Two New Types of Irresolute Functions via e-open Sets

Murad Özkoç1*, Tuğçe Yılmaz2

^{1,2}Muğla Sıtkı Koçman Üniversitesi Fen Fakültesi Matematik Bölümü 48000 Menteşe, Muğla +90 252 211 50 92 murad.ozkoc@mu.edu.tr *Corresponding author

> Recieved: 1st December 2016 Accepted: 17th March 2017 DOI: http://dx.doi.org/10.18466/cbujos.302646

Abstract

The main purpose of this paper is to introduce two new types of irresolute functions called completely *e*-irresolute and completely weakly *e*-irresolute functions via *e*-open sets introduced by Ekici. We obtain some characterizations of these functions. Also, we investigate some fundamental properties between these new notions and separation and covering.

Keywords– completely e-irresolute, completely weakly e-irresolute, countably e-compact, e-closedcompact,e-Lindelöf,stronglye-regularspace,e-normalspace.

1 Introduction and Preliminaries

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise stated. Let *X* be a topological space and *A* a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. U(x)denotes all open neighborhoods of the point $x \in X$. A subset A of a space X called regular open [17] (resp. regular closed [17]) if A = int(cl(A)) (resp. A =cl(int(A))). The δ -interior [19] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $int_{\delta}(A)$. The subset A is called δ -open [19] if $A = int_{\delta}(A)$, i.e., a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set $A \subset X$ is called δ closed [19] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x | U \in$ $\mathcal{U}(x) \Rightarrow int(cl(U)) \cap A \neq \emptyset$. The family of all δ -open (resp. δ -closed) sets in X is denoted by $\delta O(X)$ (resp. $\delta C(X)$).

A subset *A* of a space *X* called *e*-open [17] if $A \subset int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))$. The complement of an *e*-open set is said to be *e*-closed. The *e*-interior [7] of a subset *A* of *X* is the union of all *e*-open sets of *X*

contained in *A* and is denoted by e-int(A). The eclosure [7] of a subset *A* of *X* is the intersection of all eclosed sets of *X* containing *A* and is denoted by ecl(A). The family of all e-open (resp. regular open) sets of *X* are denoted by eO(X) (resp. RO(X)). The family of all e-closed (resp. regular closed) sets of *X* is denoted by eC(X) (resp. RC(X)) and the family of all e-open (resp. regular open) sets of *X* containing a point $x \in X$ is denoted by eO(X, x) (resp. RO(X, x)).

Definition 1. A function $f: X \rightarrow Y$ is said to be:

(a) strongly continuous [9] (briefly s.c.) if $f^{-1}[V]$ is both open and closed in *X* for each subset *V* of *Y*;

(b) completely continuous [2] (briefly c.c.) if $f^{-1}[V]$ is regular open in *X* every open set *V* of *Y*;

(c) *e*-irresolute [6] (briefly e.i.) if $f^{-1}[V]$ is *e*-closed (resp. *e*-open) in *X* for every *e*-closed (resp. *e*-open) subset *V* of *Y*;

(d) *e*-continuous [7] (briefly e.c.) if $f^{-1}[V]$ is *e*-open in *X* every open set *V* of *Y*.

2 Completely *e*-irresolute Functions

Definition 2. A function $f: X \rightarrow Y$ is said to be completely *e*-irresolute (briefly c.e.i.) if the inverse image of each *e*-open subset of *Y* is regular open in *X*.

Remark 3. It is not difficult to see that every strongly continuous function is completely *e*-irresolute and

every completely *e*-irresolute function is *e*-irresolute. But the converse of the implications are not true in general as shown by the following examples.

s.c.
$$\rightarrow$$
 c.e.i. \rightarrow e.i.

Example 4. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\emptyset, X, \{b, c\}\}$. Then the identity function $f: (X, \tau) \rightarrow (X, \sigma)$ is *e*-irresolute but not completely *e*-irresolute.

QUESTION. Is there any completely *e*-irresolute function which is not strongly continuous?

Theorem 5. Let $f: X \rightarrow Y$ be a function, then the following statements are equivalent:

(a) *f* is completely *e*-irresolute;

(b) $f^{-1}[e - int(B)] \subset int_{\delta}(f^{-1}[B])$ for every subset *B* of *Y*;

(c) $f[cl_{\delta}(A)] \subset e - cl(f[A])$ for every subset *A* of *X*;

(d) $cl_{\delta}(f^{-1}[B]) \subset f^{-1}[e - cl(B)]$ for every subset *B* of *Y*;

(e) $f^{-1}[V]$ is regular closed in *X* for each *e*-closed set *V* in *Y*;

(f) $f^{-1}[V]$ is regular open in *X* for each *e*-open set *V* in *Y*. Proof. (*a*) \Rightarrow (*b*): Let $B \subset Y$ and $x \in f^{-1}[e - int(B)]$.

