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Abstract 

3D similarity transformations are often used for datum transformation in Geomatic Engineering. The 

transformations are routinely performed between the point coordinates evaluated from GNSS (Global 

Navigation Satellite Systems) observations and the point coordinates given in national datum. A mathematical 

model established among two different 3D coordinate systems contains tree type datum parameters which are 

translations, rotations and a scale. Coefficients of the parameters reflect large variations from each other’s. So, 

the unknown coefficient matrix in normal equations is to be ill-conditioned. In this study, it is indicated how 

the ill-condition structure is reduced to acceptable level by means of choosing at different unit of unknown 

parameters. Finally, the transformation from Kocaeli Metropolitan Municipality GNSS network coordinates to 

Turkish Geodetic Datum is used as a numerical example. 
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Introduction 

Similarity transformations in 2D and 3D are 

often used for datum transformation in 

Geomatic Engineering. A mathematical model 

established among two different 2D or 3D 

coordinate systems contains tree type datum 

parameters which are translations, rotations and 

a scale. The transformation parameters are 

always chosen as the unknown parameters in a 

mixed or indirect adjustment models. While the 

coordinates given in two different orthogonal 

systems are used as the observations in the 

mixed, only the transformed coordinates are 

used in the indirect model. Modeling the mixed 

adjustment model in 2D and 3D similarity 

transformations can be found Öztürk and 

Şerbetçi (1992) and Leick (1995) in detail. 

In the study, the indirect model is used because 

of its simplicity. So, the 3D similarity 

transformations in the indirect adjustment 

model are given step by step, explicitly (Kurt, 

2007; Hofmann-Wellenhof et al, 2008). Ill-

conditioning in the 3D similarity 

transformations are argued using determinant, 

spectral and Hadamart condition numbers 

(Öztürk, 1991; Press et al, 2002). For this 

propose, 3D similarity transformation software 

is developed by the author in C++ platform.  

Using the software, the theoretical deductions 

are numerically inspected on the transformation 

between Kocaeli Metropolitan Municipality 

GNSS Network (KMM-GN) coordinates and 

Turkish National Datum (Kurt, 2010). All 

stages shortly mentioned above are explained 

following lines in detail. 

3D Similarity Transformation Mathematical 

Models and Their Solutions 

3D similarity transformations are usually 

performed between terrestrial datums, for 

example from WGS84 to ITRFXX or vice 

versa). The unknown parameters of these type 

transformations take small values; some meters 

(or decimeters), around of zero and 1 for 

translation parameters  

(  Tcbat ,  Tcba 0000 t ), 

rotation parameters 

(   TT
0α   ) and  

a scale parameter  

( 1k ) respectively (Figure 1). 

Functional model of the transformation is easily 

established from Figure 1 by using vector 
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notations. In the paper, the vector  Twvuu  

as first (or transforming) coordinate system and 

the vector  Tzyxx  as second (or 

transformed) coordinate system are used. The 

only two functional models of the 

transformation are to be designated by using a 

point (j) coordinates known in the both systems 

as ( ju , jx ) (Figure 1). 

jj k uRtx  (1) 

)(k jj 00 uuRtx   (2) 

00 uRtt k (3) 

where the translation vector as t , rotation 

matrix as R , scale factor as 1k , a 

position vector in the first system ( ) as 0u  (to 

likely be the centroid), the translation vector of 

0u  from the origin of second system as 0t  are 

identified. In the study, Eq.1 and Eq.2 are 

called as model-1 and model-2 in the 

transformations in order and discussions the 

condition number are made upon the both 

models. 

Figure 1: Geometric structures of the two of 3D similarity transformations. 

(The blue {and red shifted from blue} as first or transforming system, the black as second or 

transformed system) 

The rotation matrix comprises three orthogonal 

matrixes around axes of the first coordinate 

system. The rotation angles (, , ) are 

positive clockwise as viewed from origin to 

positive direction around u, v, w axes, which 

are first, second and third axes, respectively. 

Since 0  , the cosines and sinuses of 

the angles are roughly equal to 1 and radian of 

the angle. Reducing the rotation matrix is 

obtained as Eq.4. 
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By splitting the rotation matrix into two parts, we can write the rotation matrix as combination of Q  

and identity ( I ) matrices. 

