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Abstract
The main purpose of this paper is to introduce two new types of irresolute functions called completely e-
irresolute and completely weakly e-irresolute functions via e-open sets introduced by Ekici. We obtain
some characterizations of these functions. Also, we investigate some fundamental properties between
these new notions and separation and covering.
Keywords — completely e-irresolute, completely weakly e-irresolute, countably e-compact, e-closed
compact, e-Lindeldf, strongly e-regular e-normal

space, space.

CBU J. of Sci., Volume 13, Issue 1, 2017, p 91-97

1 Introduction and Preliminaries

Throughout this paper (X,7) and (Y, o) (or simply X
and Y) represent non-empty topological spaces on
which no separation axioms are assumed unless
otherwise stated. Let X be a topological space and 4 a
subset of X. The closure of A and the interior of A are
denoted by cl(4) and int(4), respectively. U(x)
denotes all open neighborhoods of the point x € X. A
subset A of a space X called regular open [17] (resp.
regular closed [17]) if A = int(cl(4)) (resp. A=
cl(int(A))) . The &-interior [19] of a subset A of X is the
union of all regular open sets of X contained in A and
is denoted by ints(A). The subset A is called §-open
[19] if A = ints(A), i.e., a set is §-open if it is the union
of regular open sets. The complement of a §-open set
is called 5-closed. Alternatively, a set A c X is called §-
closed [19] if A =cls(A), where cls(A) = {xlU €
Ux) = int(cl(U)) NnA=+ (Z)}. The family of all §-open
(resp. d-closed) sets in X is denoted by §0(X) (resp.
8C(X)).

A subset A of a space X called e-open [17] if A c
int(cl,;(A)) Ucl(int(g(A)). The complement of an e-
open set is said to be e-closed. The e-interior [7] of a
subset A of X is the union of all e-open sets of X

91

contained in A and is denoted by e-int(4). The e-
closure [7] of a subset 4 of X is the intersection of all e-
closed sets of X containing A and is denoted by e-
cl(A). The family of all e-open (resp. regular open) sets
of X are denoted by e0(X) (resp. RO (X)). The family of
all e-closed (resp. regular closed) sets of X is denoted
by eC(X) (resp. RC(X)) and the family of all e-open
(resp. regular open) sets of X containing a point x € X
is denoted by e0 (X, x) (resp. RO (X, x)).

Definition 1. A function f: X — Y is said to be:

(@) strongly continuous [9] (briefly s.c.) if f71[V] is
both open and closed in X for each subset V of Y;

(b) completely continuous [2] (briefly c.c.) if f~*[V] is
regular open in X every openset V of Y;

(c) e-irresolute [6] (briefly e.i.) if f*[V] is e-closed
(resp. e-open) in X for every e-closed (resp. e-open)
subset V of Y;

(d) e-continuous [7] (briefly e.c.) if f~*[V] is e-open in
X every openset VV of Y.

2 Completely e-irresolute Functions

Definition 2. A function f:X —-Y is said to be

completely e-irresolute (briefly c.e.i.) if the inverse
image of each e-open subset of Y is regular open in X.

Remark 3. It is not difficult to see that every strongly
continuous function is completely e-irresolute and
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every completely e-irresolute function is e-irresolute.
But the converse of the implications are not true in
general as shown by the following examples.

s.c. > c.el. — el

Example 4. Let X ={a,b,c}, T ={0,X,{a},{b,c}} and
o ={0,X,{b,c}}. Then the identity function f: (X,7) -
(X, 0) is e-irresolute but not completely e-irresolute.

QUESTION. Is there any completely e-irresolute
function which is not strongly continuous?

Theorem 5. Let f:X -»Y be a function, then the
following statements are equivalent:

(a) f is completely e-irresolute;

(b) f[e — int(B)] c ints(f *[B]) for every subset B
of Y;

(o) flcls(A)] c e — cl(f[A]) for every subset A of X;

(d) cls(fY[B]) < f~t[e — cl(B)] for every subset B of
Y;

(e) f*[V] is regular closed in X for each e-closed set V
inY;

(f) f~'[V] is regular open in X for each e-open set V in
Y.

Proof. (a) = (b): Let B c Y and x € f~1[e — int(B)].

x € f e —int(B)] > e — int(B) € eO(Y,f(x))

@ (aU € RO, 0)(FIU] < e — int(B) < B)

= (3U € RO(X,x))(U < f[B]) = x € ints(f ~*[B]).
(b) = (c): LetA c X.
AcX:f[A]cY:Y\f[A]cYg

D F1le — int (v \ FIAD] < ints(F[¥ \ £14]])
= X\ f e — cl(f[AD] < X \ cls(F2[fIA]])
= cls(A) < cls(FfIA]]) < f2e — cl(F[AD]
= flcls(A)] c e — cl(FIAD.
(c)=>(d):LetBCcY.

