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Abstract 

The main purpose of this paper is to introduce two new types of irresolute functions called completely 𝑒-

irresolute and completely weakly 𝑒-irresolute functions via 𝑒-open sets introduced by Ekici. We obtain 

some characterizations of these functions. Also, we investigate some fundamental properties between 

these new notions and separation and covering. 
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1 Introduction and Preliminaries 

Throughout this paper (𝑋, 𝜏) and (𝑌, 𝜎) (or simply 𝑋 

and 𝑌) represent non-empty topological spaces on 

which no separation axioms are assumed unless 

otherwise stated. Let 𝑋 be a topological space and 𝐴 a 

subset of 𝑋. The closure of 𝐴 and the interior of 𝐴 are 

denoted by 𝑐𝑙(𝐴) and 𝑖𝑛𝑡(𝐴), respectively. 𝒰(𝑥) 

denotes all open neighborhoods of the point 𝑥 ∈ 𝑋. A 

subset 𝐴 of a space 𝑋 called regular open [17] (resp. 

regular closed [17]) if 𝐴 = 𝑖𝑛𝑡(𝑐𝑙(𝐴)) (resp. 𝐴 =

𝑐𝑙(𝑖𝑛𝑡(𝐴))) . The 𝛿-interior [19] of a subset 𝐴 of 𝑋 is the 

union of all regular open sets of 𝑋 contained in 𝐴 and 

is denoted by 𝑖𝑛𝑡𝛿(𝐴). The subset 𝐴 is called 𝛿-open 

[19] if 𝐴 = 𝑖𝑛𝑡𝛿(𝐴), i.e., a set is 𝛿-open if it is the union 

of regular open sets. The complement of a 𝛿-open set 

is called 𝛿-closed. Alternatively, a set 𝐴 ⊂ 𝑋 is called 𝛿-

closed [19] if 𝐴 = 𝑐𝑙𝛿(𝐴), where 𝑐𝑙𝛿(𝐴) = {𝑥|𝑈 ∈

𝒰(𝑥) ⇒ 𝑖𝑛𝑡(𝑐𝑙(𝑈)) ∩ 𝐴 ≠ ∅}. The family of all 𝛿-open 

(resp. 𝛿-closed) sets in 𝑋 is denoted by 𝛿𝑂(𝑋) (resp. 

𝛿𝐶(𝑋)). 

A subset 𝐴 of a space 𝑋 called 𝑒-open [17] if 𝐴 ⊂

𝑖𝑛𝑡(𝑐𝑙𝛿(𝐴)) ∪ 𝑐𝑙(𝑖𝑛𝑡𝛿(𝐴)). The complement of an 𝑒-

open set is said to be 𝑒-closed. The 𝑒-interior [7] of a 

subset 𝐴 of 𝑋 is the union of all 𝑒-open sets of 𝑋 

contained in 𝐴 and is denoted by 𝑒-𝑖𝑛𝑡(𝐴). The 𝑒-

closure [7] of a subset 𝐴 of 𝑋 is the intersection of all 𝑒-

closed sets of 𝑋 containing 𝐴 and is denoted by 𝑒-

𝑐𝑙(𝐴). The family of all 𝑒-open (resp. regular open) sets 

of 𝑋 are denoted by 𝑒𝑂(𝑋) (resp. 𝑅𝑂(𝑋)). The family of 

all 𝑒-closed (resp. regular closed) sets of 𝑋 is denoted 

by 𝑒𝐶(𝑋) (resp. 𝑅𝐶(𝑋)) and the family of all 𝑒-open 

(resp. regular open) sets of 𝑋 containing a point 𝑥 ∈ 𝑋 

is denoted by 𝑒𝑂(𝑋, 𝑥) (resp. 𝑅𝑂(𝑋, 𝑥)). 

Definition 1. A function 𝑓: 𝑋 → 𝑌 is said to be: 
(a) strongly continuous [9] (briefly s.c.) if 𝑓−1[𝑉] is 
both open and closed in 𝑋 for each subset 𝑉 of 𝑌; 
(b) completely continuous [2] (briefly c.c.) if 𝑓−1[𝑉] is 
regular open in 𝑋 every open set 𝑉 of 𝑌; 
(c) 𝑒-irresolute [6] (briefly e.i.) if 𝑓−1[𝑉] is 𝑒-closed 
(resp. 𝑒-open) in 𝑋 for every 𝑒-closed (resp. 𝑒-open) 
subset 𝑉 of 𝑌; 
(d) 𝑒-continuous [7] (briefly e.c.) if 𝑓−1[𝑉] is 𝑒-open in 
𝑋 every open set 𝑉 of 𝑌. 

2 Completely 𝑒-irresolute Functions 

Definition 2. A function 𝑓: 𝑋 → 𝑌 is said to be 
completely 𝑒-irresolute (briefly c.e.i.) if the inverse 
image of each 𝑒-open subset of 𝑌 is regular open in 𝑋. 

 
Remark 3. It is not difficult to see that every strongly 
continuous function is completely 𝑒-irresolute and 
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every completely 𝑒-irresolute function is 𝑒-irresolute. 
But the converse of the implications are not true in 
general as shown by the following examples. 
 

s.c. → c.e.i. → e.i. 
 
Example 4. Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {∅, 𝑋, {𝑎}, {𝑏, 𝑐}} and 
𝜎 = {∅, 𝑋, {𝑏, 𝑐}}. Then the identity function 𝑓: (𝑋, 𝜏) →
(𝑋, 𝜎) is 𝑒-irresolute but not completely 𝑒-irresolute. 

 
QUESTION. Is there any completely 𝑒-irresolute 
function which is not strongly continuous? 
 
