
Advances in the Theory of Nonlinear Analysis and its Applications 7 (2023) No. 1, 272�279.
https://doi.org/10.31197/atnaa.1235476

Available online at www.atnaa.org

Research Article

New existence result under weak topology for

fractional di�erential equations

Ahmed Hallacia, Aref Jeribib, Bilel Krichenb, Bilel Meftehb

a Department of exact sciences, Ecole Normale Supérieure de Ouargla, Ouargla, Algeria.
b Department of Mathematics, Faculy of Sciences of Sfax, Sfax University, Sfax, Tunisia.

Abstract

This paper deals with the existence of integrable solutions for an initial value problem involving Riemann-
Liouville-type fractional derivatives. To this end, we transform the posed problem to a sum of two integral
operators, then we apply a variant of Krasnoselskii's �xed point theorem under weak topology to conclude
the existence of integrable solutions. Lastly, an example to demonstrate the e�ectiveness of our main result
is presented.
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1. Introduction

Recently, many researchers have been interested in developing the theory of fractional calculus, and this
has led to the emergence of many approaches and concepts for fractional derivative and fractional integral.
These concepts have been used extensively in the �eld of di�erential equations and have been applied a lot
in many scienti�c �elds such as physics, chemistry, biology, engineering, viscoelasticity, signal processing and
electrochemistry, for more details, see [1, 2, 3, 4, 5]. In the present paper, we prove the existence of weak
solutions for the following fractional di�erential equation with initial conditions{

Dαu(t) = f(t, L1u(t)) + g(t, L2u(t)), t ∈ I := [0, T ],

Dα−iu|t=0 = 0, i = 1, 2,
(1)
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where u belongs to L1 (I, E), the space of Lebesgue integrable functions on I with values in a �nite dimen-
tional Banach space (E, ∥.∥) , provided with the norm

∥u∥L1 =

T∫
0

∥u (t)∥ dt,

Dα is the left Riemann Liouville derivative of order 1 < α ≤ 2. Here, f(., .) and g(., .) are nonlinear functions,
Li : L

1(I, E) → L1(I, E), i = 1, 2, are continuous linear maps.
Fractional di�erential equation has been studied in many research papers (see for example the papers

[6, 7, 8, 9] and the references therein). All papers deal with the existence, uniqueness and stability of strong
solutions using �xed point theorems in Banach spaces. Beside, to the best of our knowledge, the use of �xed
point theorems under weak topology for fractional di�erential equations is still not su�ciently generalized.
However, �xed point theory under weak topology has been used in some papers and monographs for integral
equations and fractional di�erential equations to prove the existence of integrable solutions [10, 11, 12] and
the book [13].
In [10], Hallaci et al. studied the following fractional di�erential equationDαu(t) = h(t)f(t, u(t)) + g(t,Hu(t)), t ∈ I := [0, T ],

lim
t→0+

t2−αu(t) = lim
t→0+

t2−αu
′
(t) = 0,

we have come to prove the existence of the integrable solutions for this problem by using Krasnoselskii type
�xed point theorem with the De Blasi measure of weak noncompactness.

In [11] Latrach and Taoudi established a new variant of Krasnoselskii type �xed point theorem under
weak topology and use it to investigate the existence of integrable solutions for the following integral equation

u(t) = g(t, u(t)) + λ

∫
Ω

k(t, s)f(s, u(s))ds.

Taoudi et al.[12] prove the existence of integrable solutions for a generalized mixed type operator equation

u(t) = g(t, u(t)) + (BNfUAu)(t),

In [13], Jeribi and Krichen studied the existence of solutions for the following variants of Hammerstein's
integral equation:

u(t) = g(t, L2u(t)) + λ

t∫
0

k(t, s)f(s, L1u(s))ds,

where u ∈ L1([0, T ]). For the last two equations, the authors investigated the existence of solutions using
�xed point theorem involving sum of two operators under weak topology.
By combining with the �xed point theory under weak topology with De Blasi measure of weak noncom-
pactness and the theory of fractional di�erential equations, we give su�cient conditions on the functions f
and g to prove that IVP (1) has at least one integrable solution. To this purpose, we give some preliminary
concepts and Lemmas about fractional calculus theory and weak topology. Then, we transform IVP (1)
into Volterra type integral equation employing some useful de�nitions and lemmas of fractional integral and
derivative. After that, we present our main result which based on a variant of �xed point theorem developed
in [13].
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2. Preliminaries

This section is intended to present the notations used in our paper and some ancillary facts that will be
required in our considerations. Furthermore, we provide de�nitions of the key concepts applied in our study
as well as point out some key properties of the concepts used in our reasonings.