_ (c)
BcY=flBlcx=

D Flels(F B < e — cl(F[F[BI]) € e - cl(B)
= cls(f[BD < f~'e — cl(B)].

(d) = (e): LetV € eC(Y).

VeeClY)=>V= e—cl(V)g

S els(f1VD € f e — k()] = FHV]
= V] = cls(f VD) = V] € 6C(X).
(e) = (f): Obvious.

(f) = (a): LetV € eO(Y) and x € f~1[V].
(VeeoM)xef VD) =>Veeo(Y,f(x) g
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g (U = f[V] € RO(X,x))(f[U] € V).

Theorem 6. Let f:(X,7) = (Y,0) be a bijective
function. Then the following statements are
equivalent:

(a) f is completely e-irresolute;
(b) e — int(f[A]) c flints(A)] for every subset of X.

Proof. (a) = (b): Let A c X.
(a)
AcX=>X\AcX—

D FIX \ ints(4)] = flelsX \ A)] < e — cl(FIX \ A])
f is bijection

|

=Y\ flints(A)] c Y \ e — int(f[A])

= e — int(f[A]) c flints(A)].

(b) = (a): Let A c X.

AcX=>X\AcC X(=bg

D e — int(F[X \ A]) < Flints(X \ 4)]
f is bijection

=Y \e—cl(f[A]) c Y\ flcls(A)]

= flels(A)] € e = cl(fIAD.

Lemma 7. [10] Let Y be an open subset of a topological
space X. Then the following hold:

(a) If A is regular open in X, then so is ANY in the
subspace (Y, 7y).

(b) If B is regular open in (Y, 7y), then there exists a
regular open set R in X such that B=RNY.

Theorem 8. If f:(X,7) —» (Y,0) is a completely e-
irresolute function and A4 is any open subset of X, then

the restriction f;: A — Y is completely e-irresolute.

Proof. Let F € eO(Y).

Feeo(r) 228 f-1[F] € RO(X)}Lemma7
_
AET
(£ F] = £1[F] 0 A € RO(A).

Lemma 9. [3] Let Y be a preopen subset of a
topological space X. Then Y N 4 is regular open in ¥
for each regular open subset A of X.

Theorem 10. If f:(X,7) —» (Y,0) is a completely e-
irresolute function and A is preopen subset of X, then
fa:A - Y is completely e-irresolute.

Proof. It is clear from Lemma 9.

Theorem 11. Let f: (X,7) - (Y,0) and g: (Y,0) - (Z,7n)
be two functions. Then the following hold:

(a) If f is completely e-irresolute and g is e-irresolute,
then g o f is completely e-irresolute;
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(b) If f is completely continuous and g is completely
e-irresolute, then g o f is completely e-irresolute;
(c) If f is completely e-irresolute and g is e-
continuous, then g o f is completely continuous.

Proof. Straightforward.

Definition 12. A space X is said to be almost
connected [5] (resp. e-connected [8]) if there does not
exist disjoint regular open (resp. e-open) sets A and B
suchthat AUB = X.

Theorem 13. If f:X —»Y is completely e-irresolute
surjection and X is almost connected, then Y is e-
connected.

Proof. Suppose that Y is not e-connected.

Y is not e — connected =
= (3A4,Bee0()\{0DANB=0)(AUB =Y)

f is completely e — irresolute surjection
= (f Al f~'[B] € RO(X) \ {8})
(fHANBl = @D [AUB] = fHYD

= (f AL f~'[B] € RO(X) \ {8})
(FHAIN Bl = @)(f Al U f 1Bl = X)

This means that X is not almost connected.

}-

Definition 14. A topological space X is said to be:

(a) nearly compact [14] if every regular open cover of
X has a finite subcover;

(b) nearly countably compact [4] if every countable
cover by regular open sets has a finite subcover;

(c) nearly Lindelof [5] if every cover of X by regular
open sets has a countable subcover;

(d) e-compact [8] if every e-open cover of X has a finite
subcover;

(e) countably e-compact if every e-open countable
cover of X has a finite subcover;

(f) e-Lindelof if every cover of X by e-open sets has a
countable subcover.

Theorem 15. Let f:(X,7) = (Y,0) be a completely e-
irresolute surjection. Then the following statements
hold:

(a) If X is nearly compact, then Y is e-compact;

(b) If X is nearly Lindelof, then Y is e-Lindelof;

(¢) If X is nearly countably compact, then Y is
countably e-compact.

