear vectors.



46 Journal of Mathematical Sciences and Modelling

4. Numerical results

In this section, the numerical results for two-dimensional SKT system (1.2- 1.3) are presented. The solutions of FOM and ROM are compared
with the results of POD and POD-DEIM.
The initial conditions are taken as a random perturbation around the stationary solutions (u0,v0) = (1.67,0.92) given by using MATLAB
function rand, uniformly distributed pseudo-random numbers. The parameters are set as follows

a1 = 0.01, a2 = 0.001, b = 7.264, b2 = 1.1, c1 = 0.1, c2 = 0.2

µ1 = 1.2, γ11 = 0.5, γ12 = 0.4, µ2 = 1, γ21 = 0.38, γ22 = 0.4, Γ = 28.05.

The spatial interval is set to Ω = [0,
√

2π]× [0,2π]. The time step size is taken as dt = 0.01.
In Figure 4.1, the FOM solutions of components Z1 and Z2 are plotted which are very close to those in [19]. In Figure 4.2, normalized
singular values are plotted for each component and the nonlinear components. The singular values decrease very fast at the beginning. In
Figure 4.3, the ROM solutions are obtained by using 3-POD and 24 and 21 DEIM basis functions for each components, respectively. The
ROM solutions are almost the same as the FOM solutions. In Table 4.1, the L2- relative errors for the POD and POD-DEIM solutions are
presented. The results are acceptable since POD-DEIM is applied to the nonlinear part. CPU time and speed-up factors CPOD and CDEIM are
calculated for POD and POD-DEIM. The results show the increasing of the speed-up factors which represents the efficiency of POD-DEIM.

Figure 4.1: FOM solutions for the component Z1 and Z2.
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Figure 4.2: Decay of normalized singular values for the state components Z1, Z2, U1 and U2
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Figure 4.3: FOM and ROM solutions with the error for the component Z1 (upper), Z2 (bottom).

Error Z1 Error Z2 CPU Time Speed-up
FOM - - 2382.09 -
POD 1.16e-02 1.37e-02 329.55 7.23
POD-DEIM 4.72e-02 1.04e-01 135.60 17.57

Table 4.1: Relative errors and speed up factors.
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