Theorem 5. Let 𝑓: 𝑋 → 𝑌 be a function, then the 
following statements are equivalent: 
(a) 𝑓 is completely 𝑒-irresolute; 
(b) 𝑓−1[𝑒 − 𝑖𝑛𝑡(𝐵)] ⊂ 𝑖𝑛𝑡𝛿(𝑓

−1[𝐵]) for every subset 𝐵 
of 𝑌; 
(c) 𝑓[𝑐𝑙𝛿(𝐴)] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝐴]) for every subset 𝐴 of 𝑋; 
(d) 𝑐𝑙𝛿(𝑓

−1[𝐵]) ⊂ 𝑓−1[𝑒 − 𝑐𝑙(𝐵)] for every subset 𝐵 of 
𝑌; 
(e) 𝑓−1[𝑉] is regular closed in 𝑋 for each 𝑒-closed set 𝑉 
in 𝑌; 
(f) 𝑓−1[𝑉] is regular open in 𝑋 for each 𝑒-open set 𝑉 in 
𝑌. 
Proof. (𝒂) ⇒ (𝒃): Let 𝐵 ⊂ 𝑌 and 𝑥 ∈ 𝑓−1[𝑒 − 𝑖𝑛𝑡(𝐵)]. 

𝑥 ∈ 𝑓−1[𝑒 − 𝑖𝑛𝑡(𝐵)] ⇒ 𝑒 − 𝑖𝑛𝑡(𝐵) ∈ 𝑒𝑂(𝑌, 𝑓(𝑥)) 

(𝑎)
⇒ (∃𝑈 ∈ 𝑅𝑂(𝑋, 𝑥))(𝑓[𝑈] ⊂ 𝑒 − 𝑖𝑛𝑡(𝐵) ⊂ 𝐵) 

⇒ (∃𝑈 ∈ 𝑅𝑂(𝑋, 𝑥))(𝑈 ⊂ 𝑓−1[𝐵]) ⇒ 𝑥 ∈ 𝑖𝑛𝑡𝛿(𝑓
−1[𝐵]). 

(𝒃) ⇒ (𝒄): Let 𝐴 ⊂ 𝑋. 

𝐴 ⊂ 𝑋 ⇒ 𝑓[𝐴] ⊂ 𝑌 ⇒ 𝑌 ∖ 𝑓[𝐴] ⊂ 𝑌
(𝑏)
⇒  

(𝑏)
⇒ 𝑓−1[𝑒 − 𝑖𝑛𝑡(𝑌 ∖ 𝑓[𝐴])] ⊂ 𝑖𝑛𝑡𝛿(𝑓

−1[𝑌 ∖ 𝑓[𝐴]]) 

⇒ 𝑋 ∖ 𝑓−1[𝑒 − 𝑐𝑙(𝑓[𝐴])] ⊂ 𝑋 ∖ 𝑐𝑙𝛿(𝑓
−1[𝑓[𝐴]]) 

⇒ 𝑐𝑙𝛿(𝐴) ⊂ 𝑐𝑙𝛿(𝑓
−1[𝑓[𝐴]]) ⊂ 𝑓−1[𝑒 − 𝑐𝑙(𝑓[𝐴])] 

⇒ 𝑓[𝑐𝑙𝛿(𝐴)] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝐴]). 

(𝒄) ⇒ (𝒅): Let 𝐵 ⊂ 𝑌. 

𝐵 ⊂ 𝑌 ⇒ 𝑓−1[𝐵] ⊂ 𝑋
(𝑐)
⇒  

(𝑐)
⇒ 𝑓[𝑐𝑙𝛿(𝑓

−1[𝐵])] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝑓−1[𝐵]]) ⊂ 𝑒 − 𝑐𝑙(𝐵) 

⇒ 𝑐𝑙𝛿(𝑓
−1[𝐵]) ⊂ 𝑓−1[𝑒 − 𝑐𝑙(𝐵)]. 

(𝒅) ⇒ (𝒆): Let 𝑉 ∈ 𝑒𝐶(𝑌). 

𝑉 ∈ 𝑒𝐶(𝑌) ⇒ 𝑉 = 𝑒 − 𝑐𝑙(𝑉)
(𝑑)
⇒  

(𝑑)
⇒ 𝑐𝑙𝛿(𝑓

−1[𝑉]) ⊂ 𝑓−1[𝑒 − 𝑐𝑙(𝑉)] = 𝑓−1[𝑉] 

⇒ 𝑓−1[𝑉] = 𝑐𝑙𝛿(𝑓
−1[𝑉]) ⇒ 𝑓−1[𝑉] ∈ 𝛿𝐶(𝑋). 

(𝒆) ⇒ (𝒇): Obvious. 

(𝒇) ⇒ (𝒂): Let 𝑉 ∈ 𝑒𝑂(𝑌) and 𝑥 ∈ 𝑓−1[𝑉]. 

(𝑉 ∈ 𝑒𝑂(𝑌))(𝑥 ∈ 𝑓−1[𝑉]) ⇒ 𝑉 ∈ 𝑒𝑂(𝑌, 𝑓(𝑥))
(𝑓)
⇒  

(𝑓)
⇒ (𝑈 ≔ 𝑓−1[𝑉] ∈ 𝑅𝑂(𝑋, 𝑥))(𝑓[𝑈] ⊂ 𝑉). 

Theorem 6. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a bijective 
function. Then the following statements are 
equivalent: 
(a) 𝑓 is completely 𝑒-irresolute; 
(b) 𝑒 − 𝑖𝑛𝑡(𝑓[𝐴]) ⊂ 𝑓[𝑖𝑛𝑡𝛿(𝐴)] for every subset of 𝑋. 
 
Proof. (𝒂) ⇒ (𝒃): Let 𝐴 ⊂ 𝑋. 

𝐴 ⊂ 𝑋 ⇒ 𝑋 ∖ 𝐴 ⊂ 𝑋
(𝑎)
⇒  

(𝑎)
⇒ 𝑓[𝑋 ∖ 𝑖𝑛𝑡𝛿(𝐴)] = 𝑓[𝑐𝑙𝛿(𝑋 ∖ 𝐴)] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝑋 ∖ 𝐴])

                                                                            𝑓 𝑖𝑠 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑜𝑛
} 

⇒ 𝑌 ∖ 𝑓[𝑖𝑛𝑡𝛿(𝐴)] ⊂ 𝑌 ∖ 𝑒 − 𝑖𝑛𝑡(𝑓[𝐴]) 

⇒ 𝑒 − 𝑖𝑛𝑡(𝑓[𝐴]) ⊂ 𝑓[𝑖𝑛𝑡𝛿(𝐴)]. 