Proof. (a) Let X be nearly compact and A be an e-

open cover of Y.
fisc.e..

(AceoM))Y =UA) —

fisc.e..

—— (B:={f"'[A]lA € A} c RO(X))(X =U B)

X is nearly compact

= (3B*  B)(|B*| < X,)(X =U B*)
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e (F1B°] < f[B] = A)(F[B°]] < Ro)
(¥ = FIX] = f[U B*] =Upes: fIBD).

(b) Let X be nearly Lindel6f and A be an e-open cover
of Y.

(cﬂ c eO(Y))(L,ql < R)(Y =U A) fisce.l.
LEC% (B = {f"[A]lA € A} € ROCX))(X =U B)

X is nearly countably compact

-
= (f[B"] < f[B] = A)(f[B]l <Rp)
(Y = fIX] = f[U B"] =Upep f[B).

= (AB* c B)(|B*| < Ry)(X =U B*)
f is surjective

(c) Let X be nearly countably compact and A be an e-
open countable cover of Y.

(cﬂ c eO(Y))(Lﬂl < R)(Y =UA) fisce.d.
’% (B :={f"1[4]lA € A} c RO(X))(X =UB)

X is nearly countably compact

-

= (f[B"] < f[B] = A)(If[B]] <Ro)
(Y = f[X] = f[UB"] =Ugep f[B).

= (3B" c B)(IB*| < Rp)(X =UB")
f is surjective

Definition 16. A topological space X is said to be:

(a) S-closed [18] (resp. e-closed compact) if every
regular closed (resp. e-closed) cover of X has a finite
subcover;

(b) Countable S-closed compact [1] (resp. countable e-
closed compact) if every countable cover of X by
regular closed (resp. e-closed) sets has a finite
subcover;

(c) S-Lindelof [11] (resp. e-closed Lindelof) if every
cover of X by regular closed (resp. e-closed) sets has a
countable subcover.

Theorem 17. Let f:(X,7) = (Y,0) be a completely e-
irresolute surjection. Then the following statements
hold:

(a) If X is S-closed, then Y is e-closed compact;

(b) If X is S-Lindeldf, then Y is e-closed Lindel6f;

(0) If X is countable S-closed compact, then Y is
countable e-closed compact.

Proof. (a) Let X be S-closed and A be an e-closed
cover of Y.

(A € eCn)(r =u ) =55
= (B:={f"'[A]lA € A} c RC(X))(X =UB)

XisS — closed
= (3B* c B)(|B*| < Ry)(X =U B*)
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f is surjective

(FIB°] € fIB] = A)f[B"]] < Ro)
(Y = fIX] = fUB"] =Ugep- f[BD.

(b) Let X be S-Lindelof and A be an e-closed
countable cover of Y.
}:

;Jl c eC(N)(Y =U A) fhoced
el (B := {f[A]|A € A} € RC(X))(X =U B)
X is S — Lindelof closed

= (3B* < B)(|B*| < Ry)(X =U B")

Lo et (£1B°] < £1B] = AAFIB°]l < Xo)
(¥ = f[X] = fUB*] =Upes- fLBD).

(c) Let X be countable S-closed compact and A be an

e-closed countable cover of Y.
f is c.e.i.

(A € eCN) AL < Re)(¥ =U ) ===

(B:={f"*[A]lA € A} c RC(X))(IB| < Ro)(X =U B)
X is countable S — closed compact

. L. =
fis sur]ectlve}

= (f[B*] c fIB] = A)f[B*]] < Rp)
(Y = f[X] = f[UB"] =Ugep* f[BD.

= (AB" c B)(IB"| < Ry)(X =UB")

Definition 18. A topological space X is said to be
almost regular [13] (resp. strongly e-regular) if for any
regular closed (resp. e-closed) set F c X and any point
x € X \ F, there exists disjoint open (resp. e-open) sets
Uand V suchthatx e Uand F c V.

Theorem 19. If f is completely e-irresolute e-open

bijection from an almost regular space X onto a space
Y, then Y is strongly e-regular.
} ;

= (3U,Vee0X))(x e )(fFlcV)(UNV = @)

Proof. Let F € eC(Y) and f(x) =y ¢ F.

fisc.e..
fx)=y¢éFeeCY)—=x¢ f '[F] € RC(X)
X is almost regular

o e (LU, FIV] € e0(V))(y = f(x) € FIUI)
(F < FIVD(FIUI 0 FIV] = 9).