IQR   (5a) 
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By substituting Eq.5 into Eq.1-2 and using 1k  and neglecting 0Q  , the new forms of 

Eq.1-2 are acquired as following equations. 

jjjj uuQtux  (6) 

)()( jjjj 0000 uuuuQutux    (7) 

000 utt 
~

(8) 

Arranging Eq.6-7 according to αDuQ jj   and αDuuQ jj

~
)(  0 , we can obtain the following 

linear models. 

jjjj uαDtux  (9) 
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If Eq.9 and 10 are arranged with respect to the transformation parameters again, the functional 

model of 3D similarity transformations are derived for solving the unknowns by means of common 

points given the both coordinate systems (Öztürk and Şerbetçi, 1992; Leick, 1995; Kurt, 2007; 

Hofmann-Welenhof et al, 2008). 
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Where 3648  ec seca   and 61  ecppm . Using least squares solution to the combined linear 

model including the coefficient matrixes of all common points (j), it can be obtained following 

equations to estimate the transformation parameters and their variance –covariance matrix. 
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jjj
ˆˆ ΔδA  (17c) 

The common point number as p , the unknown 

parameters and coefficient matrix of 

corresponding model (1, 2, 3, 4) as δ  and jA , 

the right side vector as jΔ , the norming 

elements of corresponding parameters as secac

and ppmc , the coefficient matrix of normal 

equations as N  are used from Eq.12 to Eq.17. 

Condition number of a matrix 

Condition number is defined as a measure to 

determine ill-condition level of a linear 

equation system. In other words, the small 

variations on the observations (or right side 

vector) and approximate values of the 

unknowns cannot change the estimated 

parameters in the linear models. There are 

various methods to compute the number. Only 

two of them are used in the study. Those are 

spectral condition numbers ( SC ) and Hadamard 

condition number ( HC ). Taking a symmetric 

positive definite matrix as )n( jkuu N  (being 

similar to a coefficient matrix in normal 

equation), the both numbers are calculated 

following formulas. 
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Where, S  is the eigenvector matrix and

)max(max Λ , )min(min Λ  are extreme 

values of eigenvalues of the unknown 

coefficient matrix. Optimum number of the 

both is equal to 1. The estimated parameters are 

very consistent if the condition numbers take 

their optimum values. From long term 

experiments, the parameters are accepted as 

consistent if 1000SC  or 0100.CH 

(Öztürk, 1991; Press et al, 2002). In the study 

the both of them are used to measure condition 

level because their ill-condition levels are 

changed to different directions although their 

optimum values are the same. 

Numerical Example 

Kocaeli Metropolitan Municipality (KMM) 

gave out by contract to Kutlubey Harita 

(Ankara/Turkey) to make large scale base map 

by using numerical photogrammetric method. 

Technical controls with respect to the national 

specifications carried out by the author for the 

geodetic studies and by Ozan Arslan (Associate 

Professor in Kocaeli University, Geomatic 

Department) for photogrammetric studies. The 

first two of four technical repots were prepared 

for the horizontal and the vertical control 

studies. The numerical example for the scope is 

chosen from 1st Technical Report (Kurt, 2010). 

The report includes the controlling GNSS 
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network adjustment and transformation of the 

network point coordinates to national datum 

and computation of point velocities with respect 

to the national specifications. 

Table 1: KMM-GN10 Statistics (Kurt, 2010) 

Names Symbols 
Free 

Adjustment 

Constraint 

Adjustment 

# of base b 6294 6038 

# of outlier o 256 - 

# of base b-o 6038 6038 

# of point p 1780 1780 

# of fixed point s 0 8 

# of observation n=3b 18114 18114 

# of unknown u=3(p-s) 5340 5316 

# of datum defect d 3 0 

degree of freedom f=n-u+d 12777 12798 

a priory RMS 0 1.00 cm 1.00 cm 

a posteriori RMS 0̂ 0.85 cm 0.96 cm 

In this report, the GNSS network (hereinafter 

referred as to KMM-GN10) constituted from 

1780 points was adjusted as a free network at 

the epoch 2010.42 and then the adjusted 

coordinates in the network were transformed to 

the national datum by using 8 common points. 

The common points in the both (the free and 

national) datums were tested for any outliers by 

means of the 3D similarity transformation and 

it wasn’t found any outlier. Correspondence of 

the common point coordinates in the national 

datum to the free network datum was inspected 

by using the constraint adjustment with the 

common points (Table 1). 

In this paper, the 8 common point 3D similarity 

transformation shortly mentioned in the 

previous paragraph is chosen, and it is focused  

on the ill-conditioning problem in the 

transformation. Two transformations are carried 

out: the first of the two from the KMM-GN10 

coordinates to the ITRF05 (ITRF at reference 

epoch 2005) in the Figure 2a and the second 

from the KMM-GN10 coordinates to the 

ITRF10 (ITRF at epoch 2010.42) in the Figure 

2b. 

Since the first transformation ( 0̂ =3.12cm) 

gives an interesting result better than the second 

( 0̂ =4.09cm), it is included in the paper 

content (Figure 2). From the result, it can be 

noted that the point velocities estimated from 

the global network (the A-level network) are 

not identical the local velocities sufficiently 

Figure 2: Transformations (a) between KMMGN10 and ITRF05 and (b) between KMMGN10 and 

ITRF2010 
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In Figure 2b, the H23_G001 point having the 

maximum errors of the transformations was 

removed from the common point set (Figure 2). 