(𝒃) ⇒ (𝒂): Let 𝐴 ⊂ 𝑋. 

𝐴 ⊂ 𝑋 ⇒ 𝑋 ∖ 𝐴 ⊂ 𝑋
(𝑏)
⇒  

(𝑏)
⇒ 𝑒 − 𝑖𝑛𝑡(𝑓[𝑋 ∖ 𝐴]) ⊂ 𝑓[𝑖𝑛𝑡𝛿(𝑋 ∖ 𝐴)]

                                              𝑓 𝑖𝑠 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑜𝑛
} ⇒ 

⇒ 𝑌 ∖ 𝑒 − 𝑐𝑙(𝑓[𝐴]) ⊂ 𝑌 ∖ 𝑓[𝑐𝑙𝛿(𝐴)] 

⇒ 𝑓[𝑐𝑙𝛿(𝐴)] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝐴]). 
Lemma 7. [10] Let 𝑌 be an open subset of a topological 
space 𝑋. Then the following hold: 
(a) If 𝐴 is regular open in 𝑋, then so is 𝐴 ∩ 𝑌 in the 
subspace (𝑌, 𝜏𝑌). 
(b) If 𝐵 is regular open in (𝑌, 𝜏𝑌), then there exists a 
regular open set 𝑅 in 𝑋 such that 𝐵 = 𝑅 ∩ 𝑌. 
 
Theorem 8. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is a completely 𝑒-
irresolute function and 𝐴 is any open subset of 𝑋, then 
the restriction 𝑓𝐴: 𝐴 → 𝑌 is completely 𝑒-irresolute. 
 
Proof. Let 𝐹 ∈ 𝑒𝑂(𝑌). 

𝐹 ∈ 𝑒𝑂(𝑌)
𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     𝑓−1[𝐹] ∈ 𝑅𝑂(𝑋)

                                                        𝐴 ∈ 𝜏
}
𝐿𝑒𝑚𝑚𝑎 7
⇒       

𝐿𝑒𝑚𝑚𝑎 7
⇒      (𝑓𝐴)

−1[𝐹] = 𝑓−1[𝐹] ∩ 𝐴 ∈ 𝑅𝑂(𝐴). 

Lemma 9. [3] Let 𝑌 be a preopen subset of a 
topological space 𝑋. Then 𝑌 ∩ 𝐴 is regular open in 𝑌 
for each regular open subset 𝐴 of 𝑋. 
 

Theorem 10. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is a completely 𝑒-

irresolute function and 𝐴 is preopen subset of 𝑋, then 

𝑓𝐴: 𝐴 → 𝑌 is completely 𝑒-irresolute. 
 
Proof. It is clear from Lemma 9. 
 
Theorem 11. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) 
be two functions. Then the following hold: 
(a) If 𝑓 is completely 𝑒-irresolute and 𝑔 is 𝑒-irresolute, 
then 𝑔 ∘ 𝑓 is completely 𝑒-irresolute; 
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(b) If 𝑓 is completely continuous and 𝑔 is completely 
𝑒-irresolute, then 𝑔 ∘ 𝑓 is completely 𝑒-irresolute; 
(c) If 𝑓 is completely 𝑒-irresolute and 𝑔 is 𝑒-
continuous, then 𝑔 ∘ 𝑓 is completely continuous. 
 
Proof. Straightforward. 
 
Definition 12. A space 𝑋 is said to be almost 
connected [5] (resp. 𝑒-connected [8]) if there does not 
exist disjoint regular open (resp. 𝑒-open) sets 𝐴 and 𝐵 
such that 𝐴 ∪ 𝐵 = 𝑋. 
 

Theorem 13. If 𝑓: 𝑋 → 𝑌 is completely 𝑒-irresolute 

surjection and 𝑋 is almost connected, then 𝑌 is 𝑒-

connected. 

Proof. Suppose that 𝑌 is not 𝑒-connected. 
𝑌 is not 𝑒 − connected ⇒ 
⇒ (∃𝐴, 𝐵 ∈ 𝑒𝑂(𝑌) ∖ {∅})(𝐴 ∩ 𝐵 = ∅)(𝐴 ∪ 𝐵 = 𝑌)

                 𝑓 is completely 𝑒 − irresolute surjection
} ⇒ 

⇒ (𝑓−1[𝐴], 𝑓−1[𝐵] ∈ 𝑅𝑂(𝑋) ∖ {∅}) 
(𝑓−1[𝐴 ∩ 𝐵] = 𝑓−1[∅])(𝑓−1[𝐴 ∪ 𝐵] = 𝑓−1[𝑌]) 

⇒ (𝑓−1[𝐴], 𝑓−1[𝐵] ∈ 𝑅𝑂(𝑋) ∖ {∅}) 
(𝑓−1[𝐴] ∩ 𝑓−1[𝐵] = ∅)(𝑓−1[𝐴] ∪ 𝑓−1[𝐵] = 𝑋) 
This means that 𝑋 is not almost connected. 
 
Definition 14. A topological space 𝑋 is said to be: 
(a) nearly compact [14] if every regular open cover of 
𝑋 has a finite subcover; 
(b) nearly countably compact [4] if every countable 
cover by regular open sets has a finite subcover; 
(c) nearly Lindelöf [5] if every cover of 𝑋 by regular 
open sets has a countable subcover; 
(d) 𝑒-compact [8] if every 𝑒-open cover of 𝑋 has a finite 
subcover; 
(e) countably 𝑒-compact if every 𝑒-open countable 
cover of 𝑋 has a finite subcover; 
(f) 𝑒-Lindelöf if every cover of 𝑋 by 𝑒-open sets has a 
countable subcover. 
 
Theorem 15. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a completely 𝑒-
irresolute surjection. Then the following statements 
hold: 
(a) If 𝑋 is nearly compact, then 𝑌 is 𝑒-compact; 
(b) If 𝑋 is nearly Lindelöf, then 𝑌 is 𝑒-Lindelöf; 
(c) If 𝑋 is nearly countably compact, then 𝑌 is 
countably 𝑒-compact. 
 
Proof. (𝑎) Let 𝑋 be nearly compact and 𝒜 be an 𝑒-
open cover of 𝑌. 