De�nition 2.1. ([1, 2]) The Riemann-Liouville fractional integral of the function u of order α ≥ 0 is de�ned
by

Iαu(t) =
1

Γ(α)

t∫
0

u (τ)

(t− τ)1−αdτ,

where Γ (.) is the Euler gamma function de�ned by Γ (α) =
∞∫
0

e−ttα−1dt.

De�nition 2.2. ([1, 2]) The Riemann-Liouville fractional derivative of the function u of order α ∈ (n− 1, n]
is de�ned by

Dαu (t) =
1

Γ (n− α)

dn

dtn

t∫
0

u (τ)

(t− τ)α−n+1dτ.

For α > 0 be a real number, we have the following lemma.

Lemma 2.3. [2] For α ∈]n− 1, n] and t ∈ I, we have the properties
(1) DαIαu(t) = u(t),
(2) if α < β for an integer β, then DαIβu(t) = Iβ−αu(t),
(3) for q > 0, the Laplace transform of the Riemann-Liouville fractional derivative Dαu (t) and the power
function t 7→ tq are given respectively by:

(i) L {Dαu (t) , z} = zαU (z)−
n−1∑
i=0

zi
[
Dα−i−1u (t)

]
t=0

,

(ii) L {tq, z} = Γ (q + 1) z−(q+1),
where U (z) denotes the Laplace transforme of u (t).

De�nition 2.4. Let E be a Banach space. We denote by B(E) the collection of all nonempty bounded subsets
of E and W(E) is the subset of B(E) consisting of all weakly compact subsets of E. Denote by Br the closed
ball in E centered at 0 with radius r. The notion of weak non-compactness measure has been introduced by
De Blasi [14] by the map w : B(E) → [0,∞) de�ned as follows

ω (M) = inf {r > 0 : ∃W ∈ W(E) with M ⊆ W +Br} ,

for each M ∈ B(E).

The following useful properties of the function ω (.) are presented in [14, 15].

Lemma 2.5. Let M1,M2 ∈ B(E), then we have
◦ M1 ⊆ M2 implies that ω (M1) ≤ ω (M2) .
◦ ω (M1) = 0 if and only if Mω

1 ∈ W(E) where Mω
1 is the weak closure of M1.

◦ ω
(
Mω

1

)
= ω (M1) .

◦ω (M1 ∪M2) = max {ω (M1) , ω (M2)} .
◦ ω (δM1) = |δ|ω (M1) for all δ ∈ R.
◦ ω (co (M1)) = ω (M1) .
◦ ω (M1 +M2) ≤ ω (M1) + ω (M2) .
◦ If (Mn)n≥1 is a sequence of nonempty, weakly closed subsets of E with M1 bounded and M1 ⊇ M2 ⊇

... ⊇ Mn ⊇ ... with lim
n→

ω (Mn) = 0, then
∞
∩

n=1
Mn ̸= ϕ and ω

( ∞
∩

n=1
Mn

)
= 0.
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In L1 space, the measure ω (.) possesses the following form (see[15]).

De�nition 2.6. Let Ω be compact subset of Rn and let M be a bounded subset of L1 (Ω, E) where E is a
�nite-dimensional Banach space. Then ω (.) possesses the following form

ω(M) = lim
ϵ→0

sup

 sup
Ψ∈M


∫
D

∥Ψ(t)∥ dt : meas (D) ≤ ϵ


 ,

for any nonempty subset D of Ω, where meas(.) denotes the Lebesgue measure.

De�nition 2.7. Let Ω ⊂ Rn and let E,F be two Banach spaces. A function f : Ω × E → F is said to be
weak Carathéodory, if:

(i) For any u ∈ E, the map t 7−→ f (t, u) is measurable from Ω to F , and
(ii) For almost all t ∈ Ω, the map u 7−→ f (t, u) is weakly sequentially continuous from E to F .

