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Abstract 

Functional nanoparticles (NPs), Fe3O4@SiO2-PMEMA, were prepared via surface initiated reversible 

addition-fragmentation chain transfer (RAFT) polymerization, using catechol-based biomimetic RAFT 

agent incorporating a trithiocarbonate unit and 2-N-morpholinoethyl methacrylate (MEMA) as the 

monomer. Poly(2-N-morpholinoethyl methacrylate) (PMEMA) were synthesized on biomimetic RAFT 

agent functionalized Fe3O4@SiO2 NPs surface. The prepared NPs were characterized at the different 

modification stages using attenuated total reflectance-Fourier transform infrared spectroscopy (FTIR), X-

ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and 

transmission electron microscope (TEM). The magnetic properties of NPs were also determined by 

vibrating sample magnetometer (VSM). 
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1 Introduction 

Over the years, magnetic polymeric nanoparticles 

with sizes ranging from several to ∼20 nm have been 

received more attention because of the application of 

magnetism to varied area, such as biomedical [1-7], 

environment and food analyses [8], and industrial 

water treatment [9]. 

Surface functionalization is one of the most effective 

methods for preparing polymer coated NPs. Mostly, 

two approaches are employed to functionalize NPs: 

“grafting from” and “grafting to”. There are two main 

advantages of the “grafting from” technique. First, 

homogeneous polymer layers can be prepared. Sec-

ond, this technique gives relatively high grafting den-

sities [10-12]. The attachment of ticker polymer chains 

to NPs surface was achieved via combination of 

“grafting from” and controlled radical polymerization 

techniques including nitroxide-mediated radical 

polymerization (NMP) [13], single electron transfer-

living radical polymerization (SET-LRP) [14], atom 

transfer radical polymerization (ATRP) [15-16] and 

reversible addition-fragmentation chain transfer 

(RAFT) polymerization [17-19]. 

Attached initiating groups initiate the surface-initiated 

polymerization from the surface [20-23]. The surface 

immobilized RAFT agent has become the other option 

for modified the surface via surface-initiated RAFT 

polymerization [24-26]. The RAFT agent and/or initia-

tor can be attached on solid subtract via variety of 

strategies such as self-assembly monolayers, click 

chemistry, catechol and etc [19,27-29]. Recently, cate-

chol derivatives have emerged major attention for the 

functionalization of various surfaces. 

Zobrist et al [30]. demonstrated a novel strategy for 

polymer modified titanium surface with dopamine 

functionalized polymers chains. The monomers were 

polymerized in the presence of the catechol derivative 

RAFT agent. These polymers were immobilized on 

titanium surface. Liu et al [28]. reported the synthesis 

of a novel ionic liquid containing a biomimetic cate-
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cholic functional group, and immobilized onto silicon 

surface for allowing the tribological protection. The 

synthesis of poly(styrene) brushes using catechol-

functional RAFT agent was described by Liu et al [29]. 

Polymer brushes were generated via combination of 

“grafting from” and “grafting to” methodologies. 

Compared with the polymer brushes were generated 

via “grafting to” approach, the polymer brushes creat-

ed “grafting from” methodology were much denser 

and more homogeneous. 

Herein, PMEMA functionalized Fe3O4 NPs were suc-

cessfully produced by surface initiated RAFT 

polymerization with the goal of fabricating multi-

functional NPs. The morphological characterization of 

MNPs was carried out by using transmission electron 

microscopy (TEM). The other characteristics of the 

MNPs were investigated by attenuated total reflec-

tance-Fourier transform infrared spectroscopy (FTIR), 

X-ray photoelectron spectroscopy (XPS), X-ray diffrac-

tion (XRD), thermogravimetric analysis (TGA) and 

vibrating sample magnetometer (VSM). 

2 Experimental 

2.1 Materials 

2-N-Morpholinoethyl methacrylate (MEMA, 95%), 

iron(II) chloride tetrahydrate (FeCl2.4H2O, ≥99%), 

iron(III) chloride hexahydrate (FeCl3.6H2O, 97%), 

tetraethyl orthosilicate (TEOS, ≥99%), dopamine hy-

drochloride (DA, 99%), 4-cyano-4-

(phenylcarbonothioylthio)pentanoic acid (CPAD, 

>97%), N-hydroxysuccinimide (NHS, 98%), N-methyl-

2-pyrrolidone (NMP, 99.5%), N,N'-

dicyclohexylcarbodiimide (DCC, 99%), triethylamine 

(TEA, ≥99%), magnesium sulfate (MgSO4, ≥99.5%), 

2,2′-azobis(2-methylpropionitrile) (AIBN, 98%), di-

chloromethane (DCM, anhydrous), tetrahydrofuran 

(THF, ≥99.9%), n-hexane (≥95%), ammonium hydrox-

ide solution (28 wt%, NH3 in H2O) were purchased 

commercially from Sigma-Aldrich and used as pur-

chased unless otherwise specified. The water was used 

from a Millipore Milli-Q ultrapure water system.  