(𝒜 ⊂ 𝑒𝑂(𝑌))(𝑌 =∪ 𝒜)
𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒      

𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     (ℬ ∶= {𝑓−1[𝐴]|𝐴 ∈ 𝒜} ⊂ 𝑅𝑂(𝑋))(𝑋 =∪ ℬ)

                                                       𝑋 𝑖𝑠 𝑛𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡
} ⇒ 

⇒ (∃ℬ∗ ⊂ ℬ)(|ℬ∗| < ℵ0)(𝑋 =∪ ℬ
∗) 

𝑓 𝑖𝑠 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒
⇒          (𝑓[ℬ∗] ⊂ 𝑓[ℬ] = 𝒜)(|𝑓[ℬ∗]| < ℵ0) 
(𝑌 = 𝑓[𝑋] = 𝑓[∪ ℬ∗] =∪𝐵∈ℬ∗ 𝑓[𝐵]). 
 
(𝑏) Let 𝑋 be nearly Lindelöf and 𝒜 be an 𝑒-open cover 
of 𝑌. 

(𝒜 ⊂ 𝑒𝑂(𝑌))(|𝒜| ≤ ℵ0)(𝑌 =∪𝒜)
𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒      

𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     (ℬ ∶= {𝑓−1[𝐴]|𝐴 ∈ 𝒜} ⊂ 𝑅𝑂(𝑋))(𝑋 =∪ ℬ)

                                  𝑋 𝑖𝑠 𝑛𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡
} ⇒ 

⇒ (∃ℬ∗ ⊂ ℬ)(|ℬ∗| < ℵ0)(𝑋 =∪ ℬ
∗)

                                       𝑓 𝑖𝑠 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒
} ⇒ 

⇒ (𝑓[ℬ∗] ⊂ 𝑓[ℬ] = 𝒜)(|𝑓[ℬ∗]| < ℵ0) 

(𝑌 = 𝑓[𝑋] = 𝑓[∪ ℬ∗] =∪𝐵∈ℬ∗ 𝑓[𝐵]). 

 
(𝑐) Let 𝑋 be nearly countably compact and 𝒜 be an 𝑒-
open countable cover of 𝑌. 

(𝒜 ⊂ 𝑒𝑂(𝑌))(|𝒜| ≤ ℵ0)(𝑌 =∪𝒜)
𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒      

𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     (ℬ ∶= {𝑓−1[𝐴]|𝐴 ∈ 𝒜} ⊂ 𝑅𝑂(𝑋))(𝑋 =∪ ℬ)

                                  𝑋 𝑖𝑠 𝑛𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡
} ⇒ 

⇒ (∃ℬ∗ ⊂ ℬ)(|ℬ∗| < ℵ0)(𝑋 =∪ ℬ
∗)

                                       𝑓 𝑖𝑠 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒
} ⇒ 

⇒ (𝑓[ℬ∗] ⊂ 𝑓[ℬ] = 𝒜)(|𝑓[ℬ∗]| < ℵ0) 
(𝑌 = 𝑓[𝑋] = 𝑓[∪ ℬ∗] =∪𝐵∈ℬ∗ 𝑓[𝐵]). 
 
Definition 16. A topological space 𝑋 is said to be: 
(a) 𝑆-closed [18] (resp. 𝑒-closed compact) if every 
regular closed (resp. 𝑒-closed) cover of 𝑋 has a finite 
subcover; 
(b) Countable 𝑆-closed compact [1] (resp. countable 𝑒-
closed compact) if every countable cover of 𝑋 by 
regular closed (resp. 𝑒-closed) sets has a finite 
subcover; 
(c) 𝑆-Lindelöf [11] (resp. 𝑒-closed Lindelöf) if every 
cover of 𝑋 by regular closed (resp. 𝑒-closed) sets has a 
countable subcover. 
 
Theorem 17. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a completely 𝑒-
irresolute surjection. Then the following statements 
hold: 
(a) If 𝑋 is 𝑆-closed, then 𝑌 is 𝑒-closed compact; 
(b) If 𝑋 is 𝑆-Lindelöf, then 𝑌 is 𝑒-closed Lindelöf; 
(c) If 𝑋 is countable 𝑆-closed compact, then 𝑌 is 
countable 𝑒-closed compact. 
 
Proof. (𝒂) Let 𝑋 be 𝑆-closed and 𝒜 be an 𝑒-closed 
cover of 𝑌. 

(𝒜 ⊂ 𝑒𝐶(𝑌))(𝑌 =∪ 𝒜)
𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒      

𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     (ℬ ∶= {𝑓−1[𝐴]|𝐴 ∈ 𝒜} ⊂ 𝑅𝐶(𝑋))(𝑋 =∪ ℬ)

                                                                  𝑋 𝑖𝑠 𝑆 − 𝑐𝑙𝑜𝑠𝑒𝑑
} ⇒ 

⇒ (∃ℬ∗ ⊂ ℬ)(|ℬ∗| < ℵ0)(𝑋 =∪ ℬ
∗) 
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𝑓 𝑖𝑠 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒
⇒          (𝑓[ℬ∗] ⊂ 𝑓[ℬ] = 𝒜)(|𝑓[ℬ∗]| < ℵ0) 
(𝑌 = 𝑓[𝑋] = 𝑓[∪ ℬ∗] =∪𝐵∈ℬ∗ 𝑓[𝐵]). 
 
(𝒃) Let 𝑋 be 𝑆-Lindelöf and 𝒜 be an 𝑒-closed 
countable cover of 𝑌. 

(𝒜 ⊂ 𝑒𝐶(𝑌))(𝑌 =∪ 𝒜)
𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒      

𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     (ℬ ∶= {𝑓−1[𝐴]|𝐴 ∈ 𝒜} ⊂ 𝑅𝐶(𝑋))(𝑋 =∪ ℬ)

                                               𝑋 𝑖𝑠 𝑆 − 𝐿𝑖𝑛𝑑𝑒𝑙ö𝑓 𝑐𝑙𝑜𝑠𝑒𝑑
} ⇒ 

⇒ (∃ℬ∗ ⊂ ℬ)(|ℬ∗| ≤ ℵ0)(𝑋 =∪ ℬ
∗) 

𝑓 𝑖𝑠 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒
⇒          (𝑓[ℬ∗] ⊂ 𝑓[ℬ] = 𝒜)(|𝑓[ℬ∗]| ≤ ℵ0) 
(𝑌 = 𝑓[𝑋] = 𝑓[∪ ℬ∗] =∪𝐵∈ℬ∗ 𝑓[𝐵]). 
 