Let m(Ω, E) be the set of all measurable functions u : Ω → E. If f is a weak Carathéodory function,
then f de�nes a mapping Nf : m(Ω, E) → m(Ω, F ) by Nfu (t) := f (t, u (t)), for all t ∈ Ω. This mapping is
called the Nemytskii's operator associated to f .

The following Lemma for the weak sequentially continuity of Nemytskii operator is needed.

Lemma 2.8 ([16]). (Weak sequentially continuity of Nemytskii's operator)
Let Ω ⊂ Rn and let E be re�exive Banach space, and p, q ≥ 1 and let L : Lp (Ω, E) → Lp (Ω, E) be a

continuous linear map. Let f : Ω× E → E be a weak Carathéodory map satisfying

∥f (t, u)∥ ≤ A (t)h (∥u∥) ,

where A ∈ Lq(Ω,R+) and h ∈ L∞
loc (R+) . Then, if either q > 1 or p = q = 1, the map Nf ◦L : Lp (Ω, E) →

Lq (Ω, E) is weakly sequentially continuous.

Lemma 2.9 ([17]). Let (S,
∑

, π) be a positive measure space. If a set K in L1(S,
∑

, π) is weakly sequentially
compact, then, for any nonempty subset E of S, we have

lim
π(E)→0

∫
E

f (s)π (ds) = 0

uniformly for f ∈ K. If π (S) < ∞, then conversely this condition is su�cient for a bounded set K to be
weakly sequentially compact.

The following variant of Krasnoselskii �xed point theorem is of fundamental importance in our consider-
ations.

Theorem 2.10 ([13]). . Let M be a nonempty, bounded, closed, and convex subset of a Banach space E.
Suppose that A : M → E and B : E → E are two weakly sequentially continuous mappings such that:

(i) A(M) is relatively weakly compact,
(ii) B is a contraction, and
(iii) (x = Bx+Ay, y ∈ M) ⇒ x ∈ M.
Then, A+B has, at least, a �xed point in M .

3. Main Result

In this section, we are interested by showing the existence of integrable solutions for problem (1) by
applying theorem 2.10. Before this, we present the following lemma:
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Lemma 3.1. Let 1 < α ≤ 2. The unique solution of linear IVP{
Dαu(t) = y(t), t ∈ I := [0, T ],

Dα−iu|t=0 = 0, i = 1, 2,
(2)

is given by
u(t) = Iαy(t), t ∈ I. (3)

Proof. We take
[
Dα−iu (t)

]
t=0

= bi, i = 1, 2. Applying Laplace transform on both side of �rst equation of
problem (2) and using property three of Lemma 2.3, we get

zαU(z)−
1∑

i=0

zi[Dα−i−1u(t)]t=0 = Y (z) ,

where U (z) and Y (z) denote the Laplace transformes of u (t) and y (t) respectively.
In other words, we can write

U(z) = z−αY (z) +

1∑
i=0

bi+1z
i−α.

By applying the inverse Laplace transform with taking into account the notion of convolution product, we
�nd

u(t) =
1

Γ (α)

t∫
0

(t− s)α−1y (s) ds+
1∑

i=0

bi+1

Γ (α− i)
tα−i−1

=
1

Γ (α)

t∫
0

(t− s)α−1 y (s) ds+
2∑

i=1

bi
Γ (α− i+ 1)

tα−i,

since bi = 0, i = 1, 2 then

u(t) =
1

Γ(α)

t∫
0

(t− s)α−1y(s)ds = Iαy(t).

Conversely, the expression of u(t) given by (3) satis�es the two equations of problem (2) from properties one
and two of lemma 2.3. This completes the proof.