Definition 20. A topological space X is said to be:

(a) almost normal [15] if for each closed set A and each
regular closed set B such that AN B = @, there exist
disjoint open sets U and V such that Ac Uand B c V.
(b) strongly e-normal if for every pair of disjoint e-
closed subsets A and B of X, there exist disjoint e-open
sets U and VV suchthat AcVand B c V.

Theorem 21. If f:(X,7) -» (Y,0) is completely e-
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irresolute e-open bijection from an almost normal
space X into a space Y, then Y is strongly e-normal.

Proof. Let A,B € eC(Y) and AN B = Q.
(A, BeeC(V))(ANB = (z))} -

fisc.e.i
= (f'[A] f'[B] € RC(X))(f*[An B] = f~1[0])
= (F7Y[A] f71[B] € RCCO))(F Al N F1[B] = 9)

-

RC(X) c C(X)
= (f[A] EC(X))(f 1[B] € RC(X))
(fAln f[B] =

X is almost normal
_>

HAlc (Bl c VYU NV =)
f is e — open bijection

€e0(V))(A c fIUDB < fIV])
= Q).

@Au,ven)(f- }:)
= (fIU, V]
(flU1n fIV]

Definition 22. A topological space (X, 1) is said to be
e-T; [6] (resp. r-T; [5]) if for each pair of distinct points
x and y of X, there exist e-open (resp. regular open)
sets U; and U, such that x € U; and y € U,, x € U, and
y & Us.

Theorem 23. If f:X - Y is completely e-irresolute
injection and Y is e-Ty, then X is r-T;.

Proof. Let x,y € X and x ;t y.

(,y € X)(x # y) o £ () = £(y)

Yise—T;

= (3F, € e0(Y, f())) (3F, € 0(Y, (1)) (F(x) & Fy)
(fO) & F)

fisc.e.l.

- (f 1[F,] € RO(X,x))(f*[F,] € RO(X,Y))
(x & fRDY & fLFD.

Definition 24. A topological space X is said to be e-T,
[8] (resp. r-T, [16]) for each pair of distinct points x
and y in X, there exist disjoint e-open (resp. regular
open) sets A and B in X such that x € A and y € B.

Theorem 25. If f:X - Y is completely e-irresolute
injection and Y is e-T,, then X is r-T,.

Proof. Let x,y € X and x # y.

f is injective

(x,y €X)(x # y) == f(x) # f(¥)
Yise—T,
= (34 €e0(Y.f())) (3B € e0(Y.f(3))) (4N B = 0)

fisce..

—= (f[A] € RO(X,x))(f'[B] € RO(X,))
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(fAlnf[B] = 0).

Theorem 26. Let Y be an e-T, space. If f:X - Y and
g:X - Y are completely e-irresolute, then the set

A= {x|f(x) = g(x)} € 5C(X).
Proof. Let x ¢ A.

x¢A=f(x)+gx) N
Yise—T,

N (3V1 € eo(Y,f(x))) (av2 € eo(Y,g(x)))
inv,=0)

fand g are c.e.i.
= (f7[V,] € RO(X,x)) (g 1[V,] € RO(X,x))
F'vanVl=0)(g v, nV,] = 0)

= (U= f1Vlng[V,] € ROX,x))(UNA=0)
= x & clsg(A).

Then A is §-closed in X.

Theorem 27. Let Y be an e-T, space. If f:X >V is
completely e-irresolute, then the set B = {(x, y)|f(x) =

f)} € 8CX xX).

Proof. Let (x,y) ¢ B.
Coy) €B=f0)#f))
Yise—T,

= (31, € e0(Y, £())) (3%, € eO(¥. F 1)) )
vV, nv, =0)

L2 (F1va] € ROCX, ) (£ [Va] € RO(X, )
Flnf vl =0)

> (U= f' V] x £ [V;] € RO(X X X, (x,7)))
(UNB=0)

= (x,y) € cls(B).
Then B is §-closed in X X X.

3 Completely Weakly e-irresolute Functions

Definition 28. A function f:X - Y is said to be
completely weakly e-irresolute (briefly c.w.e.i.) if for
each x € X and for any e-open set V containing f(x),
there exists an open set U containing x such that

flulcV.

Remark 29. We have the following diagram from
Definition 1 and Definition 2 and Definition 28. The
converses of these implications are not true in general

as shown by the following examples.

c.el. = cw.el. — e.l.

Example 30. Let X = {a,b,c}, 7 = {(Z), X,{a},{a, b}, {a, c}}
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and o = {(Z),X, {a},{a, b}}. Then the identity function
f:(X,t) » (X,0) is e-irresolute but not completely

weakly e-irresolute.