$$x \in f^{-1}[e - int(B)] \Rightarrow e - int(B) \in eO(Y, f(x))$$

$$\stackrel{(a)}{\Rightarrow} (\exists U \in RO(X, x))(f[U] \subset e - int(B) \subset B)$$

 $\Rightarrow (\exists U \in RO(X, x))(U \subset f^{-1}[B]) \Rightarrow x \in int_{\delta}(f^{-1}[B]).$

 $(\boldsymbol{b}) \Rightarrow (\boldsymbol{c})$: Let $A \subset X$.

$$A \subset X \Rightarrow f[A] \subset Y \Rightarrow Y \setminus f[A] \subset Y \stackrel{(b)}{\Rightarrow}$$

$$\stackrel{(b)}{\Rightarrow} f^{-1}[e - int(Y \setminus f[A])] \subset int_{\delta} (f^{-1}[Y \setminus f[A]])$$

$$\Rightarrow X \setminus f^{-1}[e - cl(f[A])] \subset X \setminus cl_{\delta} (f^{-1}[f[A]])$$

$$\Rightarrow cl_{\delta}(A) \subset cl_{\delta} (f^{-1}[f[A]]) \subset f^{-1}[e - cl(f[A])]$$

$$\Rightarrow f[cl_{\delta}(A)] \subset e - cl(f[A]).$$

 $(c) \Rightarrow (d)$: Let $B \subset Y$.

$$B \subset Y \Rightarrow f^{-1}[B] \subset X \stackrel{(c)}{\Rightarrow}$$

$$\stackrel{(c)}{\Rightarrow} f[cl_{\delta}(f^{-1}[B])] \subset e - cl(f[f^{-1}[B]]) \subset e - cl(B)$$
$$\Rightarrow cl_{\delta}(f^{-1}[B]) \subset f^{-1}[e - cl(B)].$$

$$(d) \Rightarrow (e)$$
: Let $V \in eC(Y)$.

$$V \in eC(Y) \Rightarrow V = e - cl(V) \stackrel{(d)}{\Rightarrow}$$

$$\stackrel{(d)}{\Rightarrow} cl_{\delta}(f^{-1}[V]) \subset f^{-1}[e - cl(V)] = f^{-1}[V]$$
$$\Rightarrow f^{-1}[V] = cl_{\delta}(f^{-1}[V]) \Rightarrow f^{-1}[V] \in \delta \mathcal{C}(X).$$
$$(e) \Rightarrow (f): \text{Obvious.}$$

 $(f) \Rightarrow (a): \text{Let } V \in eO(Y) \text{ and } x \in f^{-1}[V].$ $(V \in eO(Y))(x \in f^{-1}[V]) \Rightarrow V \in eO(Y, f(x)) \stackrel{(f)}{\Rightarrow}$

$$\stackrel{(f)}{\Rightarrow} \big(U \coloneqq f^{-1}[V] \in RO(X, x) \big) (f[U] \subset V)$$

Theorem 6. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a bijective function. Then the following statements are equivalent:

(a) f is completely *e*-irresolute;

(b) $e - int(f[A]) \subset f[int_{\delta}(A)]$ for every subset of *X*.

Proof.
$$(a) \Rightarrow (b)$$
: Let $A \subset X$.
 $A \subset X \Rightarrow X \setminus A \subset X \stackrel{(a)}{\Rightarrow}$
 $\stackrel{(a)}{\Rightarrow} f[X \setminus int_{\delta}(A)] = f[cl_{\delta}(X \setminus A)] \subset e - cl(f[X \setminus A])$
 f is bijection
 $\Rightarrow Y \setminus f[int_{\delta}(A)] \subset Y \setminus e - int(f[A])$
 $\Rightarrow e - int(f[A]) \subset f[int_{\delta}(A)].$
 $(b) \Rightarrow (a)$: Let $A \subset X$.
 $A \subset X \Rightarrow X \setminus A \subset X \stackrel{(b)}{\Rightarrow}$
 $\stackrel{(b)}{\Rightarrow} int(f[X]) = f[int_{\delta}(X)]$

$$\Rightarrow Y \setminus e - cl(f[A]) \subset Y \setminus f[cl_{\delta}(A)]$$

 $\Rightarrow f[cl_{\delta}(A)] \subset e - cl(f[A]).$

Lemma 7. [10] Let *Y* be an open subset of a topological space *X*. Then the following hold:

(a) If A is regular open in X, then so is $A \cap Y$ in the subspace (Y, τ_Y) .

(b) If *B* is regular open in (Y, τ_Y) , then there exists a regular open set *R* in *X* such that $B = R \cap Y$.

Theorem 8. If $f: (X, \tau) \to (Y, \sigma)$ is a completely *e*-irresolute function and *A* is any open subset of *X*, then the restriction $f_A: A \to Y$ is completely *e*-irresolute.

Proof. Let
$$F \in eO(Y)$$
.
 $F \in eO(Y) \xrightarrow{f \text{ is c.e.i.}} f^{-1}[F] \in RO(X)$
 $A \in \tau$
 $\downarrow Lemma 7$
 $\downarrow Lemma 7$
 $\downarrow (f_A)^{-1}[F] = f^{-1}[F] \cap A \in RO(A)$.