Clearly, from lemma 3.1, IVP (1) is equivalent to the following operator equation:

u = Au+ Bu (4)

where A (resp. B) are two operators de�ned from L1(I, E) into itself by:

A := IN fL1, (5)

(resp.B := JN gL2) , (6)

which represent the product operator of linear map L1 (resp. L2) and Nemytskii's operator associated
to f(., .) (resp. g(., .)) and the Volterra type linear integral operator I (resp. J ) de�ned from L1 (I, E) into
itself by:

Iz (t) = 1

Γ(α)

t∫
0

(t− s)α−1z (s) ds

resp.J z(t) =
1

Γ(α)

t∫
0

(t− s)α−1z(s)ds

 .
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Now, we present the main result of this paper, consider the following hypotheses:
(H1) The function g is a measurable, g (., 0) ∈ L1 (I, E) and g is Lipschitzian with respect to the second

variable, i.e., there exists λ > 0 such that

∥g(t, u)− g(t, v)∥ ≤ λ∥u− v∥, for all t ∈ Iandu, v ∈ E.

(H2) The functions f, g satisfy the weak Carathéodory conditions and there exist functions Ai ∈
L1(I,R+) and nondecreasing functions hi ∈ L∞

loc(R+), i = 1, 2, such that

∥f(t, u)∥ ≤ A1 (t)h1 (∥u∥) and ∥g(t, u)∥ ≤ A2 (t)h2 (∥u∥) .

Theorem 3.2. Assume that (H1) − (H2) hold. Then IVP (1) has at least one integrable solution on I,
provided

λTα+1

Γ (α)
∥L2∥L < 1. (7)

Proof. Consider operator equation de�ned by (4). Choosing R ≥ R0 where

R0 = min

{
∥A1∥1 ∥h1∥∞ + ∥g (., 0)∥1

Γ(α)
Tα − λ ∥L2∥L

,
Tα

Γ (α)
(∥A1∥1 ∥h1∥∞ + ∥A2∥1 ∥h2∥∞)

}
.

Clearly, R0 > 0 according to the relationship (7), we de�ne the bounded, closed, convex set BR = {u ∈
L1(I, E) : ∥u∥1 ≤ R}, we will show that operators A and B de�ned by (5), (6) satisfy all hypotheses of
Theorem 2.10.
Claim 1: We show that A := IN fL1 and B := JN gL2 are weakly sequentially continuous on L1(I, E).
To this end, taking into account Lemma 2.8, hypothesis (H2), we prove that NfL1 and NgL2 are weakly
sequentially continuous on L1(I, E). Beside, I and J are linear continuous operators from L1(I, E) into
itself, then A and B are weakly sequentially continuous on L1(I, E).
Claim 2: We prove that B is a contraction mapping, let u, v ∈ L1(I, E). Using (H2) and Hölder inequality,
then for all t ∈ I, we have

∥Bu(t)−Bv(t)∥ ≤
t∫
0

(t− s)α−1 ∥g(s, L2u(s))− g(s, L2v(s))∥ ds

≤ λTα

Γ(α)
∥L2∥L ∥u− v∥1 , (8)

applying L1(I, E)−norm on both sides of inequatity (8), we get

∥Bu−Bv∥1 ≤
λTα+1

Γ(α)
∥L2∥L ∥u− v∥1 .

So, B is a contraction mapping on L1(I, E) with constant λTα+1

Γ(α) ∥L2∥L.
Claim 3: We show that v = Au+ Bv ∈ BR, for all u ∈ BR, indeed

∥v (t)∥ = ∥Au (t) + Bv (t)∥
≤ ∥IN fL1u (t)∥+ ∥JN gL2v (t)∥ ,

using respectively (H1) , (H2) , we �nd

∥v (t)∥ ≤ Tα−1

Γ (α)
∥A1∥1 ∥h1∥∞ +

Tα−1

Γ (α)
(λ ∥L2∥L ∥v∥1 + ∥g (., 0)∥1) , (9)

∥v (t)∥ ≤ Tα−1

Γ (α)
∥A1∥1 ∥h1∥∞ +

Tα−1

Γ (α)
∥A2∥1 ∥h2∥∞ , (10)
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here, ∥L2∥L denotes the standard norm of linear operator spaces.
Applying L1(I, E)−norm on both sides of inequatities (9) and ( 10), we get

∥v∥1 ≤
Tα

Γ (α)
∥A1∥1 ∥h1∥∞ +

Tα

Γ (α)
(λ ∥L2∥L ∥v∥1 + ∥g (., 0)∥1) .

and

∥v∥1 ≤
Tα

Γ (α)
∥A1∥1 ∥h1∥∞ +

Tα

Γ (α)
∥A2∥1 ∥h2∥∞ .

