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ABSTRACT 
ECG signals are one of the most common tools used to diagnose cardiovascular diseases. ECG signals are obtained 

by measuring electrical changes on the skin surface. Arrhythmias occurring in the heart are diagnosed because the 

expert evaluates ECG signals. This diagnosis depends on the experience of the specialist and is a subjective 

evaluation. With the widespread use of computer-aided diagnostic systems, evaluations dependent on the expert's 

experience are objectified, and support is provided to the physician for diagnosis. For computer-aided ECG 

classification, beats are detected from ECG signals, and arrhythmias are detected by analyzing the structure of 

these beats. In recent years, deep learning models have been successful in classifying ECG signals. The data to be 

used in the classification process is realized with the help of morphological features or images of the signal. The 

main objective of this study is to compare the classification performance of digital and visual heartbeat data for 

ECG signal classification. For this purpose, 1D-CNN and 2D-CNN architectures are used for the type of ECG 

signals. As inputs of the 1D-CNN model, numerical values of the heartbeat signal and hand-crafted features 

obtained from these numerical values were used. The inputs of the 2D-CNN model are the raw signal image, 

spectrogram, scalogram, Mel-spectrogram, GFCC, and CQT images, which are visual representations of the 

heartbeat signal. The results show that the numerical model of the ECG signal fails for classification, while the 

hand-crafted features provide 85.2% accuracy. The results obtained with the visual representation of the signal 

provided over 99% classification accuracy for all images. The highest success rate was 99.9% with the 

visualization of the raw signal. In line with these findings, the 2D-CNN architecture and the visual representation 

of the heartbeat signal were found to be the most suitable method for classifying ECG signals. 
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EKG Sinyallerinin Sınıflandırılmasında Zaman-Frekans Domenindeki 

Görüntülerin ve Ham Sinyal Verilerinin Karşılaştırmalı Performans 

Analizi 
 

ÖZ 
EKG sinyalleri kardiyovasküler hastalıkların klinik tanısı için kullanılan en yaygın araçlardan birisidir. Cilt 

yüzeyindeki elektriksel değişimlerin ölçülmesi ile EKG sinyalleri elde edilmektedir. EKG sinyallerinin uzmanın 

değerlendirmesi sonucu kalpte oluşan aritmiler teşhis edilmektedir. Bu teşhis uzmanın deneyimine bağlı olup 

subjektif bir değerlendirmedir. Bilgisayar destekli tanı sistemlerinin yaygınlaşması ile uzmanın deneyimine 

bağımlı değerlendirmeler objektifleşmekte ve hekime tanı için destek sağlanmaktadır. Bilgisayar destekli EKG 

sınıflandırma için EKG sinyallerinden atımlardan tespit edilmekte ve bu atımların yapısı incelenerek aritmiler 

tespit edilmektedir. Son yıllarda derin öğrenme modellerindeki yüksek başarı EKG sinyallerinin de 
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sınıflandırılması için kullanılmaya başlanmıştır. Sınıflandırma sürecinde kullanılacak veri sinyalin morfolojik 

özellikleri veya görüntüsü yardımıyla gerçekleştirilmektedir. Bu çalışmanın temel amacı, EKG sinyallerinin 

sınıflandırılması için sayısal ve görsel kalp ritmi verilerinin sınıflandırma performanslarının karşılaştırılmasıdır. 

Bu amaçla, EKG sinyallerinin sınıflandırılması için 1D-CNN ve 2D-CNN mimarileri kullanılmıştır. 1D-CNN 

modelinin girdileri olarak kalp ritmi sinyalinin sayısal değerleri ve bu sayısal değerlerden elde edilen öznitelikler 

kullanılmıştır. 2D-CNN modelinin girdisi kalp ritmi sinyallinin görsel olarak temsilini içeren ham sinyal 

görüntüsü, spektrogram, skalogram, mel-spektrogram, GFCC ve CQT görüntüleridir. Elde edilen sonuçlar, EKG 

sinyallerinin sayısal temsilinin sınıflandırma için başarısız olduğunu, hand-crafted özniteliklerin %85.2 doğruluk 

sağladığını göstermiştir. Sinyalin görsel temsili ile elde edilen sonuçlar tüm görüntüler için %99 üzerinde 

sınıflandırma doğruluğu sağlamıştır. Bunlar içerisindeki en yüksek başarı ise sinyalin ham halinin 

görselleştirilmesi ile %99.9 olarak elde edilmiştir. Elde edilen bu bulgular doğrultusunda, EKG sinyallerinin 

sınıflandırılması için en uygun yöntemin 2D-CNN mimarisi ve kalp ritmi sinyalinin görsel temsili olduğunu 

göstermiştir. 