Lemma 9. [3] Let *Y* be a preopen subset of a topological space *X*. Then $Y \cap A$ is regular open in *Y* for each regular open subset *A* of *X*.

Theorem 10. If $f: (X, \tau) \to (Y, \sigma)$ is a completely *e*-irresolute function and *A* is preopen subset of *X*, then $f_A: A \to Y$ is completely *e*-irresolute.

Proof. It is clear from Lemma 9.

Theorem 11. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two functions. Then the following hold:

(a) If f is completely e-irresolute and g is e-irresolute, then $g \circ f$ is completely e-irresolute;

(b) If f is completely continuous and g is completely e-irresolute, then $g \circ f$ is completely e-irresolute; (c) If f is completely e-irresolute and g is e-

(c) If f is completely *e*-irresolute and g is *e*-continuous, then $g \circ f$ is completely continuous.

Proof. Straightforward.

Definition 12. A space *X* is said to be almost connected [5] (resp. *e*-connected [8]) if there does not exist disjoint regular open (resp. *e*-open) sets *A* and *B* such that $A \cup B = X$.

Theorem 13. If $f: X \to Y$ is completely *e*-irresolute surjection and *X* is almost connected, then *Y* is *e*-connected.

Proof. Suppose that *Y* is not *e*-connected. *Y* is not *e* - connected \Rightarrow $\Rightarrow (\exists A, B \in eO(Y) \setminus \{\emptyset\})(A \cap B = \emptyset)(A \cup B = Y)$ *f* is completely *e* - irresolute surjection \Rightarrow

$$\Rightarrow (f^{-1}[A], f^{-1}[B] \in RO(X) \setminus \{\emptyset\}) (f^{-1}[A \cap B] = f^{-1}[\emptyset])(f^{-1}[A \cup B] = f^{-1}[Y]) \Rightarrow (f^{-1}[A], f^{-1}[B] \in RO(X) \setminus \{\emptyset\}) (f^{-1}[A] \cap f^{-1}[B] = \emptyset)(f^{-1}[A] \cup f^{-1}[B] = X)$$

This means that *X* is not almost connected.

Definition 14. A topological space *X* is said to be:

(a) nearly compact [14] if every regular open cover of *X* has a finite subcover;

(b) nearly countably compact [4] if every countable cover by regular open sets has a finite subcover;

(c) nearly Lindelöf [5] if every cover of *X* by regular open sets has a countable subcover;

(**d**) *e*-compact [8] if every *e*-open cover of *X* has a finite subcover;

(e) countably *e*-compact if every *e*-open countable cover of *X* has a finite subcover;

(f) *e*-Lindelöf if every cover of *X* by *e*-open sets has a countable subcover.

Theorem 15. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a completely *e*-irresolute surjection. Then the following statements hold:

(a) If *X* is nearly compact, then *Y* is *e*-compact;

(**b**) If *X* is nearly Lindelöf, then *Y* is *e*-Lindelöf;

(c) If *X* is nearly countably compact, then *Y* is countably *e*-compact.

Proof. (*a*) Let *X* be nearly compact and A be an *e*-open cover of *Y*.

$$\begin{aligned} \big(\mathcal{A} \subset eO(Y)\big)(Y = \cup \mathcal{A}) & \xrightarrow{f \text{ is c.e.i.}} \\ \xrightarrow{f \text{ is c.e.i.}} \big(\mathcal{B} := \{f^{-1}[\mathcal{A}] | \mathcal{A} \in \mathcal{A}\} \subset RO(X)\big)(X = \cup \mathcal{B}) \\ & X \text{ is nearly compact} \end{aligned} \} \Rightarrow \\ \Rightarrow (\exists \mathcal{B}^* \subset \mathcal{B})(|\mathcal{B}^*| < \aleph_0)(X = \cup \mathcal{B}^*) \end{aligned}$$

$$\underbrace{ \stackrel{f \text{ is surjective}}{\longrightarrow}}_{(Y = f[X] = f[\cup \mathcal{B}^*] \subset f[\mathcal{B}] = \mathcal{A})(|f[\mathcal{B}^*]| < \aleph_0)$$

(*b*) Let *X* be nearly Lindelöf and \mathcal{A} be an *e*-open cover of *Y*.