(𝒄) Let 𝑋 be countable 𝑆-closed compact and 𝒜 be an 
𝑒-closed countable cover of 𝑌. 

(𝒜 ⊂ 𝑒𝐶(𝑌))(|𝒜| ≤ ℵ0)(𝑌 =∪𝒜)
𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒      

(ℬ ∶= {𝑓−1[𝐴]|𝐴 ∈ 𝒜} ⊂ 𝑅𝐶(𝑋))(|ℬ| ≤ ℵ0)(𝑋 =∪ ℬ)

                                𝑋 𝑖𝑠 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 𝑆 − 𝑐𝑙𝑜𝑠𝑒𝑑 𝑐𝑜𝑚𝑝𝑎𝑐𝑡
} 

⇒ (∃ℬ∗ ⊂ ℬ)(|ℬ∗| < ℵ0)(𝑋 =∪ ℬ
∗)

                                       𝑓 𝑖𝑠 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒
} ⇒ 

⇒ (𝑓[ℬ∗] ⊂ 𝑓[ℬ] = 𝒜)(|𝑓[ℬ∗]| < ℵ0) 
(𝑌 = 𝑓[𝑋] = 𝑓[∪ ℬ∗] =∪𝐵∈ℬ∗ 𝑓[𝐵]). 
 
Definition 18. A topological space 𝑋 is said to be 
almost regular [13] (resp. strongly 𝑒-regular) if for any 
regular closed (resp. 𝑒-closed) set 𝐹 ⊂ 𝑋 and any point 
𝑥 ∈ 𝑋 ∖ 𝐹, there exists disjoint open (resp. 𝑒-open) sets 
𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 and 𝐹 ⊂ 𝑉. 
 
Theorem 19. If 𝑓 is completely 𝑒-irresolute 𝑒-open 
bijection from an almost regular space 𝑋 onto a space 
𝑌, then 𝑌 is strongly 𝑒-regular. 
 
Proof. Let 𝐹 ∈ 𝑒𝐶(𝑌) and 𝑓(𝑥) = 𝑦 ∉ 𝐹. 

𝑓(𝑥) = 𝑦 ∉ 𝐹 ∈ 𝑒𝐶(𝑌)
𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     𝑥 ∉ 𝑓−1[𝐹] ∈ 𝑅𝐶(𝑋)

                                                            𝑋 is almost regular
} ⇒ 

⇒ (∃𝑈, 𝑉 ∈ 𝑒𝑂(𝑋))(𝑥 ∈ 𝑈)(𝑓−1[𝐹] ⊂ 𝑉)(𝑈 ∩ 𝑉 = ∅) 

𝑓 is 𝑒−open bijection
⇒               (𝑓[𝑈], 𝑓[𝑉] ∈ 𝑒𝑂(𝑌))(𝑦 = 𝑓(𝑥) ∈ 𝑓[𝑈]) 
(𝐹 ⊂ 𝑓[𝑉])(𝑓[𝑈] ∩ 𝑓[𝑉] = ∅). 
 
Definition 20. A topological space 𝑋 is said to be: 
(a) almost normal [15] if for each closed set 𝐴 and each 
regular closed set 𝐵 such that 𝐴 ∩ 𝐵 = ∅, there exist 
disjoint open sets 𝑈 and 𝑉 such that 𝐴 ⊂ 𝑈 and 𝐵 ⊂ 𝑉. 
(b) strongly 𝑒-normal if for every pair of disjoint 𝑒-
closed subsets 𝐴 and 𝐵 of 𝑋, there exist disjoint 𝑒-open 
sets 𝑈 and 𝑉 such that 𝐴 ⊂ 𝑉 and 𝐵 ⊂ 𝑉. 
 
Theorem 21. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is completely 𝑒-

irresolute 𝑒-open bijection from an almost normal 
space 𝑋 into a space 𝑌, then 𝑌 is strongly 𝑒-normal. 
 

Proof. Let 𝐴, 𝐵 ∈ 𝑒𝐶(𝑌) and 𝐴 ∩ 𝐵 = ∅. 

(𝐴, 𝐵 ∈ 𝑒𝐶(𝑌))(𝐴 ∩ 𝐵 = ∅)

                                 𝑓 𝑖𝑠 𝑐. 𝑒. 𝑖.
} ⇒ 

⇒ (𝑓−1[𝐴], 𝑓−1[𝐵] ∈ 𝑅𝐶(𝑋))(𝑓−1[𝐴 ∩ 𝐵] = 𝑓−1[∅]) 

⇒ (𝑓−1[𝐴], 𝑓−1[𝐵] ∈ 𝑅𝐶(𝑋))(𝑓−1[𝐴] ∩ 𝑓−1[𝐵] = ∅)

                                                                       𝑅𝐶(𝑋) ⊂ 𝐶(𝑋)
} ⇒ 

⇒ (𝑓−1[𝐴] ∈ 𝐶(𝑋))(𝑓−1[𝐵] ∈ 𝑅𝐶(𝑋)) 
(𝑓−1[𝐴] ∩ 𝑓−1[𝐵] = ∅) 

𝑋 is almost normal
⇒              

(∃𝑈, 𝑉 ∈ 𝜏)(𝑓−1[𝐴] ⊂ 𝑈)(𝑓−1[𝐵] ⊂ 𝑉)(𝑈 ∩ 𝑉 = ∅)

                                                      𝑓 is 𝑒 − open bijection
} ⇒ 

⇒ (𝑓[𝑈], 𝑓[𝑉] ∈ 𝑒𝑂(𝑌))(𝐴 ⊂ 𝑓[𝑈])(𝐵 ⊂ 𝑓[𝑉]) 
(𝑓[𝑈] ∩ 𝑓[𝑉] = ∅). 