QUESTION. Is there any completely weakly e-
irresolute function which is not completely e-

irresolute?

Theorem 31. Let f:X - Y be a function, then the

following statements are equivalent:
(a) f is completely weakly e-irresolute;

(b) f~[e — int(B)] c int(f ~*[B]) for every subset B of

Y;
(o) fcl(A)] c e — cl(f[A]) for every subset A of X;

(d) cl(f*[B]) c f~t[e — cl(B)] for every subset B of Y;

(e) f~1[V]is closed in X for each e-closed set V in Y;
(f) f~*[V] is open in X for each e-open set V inY.
Proof. (@) = (b): Let B c Y and x € f~![e — int(B)].
x € f[e —int(B)] = e — int(B) € eO(Y, f (x))
9 (3U € U())(f[U] < e — int(B) c B)

= (EIU € ‘U(x))(U c f7YB]) = x € int(fL[B]).
(b) = (c): LetAc X.
Achf[A]chY\f[A]cYg

2 F1le — int(v \ fIAD] € ine(F[Y \ £[A]])
= X\ [~ e — cl(F[AD] € X\ cl(F~[f[4]])

= cl(4) < cl(f[f14]]) € £ le — cl(FLAD)]

= flcl(A)] c e — cl(f[AD.

(c)=>(d):LetBcY.

BcY=fiBlcx3

gf[cl(f—l[B])] ce—cl(f[fBl]) ce—cl(B)
= cl(f7![B]) c f~*[e — cl(B)].

(d) = (e): LetV eeC(Y).

VeeClY)=V= e—cl(V)(=dg

SN € f e — (V)] = £ [V]

= VI =c(fTHvD = V] e COO).

(e) = (f): Obvious.

(f) = (a): LetV € eO(Y) and x € f~1[V].
(Veeo)(xefVD) =V eeo(Y,f(0))S3
DW= 11 e uw)(fwi e v).

Theorem 32. Let f:(X,7) > (Y,0) be a bijective

function. Then the statements
equivalent:
(a) f is completely weakly e-irresolute;

(b) e — int(f[A]) < flint(A)] for every subset of X.

following
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Proof. (a) = (b): Let A c X.
AcX=>X\A CX(=a‘2~

S FIX\ int(A)] = flel(X \ A)] < e — cl(f[X \ A]
f is bijection
=Y\ flint(A)] c Y\ e — int(f[A])
= e — int(f[A]) c flint(A)].
(b) = (a): Let A c X.
AcX=>X\A CX(=b;e —int(fIX \ A]) c flint(X \ 4)]
f is bijection
=¥\ e—cl(f[A]) € ¥\ flcl(A)]
= flcl(4)] c e — cl(f[A]D.

Theorem 33. Let f: (X,7) = (Y,0) and g: (Y,0) = (Z,n)
be any two functions. Then the following statements
hold:

(a) If f is c.w.e.d. and g is e-irresolute, then go f: X —
Z is c.w.e..

(b) If f is completely continuous and g is c.w.e.i., then
gofisceid.

(c) If f is strongly continuous and g is c.e.i.,, then g o f
is c.e.i.

(d) If f and g are c.e.i., then g o f is c.e.i.

(e) If f is c.ed. and g is c.w.e.i., then g o f is c.e.i.

(f) If f is c.w.eld. and g is e-continuous, then g o f is
continuous.

(g) If f is e-continuous and g is c.w.e.i., then g o f is e-
irresolute.

(h) If f is continuous and g is c.w.e.i., then gof is
cw.e..

Proof. Straightforward.

Definition 34. A function f: (X, 1) — (Y, 0) is said to be
almost open [12] if f[U] is open in Y for every regular
open set U of X.

Theorem 35. If f:(X,7) - (Y,0) is almost open
surjection and g:(Y,0) = (Z,7n) is any function such
that go f:(X,7) » (Z,n) is completely e-irresolute,
then g is completely weakly e-irresolute.

Proof. Let V € e0(Z).

gef is c.e..

VeeO(Z)=—= (g lVl=f"[g'[V]] € ROX)
f is almost open surjection

>l lemil| =gl e

Theorem 36. If f: (X,7) = (Y, 0) is open surjection and
g:(Y,0) > (Z,n) is any function such that go
f:(X,7) » (Z,n) is completely weakly e-irresolute,
then g is completely weakly e-irresolute.

Proof. Let V € e0(Z).
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gefiscw.e.l

Veeo@)=——= (g N'VI=f"g V)] ex
f is open surjection

= £l vl =gVl €.
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