$$\begin{array}{l} \left(\mathcal{A} \subset eO(Y)\right)(|\mathcal{A}| \leq \aleph_0)(Y = \cup \mathcal{A}) \xrightarrow{f \text{ is c.e.i.}} \\ \xrightarrow{f \text{ is c.e.i.}} \left(\mathcal{B} := \{f^{-1}[\mathcal{A}] | \mathcal{A} \in \mathcal{A}\} \subset RO(X)\right)(X = \cup \mathcal{B}) \\ X \text{ is nearly countably compact} \end{array} \right\} \Rightarrow$$

$$\Rightarrow (\exists \mathcal{B}^* \subset \mathcal{B})(|\mathcal{B}^*| < \aleph_0)(X = \cup \mathcal{B}^*)$$

$$f \text{ is surjective} \end{cases} \Rightarrow$$

$$\Rightarrow (f[\mathcal{B}^*] \subset f[\mathcal{B}] = \mathcal{A})(|f[\mathcal{B}^*]| < \aleph_0)$$

$$(Y = f[X] = f[\cup \mathcal{B}^*] = \cup_{B \in \mathcal{B}^*} f[B]).$$

(c) Let X be nearly countably compact and A be an *e*-open countable cover of Y.

$$\begin{aligned} \left(\mathcal{A} \subset eO(Y)\right)(|\mathcal{A}| \leq \aleph_0)(Y = \cup \mathcal{A}) \xrightarrow{f \text{ is c.e.i.}} \\ \xrightarrow{f \text{ is c.e.i.}} \left(\mathcal{B} := \{f^{-1}[A] | A \in \mathcal{A}\} \subset RO(X)\right)(X = \cup \mathcal{B}) \\ X \text{ is nearly countably compact} \end{aligned} \} \Rightarrow$$

$$\Rightarrow (\exists \mathcal{B}^* \subset \mathcal{B})(|\mathcal{B}^*| < \aleph_0)(X = \cup \mathcal{B}^*) \\ f \text{ is surjective} \} \Rightarrow$$

 $\begin{array}{l} \Rightarrow (f[\mathcal{B}^*] \subset f[\mathcal{B}] = \mathcal{A})(|f[\mathcal{B}^*]| < \aleph_0) \\ (Y = f[X] = f[\cup \mathcal{B}^*] = \cup_{B \in \mathcal{B}^*} f[B]). \end{array}$

Definition 16. A topological space *X* is said to be:

(a) *S*-closed [18] (resp. *e*-closed compact) if every regular closed (resp. *e*-closed) cover of *X* has a finite subcover;

(b) Countable *S*-closed compact [1] (resp. countable *e*-closed compact) if every countable cover of *X* by regular closed (resp. *e*-closed) sets has a finite subcover;

(c) *S*-Lindelöf [11] (resp. *e*-closed Lindelöf) if every cover of *X* by regular closed (resp. *e*-closed) sets has a countable subcover.

Theorem 17. Let $f: (X, \tau) \to (Y, \sigma)$ be a completely *e*-irresolute surjection. Then the following statements hold:

(a) If *X* is *S*-closed, then *Y* is *e*-closed compact;

(**b**) If *X* is *S*-Lindelöf, then *Y* is *e*-closed Lindelöf;

(c) If *X* is countable *S*-closed compact, then *Y* is countable *e*-closed compact.

Proof. (*a*) Let *X* be *S*-closed and \mathcal{A} be an *e*-closed cover of *Y*.

$$\begin{array}{l} \left(\mathcal{A} \subset eC(Y)\right)(Y = \cup \mathcal{A}) \xrightarrow{f \text{ is c.e.i.}} \\ \xrightarrow{f \text{ is c.e.i.}} \left(\mathcal{B} := \{f^{-1}[A] | A \in \mathcal{A}\} \subset RC(X)\right)(X = \cup \mathcal{B}) \\ X \text{ is } S - closed \end{array} \right\} \Rightarrow \\ \Rightarrow (\exists \mathcal{B}^* \subset \mathcal{B})(|\mathcal{B}^*| < \aleph_0)(X = \cup \mathcal{B}^*) \end{array}$$

(**b**) Let *X* be *S*-Lindelöf and \mathcal{A} be an *e*-closed countable cover of *Y*.

$$\begin{pmatrix} \mathcal{A} \subset e\mathcal{C}(Y) \end{pmatrix} (Y = \cup \mathcal{A}) \xrightarrow{f \text{ is c.e.i.}} \\ \xrightarrow{f \text{ is c.e.i.}} (\mathcal{B} := \{f^{-1}[\mathcal{A}] | \mathcal{A} \in \mathcal{A}\} \subset R\mathcal{C}(X)) (X = \cup \mathcal{B}) \\ X \text{ is } S - Lindel\"{o}f \text{ closed} \end{pmatrix} \Rightarrow$$

 $\Rightarrow (\exists \mathcal{B}^* \subset \mathcal{B})(|\mathcal{B}^*| \le \aleph_0)(X = \cup \mathcal{B}^*)$

 $\begin{array}{l} \stackrel{f \text{ is surjective}}{\Longrightarrow} (f[\mathcal{B}^*] \subset f[\mathcal{B}] = \mathcal{A})(|f[\mathcal{B}^*]| \leq \aleph_0) \\ (Y = f[X] = f[\cup \mathcal{B}^*] = \cup_{B \in \mathcal{B}^*} f[B]). \end{array}$

(c) Let X be countable S-closed compact and A be an *e*-closed countable cover of Y.