 

 
Definition 22. A topological space (𝑋, 𝜏) is said to be 
𝑒-𝑇1 [6] (resp. 𝑟-𝑇1 [5]) if for each pair of distinct points 
𝑥 and 𝑦 of 𝑋, there exist 𝑒-open (resp. regular open) 
sets 𝑈1 and 𝑈2 such that 𝑥 ∈ 𝑈1 and 𝑦 ∈ 𝑈2, 𝑥 ∉ 𝑈2 and 
𝑦 ∉ 𝑈1. 
 
Theorem 23. If 𝑓: 𝑋 → 𝑌 is completely 𝑒-irresolute 
injection and 𝑌 is 𝑒-𝑇1, then 𝑋 is 𝑟-𝑇1. 
 
Proof. Let 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ≠ 𝑦. 

(𝑥, 𝑦 ∈ 𝑋)(𝑥 ≠ 𝑦)
𝑓 𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒
⇒         𝑓(𝑥) ≠ 𝑓(𝑦)

                                                           𝑌 𝑖𝑠 𝑒 − 𝑇1
} ⇒ 

⇒ (∃𝐹1 ∈ 𝑒𝑂(𝑌, 𝑓(𝑥))) (∃𝐹2 ∈ 𝑒𝑂(𝑌, 𝑓(𝑦))) (𝑓(𝑥) ∉ 𝐹2) 
(𝑓(𝑦) ∉ 𝐹1) 

𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     (𝑓−1[𝐹1] ∈ 𝑅𝑂(𝑋, 𝑥))(𝑓

−1[𝐹2] ∈ 𝑅𝑂(𝑋, 𝑦)) 
(𝑥 ∉ 𝑓−1[𝐹2])(𝑦 ∉ 𝑓

−1[𝐹1]). 
 
Definition 24. A topological space 𝑋 is said to be 𝑒-𝑇2 
[8] (resp. 𝑟-𝑇2   [16]) for each pair of distinct points 𝑥 
and 𝑦 in 𝑋, there exist disjoint 𝑒-open (resp. regular 
open) sets 𝐴 and 𝐵 in 𝑋 such that 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. 
 
Theorem 25. If 𝑓: 𝑋 → 𝑌 is completely 𝑒-irresolute 
injection and 𝑌 is 𝑒-𝑇2, then 𝑋 is 𝑟-𝑇2. 
 
Proof. Let 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ≠ 𝑦. 

(𝑥, 𝑦 ∈ 𝑋)(𝑥 ≠ 𝑦)
𝑓 𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒
⇒         𝑓(𝑥) ≠ 𝑓(𝑦)

                                                          𝑌 𝑖𝑠 𝑒 − 𝑇2
} ⇒ 

⇒ (∃𝐴 ∈ 𝑒𝑂(𝑌, 𝑓(𝑥))) (∃𝐵 ∈ 𝑒𝑂(𝑌, 𝑓(𝑦))) (𝐴 ∩ 𝐵 = ∅) 

𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     (𝑓−1[𝐴] ∈ 𝑅𝑂(𝑋, 𝑥))(𝑓−1[𝐵] ∈ 𝑅𝑂(𝑋, 𝑦)) 
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(𝑓−1[𝐴] ∩ 𝑓−1[𝐵] = ∅). 
 

Theorem 26. Let 𝑌 be an 𝑒-𝑇2 space. If 𝑓: 𝑋 → 𝑌 and 

𝑔: 𝑋 → 𝑌 are completely 𝑒-irresolute, then the set 
𝐴 = {𝑥|𝑓(𝑥) = 𝑔(𝑥)} ∈ 𝛿𝐶(𝑋). 

Proof. Let 𝑥 ∉ 𝐴. 

𝑥 ∉ 𝐴 ⇒ 𝑓(𝑥) ≠ 𝑔(𝑥)

                    𝑌 𝑖𝑠 𝑒 − 𝑇2
} ⇒ 

⇒ (∃𝑉1 ∈ 𝑒𝑂(𝑌, 𝑓(𝑥))) (∃𝑉2 ∈ 𝑒𝑂(𝑌, 𝑔(𝑥))) 
(𝑉1 ∩ 𝑉2 = ∅) 

𝑓 𝑎𝑛𝑑 𝑔 𝑎𝑟𝑒 𝑐.𝑒.𝑖.
⇒            

⇒ (𝑓−1[𝑉1] ∈ 𝑅𝑂(𝑋, 𝑥))(𝑔
−1[𝑉2] ∈ 𝑅𝑂(𝑋, 𝑥)) 

(𝑓−1[𝑉1 ∩ 𝑉2] = ∅)(𝑔
−1[𝑉1 ∩ 𝑉2] = ∅) 

⇒ (𝑈 ≔ 𝑓−1[𝑉1] ∩ 𝑔
−1[𝑉2] ∈ 𝑅𝑂(𝑋, 𝑥))(𝑈 ∩ 𝐴 = ∅) 

⇒ 𝑥 ∉ 𝑐𝑙𝛿(𝐴). 

Then 𝐴 is 𝛿-closed in 𝑋. 
 
Theorem 27. Let 𝑌 be an 𝑒-𝑇2 space. If 𝑓: 𝑋 → 𝑌 is 
completely 𝑒-irresolute, then the set 𝐵 = {(𝑥, 𝑦)|𝑓(𝑥) =
𝑓(𝑦)} ∈ 𝛿𝐶(𝑋 × 𝑋). 
 

Proof. Let (𝑥, 𝑦) ∉ 𝐵. 

(𝑥, 𝑦) ∉ 𝐵 ⇒ 𝑓(𝑥) ≠ 𝑓(𝑦)

                            𝑌 𝑖𝑠 𝑒 − 𝑇2
} ⇒ 

⇒ (∃𝑉1 ∈ 𝑒𝑂(𝑌, 𝑓(𝑥))) (∃𝑉2 ∈ 𝑒𝑂(𝑌, 𝑓(𝑦))) 
(𝑉1 ∩ 𝑉2 = ∅) 

𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒     (𝑓−1[𝑉1] ∈ 𝑅𝑂(𝑋, 𝑥))(𝑓

−1[𝑉2] ∈ 𝑅𝑂(𝑋, 𝑦)) 
(𝑓−1[𝑉1] ∩ 𝑓

−1[𝑉2] = ∅) 

⇒ (𝑈 ≔ 𝑓−1[𝑉1] × 𝑓
−1[𝑉2] ∈ 𝑅𝑂(𝑋 × 𝑋, (𝑥, 𝑦))) 

(𝑈 ∩ 𝐵 = ∅) 

⇒ (𝑥, 𝑦) ∉ 𝑐𝑙𝛿(𝐵). 