This means that, for R ≥ R0 : v = Au+ Bv ∈ BR for all u ∈ BR.
Claim 4: We show that ABR is relatively weakly compact for all R ≥ R0 using De Blasi measure of weak
noncompactness in L1 (I, E). Indeed, let S be a bounded subset of BR and let ϵ be a positive real number.
For any nonempty subset J of I, and for all u ∈ S, we have∫

J

∥NfL1u (t)∥ dt ≤
∫
J

∥A1 (t)h1 (∥L1u (t)∥)∥ dt

≤ ∥h1∥∞
∫
J

∥A1 (t)∥ dt

≤ ∥h1∥∞ ∥A1∥1 , on J.

Then, by using Lemma 2.9, we get

lim
ϵ→0

sup

∥h1∥∞
∫
J

∥A1 (t)∥ dt : meas (J) ≤ ϵ

 = 0.

So, we have ω (NfL1S) = 0 which means that NfL1S is relatively weakly compact. Moreover, I is
bounded due to the boundness of Riemann-Liouville integral operator on L1(I), then we conclude that
ω (AS) = 0, and consequently, AS is relatively weakly compact. Finally, by applying Theorem 2.10, we
deduce that the operator A+ B has, at least, one �xed point on I, which is the solution of IVP (1).

4. An example

To illustrate the application of the obtained result, we consider the following example:Dαu(t) = t sin [L1u(t)]
2 + t2e−[1+e−L2u(t)], t ∈ I := [0, π

2
],

lim
t→0+

t2−αu(t) = lim
t→0+

t2−αu
′
(t) = 0,

(11)

We took: T = π
2
, (E, ∥.∥) = (R, |.|) , α = 1.5, f (t, u (t)) = t sin [u(t)]2 , g (t, u (t)) = t2e−[1+e−u(t)];L1, L2 : L1 (I,R) −→

L1 (I,R) , L1u(t) =

π
2∫
0

u (t) dt, L2u(t) = m (t)u(t) with m : C (I,R) −→ C (I,R) ,m∗ = max
t∈I

m (t) . It's clear that:

|f (t, u (t))| ≤ A1 (t)h1 (|u(t)|) , |g (t, u (t))| ≤ A2 (t)h2 (|u (t)|) ,

where A1 (t) = t, A2 (t) =
t2

e
, ∥A1∥1 = π2

8
, ∥A2∥1 = π3

24e
and h1, h2 are positive nondecreasing functions de�ned on R+ by

h1 (u) = sinu, h2 (u) = e−e−u

, and

∥h1∥∞ = ∥h2∥∞ = 1, ∥L1∥L =
π

2
, ∥L2∥L = m∗.

Moreover, since z + e−z ≥ 1 for all real z, then one gets

|g (t, u)− g (t, u)| ≤
( π

2e

)2

|u− v| , λ =
( π

2e

)2

,

g (t, 0) =

(
t

e

)2

, ∥g (t, 0)∥1 =
π3

24e2
.

On the other hand, for m(t) = 1
2
cos(t), we have: λTα+1

Γ(α)
∥L2∥L = 0.5826 < 1 and R0 = min{4.97376, 3.79639} = 3.79639. In

conclusion, problem (11) has at least one integrable solution on [0, π
2
].
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5. Conclusions

In this paper, we presented a study of the existence of integrable solutions to an initial value problem of fractional di�erential
equations involving Riemann-Liouville fractional derivative using the �xed-point theorems of the sum of two operators under
weak topology. This type of �xed point theorems is developed extensively in the book [13]. Beside this theorem, we used
the De Blasi measure of weak non-compactness and the notion of weak Carathéodory functions. Finally, we mention that
the �eld of di�erential equations of fractional orders has not been previously studied using this kind of �xed point theorems.
Acknowledgement. We extend our thanks in advance to the anonymous reviewers for accepting to review our paper and for
providing us with useful comments on this paper.
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