$$(\mathcal{A} \subset eC(Y))(|\mathcal{A}| \leq \aleph_0)(Y = \cup \mathcal{A}) \xrightarrow{f \text{ is c.e.i.}}$$
$$(\mathcal{B} := \{f^{-1}[\mathcal{A}] | \mathcal{A} \in \mathcal{A}\} \subset RC(X))(|\mathcal{B}| \leq \aleph_0)(X = \cup \mathcal{B})$$
$$X \text{ is countable } S - closed \text{ compact}$$

$$\Rightarrow (\exists \mathcal{B}^* \subset \mathcal{B})(|\mathcal{B}^*| < \aleph_0)(X = \cup \mathcal{B}^*) \\ f \text{ is surjective} \end{cases} \Rightarrow \Rightarrow (f[\mathcal{B}^*] \subset f[\mathcal{B}] = \mathcal{A})(|f[\mathcal{B}^*]| < \aleph_0) \\ (Y = f[X] = f[\cup \mathcal{B}^*] = \cup_{B \in \mathcal{B}^*} f[B]).$$

Definition 18. A topological space *X* is said to be almost regular [13] (resp. strongly *e*-regular) if for any regular closed (resp. *e*-closed) set $F \subset X$ and any point $x \in X \setminus F$, there exists disjoint open (resp. *e*-open) sets *U* and *V* such that $x \in U$ and $F \subset V$.

Theorem 19. If *f* is completely *e*-irresolute *e*-open bijection from an almost regular space *X* onto a space *Y*, then *Y* is strongly *e*-regular.

Proof. Let $F \in eC(Y)$ and $f(x) = y \notin F$. $f(x) = y \notin F \in eC(Y) \xrightarrow{f \text{ is c.e.i.}} x \notin f^{-1}[F] \in RC(X)$ $X \text{ is almost regular} \Rightarrow$ $\Rightarrow (\exists U, V \in eO(X))(x \in U)(f^{-1}[F] \subset V)(U \cap V = \emptyset)$ f is e-open bijection

 $\underbrace{\stackrel{f \text{ is } e-\text{ open bijection}}{\longrightarrow}}_{(F \subset f[V])(f[U] \cap f[V] \in eO(Y))(y = f(x) \in f[U])} (f \cup f[V] \cap f[V] = \emptyset).$

Definition 20. A topological space *X* is said to be: (a) almost normal [15] if for each closed set *A* and each regular closed set *B* such that $A \cap B = \emptyset$, there exist disjoint open sets *U* and *V* such that $A \subset U$ and $B \subset V$. (b) strongly *e*-normal if for every pair of disjoint *e*-closed subsets *A* and *B* of *X*, there exist disjoint *e*-open sets *U* and *V* such that $A \subset V$ and $B \subset V$.

Theorem 21. If $f:(X,\tau) \to (Y,\sigma)$ is completely *e*-

irresolute *e*-open bijection from an almost normal space *X* into a space *Y*, then *Y* is strongly *e*-normal.

Proof. Let
$$A, B \in eC(Y)$$
 and $A \cap B = \emptyset$.
 $(A, B \in eC(Y))(A \cap B = \emptyset)$
 $f \text{ is } c. e. i. \} \Rightarrow$
 $\Rightarrow (f^{-1}[A], f^{-1}[B] \in RC(X))(f^{-1}[A \cap B] = f^{-1}[\emptyset])$
 $\Rightarrow (f^{-1}[A], f^{-1}[B] \in RC(X))(f^{-1}[A] \cap f^{-1}[B] = \emptyset)$
 $RC(X) \subset C(X) \} \Rightarrow$
 $\Rightarrow (f^{-1}[A] \in C(X))(f^{-1}[B] \in RC(X))$
 $(f^{-1}[A] \cap f^{-1}[B] = \emptyset)$
 $\xrightarrow{X \text{ is almost normal}}$
 $(\exists U, V \in \tau)(f^{-1}[A] \subset U)(f^{-1}[B] \subset V)(U \cap V = \emptyset)$
 $f \text{ is } e - \text{ open bijection} \} \Rightarrow$

 $\Rightarrow (f[U], f[V] \in eO(Y))(A \subset f[U])(B \subset f[V])$ $(f[U] \cap f[V] = \emptyset).$

Definition 22. A topological space (X, τ) is said to be $e \cdot T_1$ [6] (resp. $r \cdot T_1$ [5]) if for each pair of distinct points x and y of X, there exist e-open (resp. regular open) sets U_1 and U_2 such that $x \in U_1$ and $y \in U_2$, $x \notin U_2$ and $y \notin U_1$.

Theorem 23. If $f: X \to Y$ is completely *e*-irresolute injection and *Y* is *e*-*T*₁, then *X* is *r*-*T*₁.