Then 𝐵 is 𝛿-closed in 𝑋 × 𝑋. 
 
3 Completely Weakly e-irresolute Functions 
 
Definition 28. A function 𝑓: 𝑋 → 𝑌 is said to be 
completely weakly 𝑒-irresolute (briefly c.w.e.i.) if for 
each 𝑥 ∈ 𝑋 and for any 𝑒-open set 𝑉 containing 𝑓(𝑥), 
there exists an open set 𝑈 containing 𝑥 such that 
𝑓[𝑈] ⊂ 𝑉. 
 
Remark 29. We have the following diagram from 
Definition 1 and Definition 2 and Definition 28. The 
converses of these implications are not true in general 
as shown by the following examples. 
 

c.e.i. → c.w.e.i. → e.i. 

 
Example 30. Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {∅, 𝑋, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}} 

and 𝜎 = {∅, 𝑋, {𝑎}, {𝑎, 𝑏}}. Then the identity function 
𝑓: (𝑋, 𝜏) → (𝑋, 𝜎) is 𝑒-irresolute but not completely 
weakly 𝑒-irresolute. 
 
QUESTION. Is there any completely weakly 𝑒-
irresolute function which is not completely 𝑒-
irresolute? 
 
Theorem 31. Let 𝑓:𝑋 → 𝑌 be a function, then the 
following statements are equivalent: 
(a) 𝑓 is completely weakly 𝑒-irresolute; 
(b) 𝑓−1[𝑒 − 𝑖𝑛𝑡(𝐵)] ⊂ 𝑖𝑛𝑡(𝑓−1[𝐵]) for every subset 𝐵 of 
𝑌; 
(c) 𝑓[𝑐𝑙(𝐴)] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝐴]) for every subset 𝐴 of 𝑋; 
(d) 𝑐𝑙(𝑓−1[𝐵]) ⊂ 𝑓−1[𝑒 − 𝑐𝑙(𝐵)] for every subset 𝐵 of 𝑌; 
(e) 𝑓−1[𝑉] is closed in 𝑋 for each 𝑒-closed set 𝑉 in 𝑌; 
(f) 𝑓−1[𝑉] is open in 𝑋 for each 𝑒-open set 𝑉 in 𝑌. 
 
Proof. (𝒂) ⇒ (𝒃): Let 𝐵 ⊂ 𝑌 and 𝑥 ∈ 𝑓−1[𝑒 − 𝑖𝑛𝑡(𝐵)]. 

𝑥 ∈ 𝑓−1[𝑒 − 𝑖𝑛𝑡(𝐵)] ⇒ 𝑒 − 𝑖𝑛𝑡(𝐵) ∈ 𝑒𝑂(𝑌, 𝑓(𝑥)) 
(𝑎)
⇒ (∃𝑈 ∈ 𝒰(𝑥))(𝑓[𝑈] ⊂ 𝑒 − 𝑖𝑛𝑡(𝐵) ⊂ 𝐵) 

⇒ (∃𝑈 ∈ 𝒰(𝑥))(𝑈 ⊂ 𝑓−1[𝐵]) ⇒ 𝑥 ∈ 𝑖𝑛𝑡(𝑓−1[𝐵]). 

(𝒃) ⇒ (𝒄): Let 𝐴 ⊂ 𝑋. 

𝐴 ⊂ 𝑋 ⇒ 𝑓[𝐴] ⊂ 𝑌 ⇒ 𝑌 ∖ 𝑓[𝐴] ⊂ 𝑌
(𝑏)
⇒  

(𝑏)
⇒ 𝑓−1[𝑒 − 𝑖𝑛𝑡(𝑌 ∖ 𝑓[𝐴])] ⊂ 𝑖𝑛𝑡(𝑓−1[𝑌 ∖ 𝑓[𝐴]]) 

⇒ 𝑋 ∖ 𝑓−1[𝑒 − 𝑐𝑙(𝑓[𝐴])] ⊂ 𝑋 ∖ 𝑐𝑙(𝑓−1[𝑓[𝐴]]) 

⇒ 𝑐𝑙(𝐴) ⊂ 𝑐𝑙(𝑓−1[𝑓[𝐴]]) ⊂ 𝑓−1[𝑒 − 𝑐𝑙(𝑓[𝐴])] 

⇒ 𝑓[𝑐𝑙(𝐴)] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝐴]). 

(𝒄) ⇒ (𝒅): Let 𝐵 ⊂ 𝑌. 

𝐵 ⊂ 𝑌 ⇒ 𝑓−1[𝐵] ⊂ 𝑋
(𝑐)
⇒  

(𝑐)
⇒ 𝑓[𝑐𝑙(𝑓−1[𝐵])] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝑓−1[𝐵]]) ⊂ 𝑒 − 𝑐𝑙(𝐵) 

⇒ 𝑐𝑙(𝑓−1[𝐵]) ⊂ 𝑓−1[𝑒 − 𝑐𝑙(𝐵)]. 

(𝒅) ⇒ (𝒆): Let 𝑉 ∈ 𝑒𝐶(𝑌). 

𝑉 ∈ 𝑒𝐶(𝑌) ⇒ 𝑉 = 𝑒 − 𝑐𝑙(𝑉)
(𝑑)
⇒  

(𝑑)
⇒ 𝑐𝑙(𝑓−1[𝑉]) ⊂ 𝑓−1[𝑒 − 𝑐𝑙(𝑉)] = 𝑓−1[𝑉] 

⇒ 𝑓−1[𝑉] = 𝑐𝑙(𝑓−1[𝑉]) ⇒ 𝑓−1[𝑉] ∈ 𝐶(𝑋). 

(𝒆) ⇒ (𝒇): Obvious. 