2.2 Synthesis of Catechol Derivative RAFT Agent 

The synthesis of catechol derivative RAFT agent was 

performed following the reported method [28]. 1H 

NMR (300 MHz, CDCl3, ppm) : 7.8-8.1 (d, 1H, CH-C), 

7.4-7.6 (t, 1H, CH-CH), 7.4-7.5 (t, 2H, CH-CH), 6.8-6.9 

(d, 1H, C-CH-CH), 6.7-6.8 (s, 1H, C-CH-C), 6.7-6.8 (d, 

1H, CH-CH-C-OH), 5.9-6.0 (s, NH), 3.5-3.6 (t, 2H, CH2-

CO), 2.5-2.7 (t, CH2-NH), 2.4-2.6 (m, 1H, CH2-C), 2.46-

2.48 (m, 2H, CH2-C-C), 2.34-2.41 (m, 1H, CH2-C), 1.88 

(s, 3H, CH3). 

2.3 Synthesis of Poly[2-(N-morpholino)ethyl methac-

rylate] (PMEMA) modified NPs 

Fe3O4 nanoparticles were synthesized as reported in 

the literature [31]. Fe3O4@SiO2 NPs first treated with 

piranha solution for 1h, washed thoroughly with wa-

ter and dried. The Fe3O4@SiO2 NPs were then im-

mersed in a 1.0 mM acetone solution of catechol de-

rivative RAFT agent for 24 h for surface immobiliza-

tion. After modification, the Fe3O4@SiO2-CPAD NPs 

were rinsed with water and dried. 

MEMA, CPAD as a free RAFT agent, and AIBN at a 

molar ratio of 400:5:1 were charged into a Schleck tube 

containing NPs and NMP. The polymerization solu-

tion was degassed with a stream nitrogen and stirred 

at 70 °C for 18 h to allow for polymerization. After 

quenching the reaction in liquid nitrogen, the solution 

was diluted with THF and polymerization solution 

was then poured into stirred n-hexane (87%; 

Mn,SEC=11.2 KDa, Mw/Mn=1.25). 

2.4 Measurements and Characterization 

NMR was performed on a Bruker 300 MHz instru-

ment. Attenuated total reflectance-Fourier transform 

infrared (FTIR) was performed on a Thermo Nicolet 

6700 instrument. The X-ray photoelectron spectra of 

nanoparticles were recorded by using x-ray photoelec-

tron spectrometer (XPS) (PHI-5000 Versaprobe). 

Thermogravimetric analysis (TGA) was performed 

under N2 atmosphere at a heating rate of 10 °C/min on 

a Hitachi SII 7300. X-ray diffraction (XRD, Rigaku 

Ultima IV) was used to determine the crystal structure 

of the magnetic NPs. A vibrating-sample magnetome-

ter (Cryogenic Limited PPMS) was used at room tem-

perature to measure the magnetic properties of Fe3O4 

and magnetic composite particles. Transmission elec-

tron microscopy (TEM) analysis was performed using 

JEOL 2010F operating at 200 keV. 

3 Results and Discussion 

PMEMA-functionalized NPs were prepared as given 

in Scheme 1. Fe3O4 nanoparticles were prepared via a 

precipitation method than were functionalized with a 

thin silica layer (Fe3O4@SiO2). In the next step, MNPs 

were modified with catechol derivative RAFT agent 

(Fe3O4@SiO2-CPAD). Finally, PMEMA-functionalized 

NPs were synthesized via RAFT polymerization of 
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MEMA (Fe3O4@SiO2-PMEMA).  

 

Figure 1 shows FTIR spectrum of the MNPs. The char-

acteristic band of Fe3O4 MNPs (Fe-O-Fe) was observed 

at 561 cm-1. FTIR spectra of Fe3O4@SiO2 also showed an 

absorbance band at 1100 cm-1 for the Si-O-Si stretch-

ing. The peaks at 2950, 2245, 1650, 1550 and 1040 cm-1 

were assigned to C-H, CN, Amide I (C=O), Amide II 

(C-N) and C=S stretching of the catechol derivative  

RAFT agent modified MNPs, respectively. After RAFT 

polymerization of the MEMA on MNPs surface, C=O 

and C-O-C stretching vibration of morpholino mono-

mer at the wavelengths of 1720 and 1100 cm-1 were 

observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The chemical nature of the surface coatings was also 

evidenced by XPS analysis (Figure 2). Fe 2p1/2 and Fe 

2p3/2 peaks were appeared at 725 and 711 eV, respec-

tively. These two peaks show that, MNPs occurs 

Fe3O4, instead of Fe2O3 [32]. XPS analysis of the 

Fe3O4@SiO2 MNPs verified the presence of Si 2s (153 

eV) and Si 2p (103 eV). C 1s XPS peak was observed at 

near 285 eV for Fe2O3 and Fe3O4@SiO2 MNPs. Fur-

thermore, a relatively high amount of oxygen was 

detected. This was mainly assigned to sample contam-

ination by atmospheric gases and organic dusts [33]. 