Proof. Let
$$x, y \in X$$
 and $x \neq y$.
 $(x, y \in X)(x \neq y) \xrightarrow{f \text{ is injective}} f(x) \neq f(y)$
 $Y \text{ is } e - T_1 \xrightarrow{f} \Rightarrow$
 $\Rightarrow (\exists F_1 \in eO(Y, f(x))) (\exists F_2 \in eO(Y, f(y))) (f(x) \notin F_2)$
 $(f(y) \notin F_1)$
 $\xrightarrow{f \text{ is c.e.i.}} (f^{-1}[F_1] \in RO(X, x)) (f^{-1}[F_2] \in RO(X, y))$
 $(x \notin f^{-1}[F_2]) (y \notin f^{-1}[F_1]).$

Definition 24. A topological space *X* is said to be $e-T_2$ [8] (resp. $r-T_2$ [16]) for each pair of distinct points *x* and *y* in *X*, there exist disjoint *e*-open (resp. regular open) sets *A* and *B* in *X* such that $x \in A$ and $y \in B$.

Theorem 25. If $f: X \to Y$ is completely *e*-irresolute injection and *Y* is *e*-*T*₂, then *X* is *r*-*T*₂.

Proof. Let
$$x, y \in X$$
 and $x \neq y$.
 $(x, y \in X)(x \neq y) \xrightarrow{f \text{ is injective}} f(x) \neq f(y)$
 $Y \text{ is } e - T_2$
 $\Rightarrow (\exists A \in eO(Y, f(x))) (\exists B \in eO(Y, f(y))) (A \cap B = \emptyset)$
 $\xrightarrow{f \text{ is c.e.i.}} (f^{-1}[A] \in RO(X, x)) (f^{-1}[B] \in RO(X, y))$

 $(f^{-1}[A] \cap f^{-1}[B] = \emptyset).$

Theorem 26. Let *Y* be an *e*-*T*₂ space. If $f: X \to Y$ and $g: X \to Y$ are completely *e*-irresolute, then the set $A = \{x | f(x) = g(x)\} \in \delta C(X)$.

Proof. Let $x \notin A$.

$$\begin{array}{l} x \notin A \Rightarrow f(x) \neq g(x) \\ Y \text{ is } e - T_2 \end{array} \right\} \Rightarrow \\ \Rightarrow \left(\exists V_1 \in eO(Y, f(x)) \right) \left(\exists V_2 \in eO(Y, g(x)) \right) \\ (V_1 \cap V_2 = \emptyset) \\ f \text{ and } g \text{ are c.e.i.} \end{array}$$

$$\Rightarrow \left(f^{-1}[V_1] \in RO(X, x)\right) \left(g^{-1}[V_2] \in RO(X, x)\right) \left(f^{-1}[V_1 \cap V_2] = \emptyset\right) \left(g^{-1}[V_1 \cap V_2] = \emptyset\right) \Rightarrow \left(U \coloneqq f^{-1}[V_1] \cap g^{-1}[V_2] \in RO(X, x)\right) (U \cap A = \emptyset) \Rightarrow x \notin cl_{\delta}(A).$$

Then *A* is δ -closed in *X*.

Theorem 27. Let *Y* be an e- T_2 space. If $f: X \to Y$ is completely *e*-irresolute, then the set $B = \{(x, y) | f(x) = f(y)\} \in \delta C(X \times X)$.

Proof. Let
$$(x, y) \notin B$$
.
 $(x, y) \notin B \Rightarrow f(x) \neq f(y)$
 $Y \text{ is } e - T_2 \end{cases} \Rightarrow$
 $\Rightarrow (\exists V_1 \in eO(Y, f(x))) (\exists V_2 \in eO(Y, f(y)))$
 $(V_1 \cap V_2 = \emptyset)$
 $f \text{ is c.e.i.} (f^{-1}[V_1] \in RO(X, x)) (f^{-1}[V_2] \in RO(X, y))$
 $(f^{-1}[V_1] \cap f^{-1}[V_2] = \emptyset)$
 $\Rightarrow (U \coloneqq f^{-1}[V_1] \times f^{-1}[V_2] \in RO(X \times X, (x, y)))$
 $(U \cap B = \emptyset)$
 $\Rightarrow (x, y) \notin cl_{\delta}(B).$

Then *B* is δ -closed in *X* × *X*.

3 Completely Weakly e-irresolute Functions

Definition 28. A function $f: X \to Y$ is said to be completely weakly *e*-irresolute (briefly c.w.e.i.) if for each $x \in X$ and for any *e*-open set *V* containing f(x), there exists an open set *U* containing *x* such that $f[U] \subset V$.

Remark 29. We have the following diagram from Definition 1 and Definition 2 and Definition 28. The converses of these implications are not true in general as shown by the following examples.

Example 30. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$

and $\sigma = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then the identity function $f: (X, \tau) \rightarrow (X, \sigma)$ is *e*-irresolute but not completely weakly *e*-irresolute.

QUESTION. Is there any completely weakly *e*-irresolute function which is not completely *e*-irresolute?