(𝒇) ⇒ (𝒂): Let 𝑉 ∈ 𝑒𝑂(𝑌) and 𝑥 ∈ 𝑓−1[𝑉]. 

(𝑉 ∈ 𝑒𝑂(𝑌))(𝑥 ∈ 𝑓−1[𝑉]) ⇒ 𝑉 ∈ 𝑒𝑂(𝑌, 𝑓(𝑥))
(𝑓)
⇒  

(𝑓)
⇒ (𝑈 ≔ 𝑓−1[𝑉] ∈ 𝒰(𝑥))(𝑓[𝑈] ⊂ 𝑉). 

 
Theorem 32. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a bijective 
function. Then the following statements are 
equivalent: 
(a) 𝑓 is completely weakly 𝑒-irresolute; 
(b) 𝑒 − 𝑖𝑛𝑡(𝑓[𝐴]) ⊂ 𝑓[𝑖𝑛𝑡(𝐴)] for every subset of 𝑋. 
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Proof. (𝒂) ⇒ (𝒃): Let 𝐴 ⊂ 𝑋. 

𝐴 ⊂ 𝑋 ⇒ 𝑋 ∖ 𝐴 ⊂ 𝑋
(𝑎)
⇒  

(𝑎)
⇒ 𝑓[𝑋 ∖ 𝑖𝑛𝑡(𝐴)] = 𝑓[𝑐𝑙(𝑋 ∖ 𝐴)] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝑋 ∖ 𝐴])

                                                                        𝑓 𝑖𝑠 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑜𝑛
} ⇒ 

⇒ 𝑌 ∖ 𝑓[𝑖𝑛𝑡(𝐴)] ⊂ 𝑌 ∖ 𝑒 − 𝑖𝑛𝑡(𝑓[𝐴]) 

⇒ 𝑒 − 𝑖𝑛𝑡(𝑓[𝐴]) ⊂ 𝑓[𝑖𝑛𝑡(𝐴)]. 

(𝒃) ⇒ (𝒂): Let 𝐴 ⊂ 𝑋. 

𝐴 ⊂ 𝑋 ⇒ 𝑋 ∖ 𝐴 ⊂ 𝑋
(𝑏)
⇒ 𝑒 − 𝑖𝑛𝑡(𝑓[𝑋 ∖ 𝐴]) ⊂ 𝑓[𝑖𝑛𝑡(𝑋 ∖ 𝐴)]

                                                                                   𝑓 𝑖𝑠 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑜𝑛
} 

⇒ 𝑌 ∖ 𝑒 − 𝑐𝑙(𝑓[𝐴]) ⊂ 𝑌 ∖ 𝑓[𝑐𝑙(𝐴)] 

⇒ 𝑓[𝑐𝑙(𝐴)] ⊂ 𝑒 − 𝑐𝑙(𝑓[𝐴]). 
 
Theorem 33. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) 
be any two functions. Then the following statements 
hold: 
(a) If 𝑓 is c.w.e.i. and 𝑔 is 𝑒-irresolute, then 𝑔 ∘ 𝑓: 𝑋 →
𝑍 is c.w.e.i. 
(b) If 𝑓 is completely continuous and 𝑔 is c.w.e.i., then 
𝑔 ∘ 𝑓 is c.e.i. 
(c) If 𝑓 is strongly continuous and 𝑔 is c.e.i., then 𝑔 ∘ 𝑓 
is c.e.i. 
(d) If 𝑓 and 𝑔 are c.e.i., then 𝑔 ∘ 𝑓 is c.e.i. 
(e) If 𝑓 is c.e.i. and 𝑔 is c.w.e.i., then 𝑔 ∘ 𝑓 is c.e.i. 
(f) If 𝑓 is c.w.e.i. and 𝑔 is 𝑒-continuous, then 𝑔 ∘ 𝑓 is 
continuous. 
(g) If 𝑓 is 𝑒-continuous and 𝑔 is c.w.e.i., then 𝑔 ∘ 𝑓 is 𝑒-
irresolute. 
(h) If 𝑓 is continuous and 𝑔 is c.w.e.i., then 𝑔 ∘ 𝑓 is 
c.w.e.i. 
 
Proof. Straightforward. 
 
Definition 34. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is said to be 
almost open [12] if 𝑓[𝑈] is open in 𝑌 for every regular 
open set 𝑈 of 𝑋. 
 
Theorem 35. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost open 
surjection and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) is any function such 
that 𝑔 ∘ 𝑓: (𝑋, 𝜏) → (𝑍, 𝜂) is completely 𝑒-irresolute, 
then 𝑔 is completely weakly 𝑒-irresolute. 
 
Proof. Let 𝑉 ∈ 𝑒𝑂(𝑍). 

𝑉 ∈ 𝑒𝑂(𝑍)
𝑔∘𝑓 𝑖𝑠 𝑐.𝑒.𝑖.
⇒       (𝑔 ∘ 𝑓)−1[𝑉] = 𝑓−1[𝑔−1[𝑉]] ∈ 𝑅𝑂(𝑋)

                                                      𝑓 𝑖𝑠 𝑎𝑙𝑚𝑜𝑠𝑡 𝑜𝑝𝑒𝑛 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑜𝑛
} 

⇒ 𝑓 [𝑓−1[𝑔−1[𝑉]]] = 𝑔−1[𝑉] ∈ 𝜎. 
 
Theorem 36. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is open surjection and 
𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) is any function such that 𝑔 ∘
𝑓: (𝑋, 𝜏) → (𝑍, 𝜂) is completely weakly 𝑒-irresolute, 
then 𝑔 is completely weakly 𝑒-irresolute. 
 
Proof. Let 𝑉 ∈ 𝑒𝑂(𝑍). 

𝑉 ∈ 𝑒𝑂(𝑍)
𝑔∘𝑓 𝑖𝑠 𝑐.𝑤.𝑒.𝑖.
⇒         (𝑔 ∘ 𝑓)−1[𝑉] = 𝑓−1[𝑔−1[𝑉]] ∈ 𝜏

                                                              𝑓 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑜𝑛
} 

⇒ 𝑓 [𝑓−1[𝑔−1[𝑉]]] = 𝑔−1[𝑉] ∈ 𝜎. 
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