Why the transformation carried out by 

remaining 7 common points did not 

significantly improve the transformation result (

0̂ =3.62cm), it was decided to use the all 

common point in the transformation (Kurt, 

2010). 

Table 2: The unknown parameter statistics and their condition numbers of the different 

transformation models (The bold numbers are acceptable level for consistent solution) 

Parameters Symbols 
Model 1 

(Eq.12) 

Model 2 

(Eq.13) 

Model 3 

(Eq.14) 

Model 4 

(Eq.15) 

Determinant (!=0 and ~1) [N] 3.97e+042 3.97e+042 5.16e-002 5.16e-002 

Spectral  (<1.00e+3) CS 2.38e+018 1.67e+009 5.60e+007 5.98e+002 

Hadamard  (>1.00e-2) CH 5.12e-039 6.93e-001 8.07e-023 6.93e-001 

# of common points p 8 8 8 8 

Degree of freedom f 17 17 17 17 

RMS 0̂
 [cm] 4.09cm 4.09cm 4.09cm 4.09cm 

u0 [m] 0.0000 4195618.9374 0.0000 4195618.9374 

Centroid of the first system v0 [m] 0.0000 2397732.1678 0.0000 2397732.1678 

w0 [m] 0.0000 4148951.1801 0.0000 4148951.1801 

a [m] -3.8259  ±2.6878 -0.0960  ±0.0145 -3.8259  ±2.6878 -0.0960  ±0.0145 

Translations (t) b [m]  1.6322  ±3.1939  0.0636  ±0.0145  1.6322  ±3.1939  0.0636  ±0.0145 

c [m]  3.2100  ±2.9231  0.0242  ±0.0145  3.2100  ±2.9231  0.0242  ±0.0145 

 [asec]  0.0467  ±0.0974  0.0467  ±0.0974  0.0467  ±0.0974  0.0467  ±0.0974 

Rotations ()  [asec] -0.1232  ±0.0981 -0.1232  ±0.0981 -0.1232  ±0.0981 -0.1232  ±0.0981 

 [asec]  0.1195  ±0.0902  0.1195  ±0.0902  0.1195  ±0.0902  0.1195  ±0.0902 

Scale factor ()  [ppm] -0.0328  ±0.3535 -0.0328  ±0.3535 -0.0328  ±0.3535 -0.0328  ±0.3535 

Since the transformation between KMM-GN10 

and ITRF2010 is convenient to the national 

specification and the statistical consistency of 

the 8 common constrained adjustments into the 

free adjustment is clearly followed in the Table 

1, the 8 common point transformations from 

KMM-GN10 to ITRF2010 are selected for the 

paper content. 

The normal equation coefficient matrixes of the 

four models are used for computing the 

condition number which demonstrates the 

coherence level of parameters to their linear 

model (Table 2). According to Table 2, the 

most consistent model is the Model 4. All 

condition numbers for the Model 4 are satisfied 

in their consistency threshold ranges. From the 

table, it is also viewed that the determinant of 

the Model 4 reached to 1, which is optimum 

value of the determinant. 

The estimated unknowns for all models are 

same, because the both systems used in the 

transformation are very closed each other’s 

geometrically. The closeness of the two 

systems is easily seen from the Model 1-3 

columns in Table 2, e.g. their origin differences 

in 3m and rotation angles in 0.1asec and 

scale factor in 1e7. If the both coordinate 

systems farther from each other, the ill-

conditioning would cause deviations of the 

estimated parameters. 

Conclusions 

Spectral and Hadamart condition numbers and 

determinant are very sensitive measures to 

determine the ill-conditioning level of a linear 

model when all of them are used in together. 

Their same optimum values are equal to 1. 

When the determinant is reached to zero, the 

coefficient matrix of normal equation is to 

reach the singularity. The singularity (det=0) 

can use to check whether the model is suitable 

or not to estimate unknown parameters. A 

greater absolute value of the determinant can 

indicate an ill-conditioning problem. After that, 

one should compute the two condition number 

defined previous paragraph to check ill-

conditioning level of the normal equation 
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matrix because their ill-conditioning levels are 

change different directions, getting greater for 

spectral while getting smaller for Hadamart 

condition numbers. 

In this contribution, it is proposed an easy way 

to overcome the ill-conditioning problem in 3D 

similarity transformation. The way is to change 

the unit of the rotation and scale parameters as 

asec (arc second) and ppm (per per million) 

respectively during the establishment of linear 

model. The suggestion is tested on the 

transformation between KMM-GN10 and 

national datum successfully as mentioned in the 

numerical example part of the paper. 
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