Catechol derivative RAFT agent was confirmed by the 

appearance of the C 1s (285 eV), N 1s (400 eV), S 2s 

(233 eV) and S 2p (169 eV) signals. It is showed that 

RAFT agent was successfully fabricated on Fe3O4@SiO2 

MNPs surface. After PMEMA grafting, the carbon and 

nitrogen signals were increased, whereas silicon and 

sulfur ratios were decreased in the XPS spectra. Suc-

cessful immobilization of PMEMA on MNPs surface 

was investigated by FTIR and XPS analysis. 
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The amount of organic content at the MNPs surface 

was determined from the TGA analysis (Figure 3). It 

can be seen that about 6.68wt%, 8.53wt%, 56.23wt% of 

weight loss at 800 °C for Fe3O4@SiO2, Fe3O4@SiO2-

CPAD MNPs and Fe3O4@SiO2-PMEMA MNPs, respec-

tively. To compare the samples of Fe3O4@SiO2-

PMEMA and Fe3O4@SiO2-CPAD, the grafting amount 

of PMEMA could be calculated as 45 mg/g. This result 

confirms again the successful immobilization of 

PMEMA on Fe3O4@SiO2-CPAD NPs surface. 

The X-ray diffraction (XRD) patterns of unmodified 

and modified NPs are depicted in Figure 4. For bare 

Fe3O4, the main peaks centered at 2θ = 30°, 35°, 43°, 

53°, 57°, and 62°, which corresponded to (220), (311), 

(400), (422), (511), and (440), respectively. All the peak 

positions were basically consistent with the standard 

data for Fe3O4 structure (JCPDS file No. 85-1436). The 

broad peak appeared in the range from 18 to 28 indi-

cates the existence of amorphous PMEMA. It was 

found that the main peaks of Fe3O4@SiO2-PMEMA 
coincide with those of unmodified Fe3O4. The XRD 

results suggest that the modification via combination 

of grafting from and RAFT polymerization did not 

change the crystalline structure of Fe3O4 nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The magnetic properties of unmodified and modified 

MNPs were recorded using a VSM at 300 K as shown 

in magnetization curves in Figure 5. The magnetiza-

tion curves clearly point out a difference in the mag-

netic properties of MNPs. The Fe3O4, Fe3O4@SiO2, 

Fe3O4@SiO2-CPAD and Fe3O4@SiO2-PMEMA have 

saturation magnetization values of 56.6, 31.5, 30.8 and 

15.7 emu/g, respectively. The bare Fe3O4 showed the 

highest magnetization. However, it was decreased 

after the surface functionalization, because of the thick 

shell surrounding the magnetic cores. However, these 

results showed that Fe3O4@SiO2-PMEMA NPs have a 

strong magnetic response to an applied magnetic 

field. 

The prepared NPs were analyzed by TEM. Figure 6 

showed representative images of the NPs. The aggre-

gation of the nanoparticles arises because of the evap-

oration of the solvent. The mean diameter of bare 

Fe3O4 nanoparticles is about 10 nm. Particle size didn’t 

change much from Figure 6a to c. The dark 

Fe3O4@SiO2 NPs were coated by a hazy PMEMA layer 

with a thickness of about 25 nm. The Fe3O4@SiO2-

PMEMA NPs which have a core/shell structure were 

easily prepared from a biomimetic RAFT agent com-
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pared with the previously published studies [34-36]. 

 

 

4 Conclusions 

In conclusion, functional NPs were successfully pre-

pared via surface initiated RAFT polymerization from 

a biomimetic RAFT agent. Fe3O4 NPs were prepared 

and then embedded by a silica layer. Catechol deriva-

tive RAFT agent was immobilized on the Fe3O4@SiO2 

surface. RAFT agent immobilized Fe3O4@SiO2 NPs 

were used to mediate homopolymerization of MEMA. 

The modification steps of Fe3O4@SiO2 NPs were con-

firmed by FTIR, XPS, XRD, TGA and TEM analysis. It 

is suggested that surface initiated RAFT polymeriza-

tion from catechol-based biomimetic RAFT agent sur-

face would be a promising strategy to prepare func-

tional materials. Our future work will focus on the 

preparation and application of the stimuli responsive 

polymer coated NPs via biomimetic surface modifica-

tion methods, with the goal of creating smart bio-

materials. 
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