Theorem 31. Let $f: X \rightarrow Y$ be a function, then the following statements are equivalent:

(a) *f* is completely weakly *e*-irresolute;

(b) $f^{-1}[e - int(B)] \subset int(f^{-1}[B])$ for every subset *B* of *Y*;

(c) $f[cl(A)] \subset e - cl(f[A])$ for every subset *A* of *X*; (d) $cl(f^{-1}[B]) \subset f^{-1}[e - cl(B)]$ for every subset *B* of *Y*; (e) $f^{-1}[V]$ is closed in *X* for each *e*-closed set *V* in *Y*; (f) $f^{-1}[V]$ is open in *X* for each *e*-open set *V* in *Y*.

Proof. (a)
$$\Rightarrow$$
 (b): Let $B \subset Y$ and $x \in f^{-1}[e - int(B)]$.
 $x \in f^{-1}[e - int(B)] \Rightarrow e - int(B) \in eO(Y, f(x))$
(a)
 $(\exists U \in U(x))(f[U] \subset e - int(B) \subset B)$
 $\Rightarrow (\exists U \in U(x))(U \subset f^{-1}[B]) \Rightarrow x \in int(f^{-1}[B])$.
(b) $\Rightarrow (c)$: Let $A \subset X$.
 $A \subset X \Rightarrow f[A] \subset Y \Rightarrow Y \setminus f[A] \subset Y \stackrel{(b)}{\Rightarrow}$
(b)
 $f^{-1}[e - int(Y \setminus f[A])] \subset int(f^{-1}[Y \setminus f[A]])$
 $\Rightarrow X \setminus f^{-1}[e - cl(f[A])] \subset X \setminus cl(f^{-1}[f[A]])$
 $\Rightarrow cl(A) \subset cl(f^{-1}[f[A]]) \subset f^{-1}[e - cl(f[A])]$
 $\Rightarrow f[cl(A)] \subset e - cl(f[A])$.
(c) \Rightarrow (d): Let $B \subset Y$.
 $B \subset Y \Rightarrow f^{-1}[B] \subset X \stackrel{(c)}{\Rightarrow}$
(c)
 $f[cl(f^{-1}[B])] \subset e - cl(f[f^{-1}[B]]) \subset e - cl(B)$
 $\Rightarrow cl(f^{-1}[B]) \subset f^{-1}[e - cl(B)]$.
(d) $\Rightarrow (e)$: Let $V \in eC(Y)$.
 $V \in eC(Y) \Rightarrow V = e - cl(V) \stackrel{(d)}{\Rightarrow}$
(d)
 $\Rightarrow cl(f^{-1}[V]) \subset f^{-1}[e - cl(V)] = f^{-1}[V]$
 $\Rightarrow f^{-1}[V] = cl(f^{-1}[V]) \Rightarrow f^{-1}[V] \in C(X)$.
(e) $\Rightarrow (f)$: Obvious.
(f) $\Rightarrow (a)$: Let $V \in eO(Y)$ and $x \in f^{-1}[V]$.
 $(V \in eO(Y))(x \in f^{-1}[V]) \Rightarrow V \in eO(Y, f(x)) \stackrel{(f)}{\Rightarrow}$
 $\stackrel{(f)}{\Rightarrow} (U := f^{-1}[V] \in U(x))(f[U] \subset V)$.

Theorem 32. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a bijective function. Then the following statements are equivalent:

(a) *f* is completely weakly *e*-irresolute;

(b) $e - int(f[A]) \subset f[int(A)]$ for every subset of *X*.

Proof.
$$(a) \Rightarrow (b)$$
: Let $A \subset X$.
 $A \subset X \Rightarrow X \setminus A \subset X \stackrel{(a)}{\Rightarrow}$
 $\stackrel{(a)}{\Rightarrow} f[X \setminus int(A)] = f[cl(X \setminus A)] \subset e - cl(f[X \setminus A]))$
 $f is bijection$
 $\Rightarrow Y \setminus f[int(A)] \subset Y \setminus e - int(f[A])$
 $\Rightarrow e - int(f[A]) \subset f[int(A)].$
 $(b) \Rightarrow (a)$: Let $A \subset X$.
 $A \subset X \Rightarrow X \setminus A \subset X \stackrel{(b)}{\Rightarrow} e - int(f[X \setminus A]) \subset f[int(X \setminus A)]$
 $f is bijection$
 $\Rightarrow Y \setminus e - cl(f[A]) \subset Y \setminus f[cl(A)]$

 $\Rightarrow f[cl(A)] \subset e - cl(f[A]).$

Theorem 33. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two functions. Then the following statements hold:

(a) If *f* is c.w.e.i. and *g* is *e*-irresolute, then $g \circ f: X \to Z$ is c.w.e.i.

(b) If *f* is completely continuous and *g* is c.w.e.i., then $g \circ f$ is c.e.i.

(c) If f is strongly continuous and g is c.e.i., then $g \circ f$ is c.e.i.

(d) If f and g are c.e.i., then $g \circ f$ is c.e.i.

(e) If f is c.e.i. and g is c.w.e.i., then $g \circ f$ is c.e.i.

(f) If f is c.w.e.i. and g is *e*-continuous, then $g \circ f$ is continuous.

(g) If f is e-continuous and g is c.w.e.i., then $g \circ f$ is e-irresolute.

(h) If f is continuous and g is c.w.e.i., then $g \circ f$ is c.w.e.i.

Proof. Straightforward.

Definition 34. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be almost open [12] if f[U] is open in *Y* for every regular open set *U* of *X*.

Theorem 35. If $f: (X, \tau) \to (Y, \sigma)$ is almost open surjection and $g: (Y, \sigma) \to (Z, \eta)$ is any function such that $g \circ f: (X, \tau) \to (Z, \eta)$ is completely *e*-irresolute, then *g* is completely weakly *e*-irresolute.

Proof. Let $V \in eO(Z)$.

$$\begin{split} V \in eO(Z) & \xrightarrow{g \circ f \text{ is c.e.i.}} (g \circ f)^{-1}[V] = f^{-1}[g^{-1}[V]] \in RO(X) \\ f \text{ is almost open surjection} \\ \Rightarrow f\left[f^{-1}[g^{-1}[V]]\right] = g^{-1}[V] \in \sigma. \end{split}$$

Theorem 36. If $f: (X, \tau) \to (Y, \sigma)$ is open surjection and $g: (Y, \sigma) \to (Z, \eta)$ is any function such that $g \circ f: (X, \tau) \to (Z, \eta)$ is completely weakly *e*-irresolute, then *g* is completely weakly *e*-irresolute.

Proof. Let $V \in eO(Z)$.

$$V \in eO(Z) \xrightarrow{g \circ f \text{ is c.w.e.i.}} (g \circ f)^{-1}[V] = f^{-1}[g^{-1}[V]] \in \tau$$

$$f \text{ is open surjection}$$

$$\Rightarrow f \left[f^{-1}[g^{-1}[V]] \right] = g^{-1}[V] \in \sigma.$$

Acknowledgement. This work is financially supported by Muğla Sıtkı Koçman University, Turkey under BAP grant no: 15/181.

4 References

[1] Abd El-Monsef, M.E.; El-Deep, S.N.; Mohmoud, R.A. β -open sets and β -continuous mappings. Bulletin of the Faculty of Science Assiut University. 1983; 12, 77-90.

[2] Arya, S.P.; Gupta, R. On strongly continuous maps. Kyungpook Mathematical Journal. 1974; 14, 131-143.

[3] Allam, A.A.; Zaharan, A.M.; Hasanein, I.A. On almost continuous, δ -continuous and set connected mappings. Indian Journal of Pure and Applied Mathematics. 1987; 18(11), 991-996.

[4] Ergun, N. On nearly paracompact spaces. Istanbul Universitesi Fen Fakültesi Mecmuası A Serisi. 1980; 45, 65-87.

[5] Ekici, E. Generalization of perfectly continuous, regular set-connected and clopen functions. Acta Mathematica Hungarica. 2005; 107(3), 193-206.

[6] Ekici, E. New forms of contra continuity. Carpathian Journal of Mathematics. 2008; 24(1), 37-45.

[7] Ekici, E. On *e*-open sets, DP^* -sets and DPE^* -sets and decompositions of continuity. Arabian Journal for Science and Engineering. 2008; 33(2A), 269-281.

[8] Ekici, E. Some weak forms of δ -continuity and e^* -first-countable spaces (submitted)

[9] Levine, N. Strong continuity in topological spaces. The American Mathematical Monthly. 1960; 67, 269.

[10] Long, P.E.; Herrington, L.L. Basic properties of regular-closed functions. Rendiconti del Circolo Matematico di Palermo. 1978; 27, 20-28.

[11] Maio, G.D. S-closed spaces, S-sets and Scontinuous functions. Accademia delle Scienze di Torino. 1984; 118, 125-134.

[12] Singal, M.K.; Singal, A. Almost continuous mappings. Yokohama Mathematical Journal. 1968; 16, 63-73.

[13] Singal, M.K.; Arya, S.P. On almost regular spaces, Glasnik Matematicki. 1969; 4(24), 89-99.

[14] Singal, M.K.; Singal, A.R.; Mathur, A. On nearlycompact spaces. Bollettino dell'Unione Matematica Italiana. 1969; 4(2), 702-710.

[15] Singal, M.K.; Arya, S.P. Almost normal and almost completely regular spaces. Glasnik Matematicki. 1970; 5(25), 141-152.

[16] Staum, R. The algebra of bounded continuous functions into a nonarchimedean field. Pacific Journal of Mathematics. 1974; 50, 169-185.

[17] Stone, M.H. Applications of the theory of Boolean rings to general topology. Transaction of the American Mathematical Society. 1937; 41, 373-381.

[18] Thomson, T. *S*-closed spaces. Proceeding of the American Mathematical Society. 1976; 60, 335-338.

[19] Velicko, N.V. *H*-closed topological spaces. American Mathematical Society Translations Series 2. 1968; 78(2), 103-118.