Anahtar kelimeler: EKG, derin öğrenme, kalp ritmi, sınıflandırma 

 

 

I. INTRODUCTION 
 

Disorders of the heart and blood vessels are referred to as cardiovascular diseases (CVD). World Health 

Organization (WHO) reports and American Heart Association statistics show that CVD accounts for the 

majority of non-disease deaths [1]. It claims an estimated 17.9 million lives yearly, accounting for 44% 

of all non-communicable disease deaths worldwide [2]. Deaths from CVD are projected to reach 23.6 

million in 2030 [3]. CVDs cause clotting and vascular occlusion, leading to cerebral or cardiac ischemic 

necrosis. As a result, the heart pumps blood poorly, and organs can be damaged [4]. As a result, early 

detection of cardiac arrhythmias is vital. Different ECG waveforms represent arrhythmias and contain 

information about heart function and condition. The Association for the Advancement of Medical 

Instrumentation (AAMI) has categorized arrhythmias into five main classes (N, S, V, F, Q) [5]. 

 

An electrocardiogram (ECG) is one of the most widely used methods for diagnosing CVD. Electrical 

activity in the heart causes electrical changes on the skin’s surface. ECG provides visual monitoring of 

this change with the help of 12 electrodes attached to the patient's body. This facilitates diagnoses such 

as heart disease, high blood pressure, and heart failure using arrhythmias in the heartbeat. Furthermore, 

ECG is crucial in predicting short- and long-term outcomes [4]. Figure 1 shows the peaks of an ECG 

signal. 

 
 

Figure 1. The ECG constitution of a single heartbeat [4]. 

 
Five peaks can characterize the heartbeat for the ECG waveform, as shown in Figure 1. The five points' 

values, distances, and various morphological characteristics are used for this purpose. P wave indicates 

atrial depolarization, the QRS complex wave indicates ventral depolarization, and the T wave indicates 

repolarization [5]. The Q, R, and S waves together indicate a single event. The length of the two intervals 

(PR and QT interval) means the time required for the respective electrical change to complete. 
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One of the main problems with ECG signal identification is that the signal varies according to the person 

and the disease. Another problem is that similar signals may be encountered for different diseases. 

Furthermore, the ECG signal has high noise and complexity characteristics, making it difficult to 

identify specific diseases [6]. Since the experience of the experts is an important factor in interpreting 

ECG signals, the result will be subjective. Therefore, computer-aided diagnosis (CAD) will provide 

objective evaluation for ECG, just as other medical fields do. 

 

CAD systems have been under investigation in many medical fields for many years. For ECG, this 

process dates back to the 1960s [7]. Traditional CAD methods include the basic steps of pre-processing, 

feature extraction, and classification. The pre-processing step includes the removal of noise from the 

signal, framing, and windowing. Researchers have mostly used normalization and noise removal in the 

preprocessing step. These include z-score normalization, band pass, high pass filter, low pass filter, 

down-sampling, and DWT denoising [8]–[13]. The features are extracted from the time or frequency 

domain or the arrhythmia signal. Researchers using traditional methods have used raw data, RR 

intervals, discrete wavelet transforms, Fourier transforms, and morphological features [10], [11], [14]–

[22]. Finally, classification is performed using the features obtained. Past studies have mainly used 

artificial neural networks, support vector machines (SVM), k-nearest neighbor (k-NN), and random 

forest (RF) classifiers [12], [21], [23]–[30]. In recent years, the high achievements obtained with deep 

learning models have started to be used for ECG interpretation. When deep learning studies are 

analyzed, studies using 1D-CNN, 2D-CNN, and transfer learning come to the forefront. 2D-CNN is 

generally used in image data, and the kernel is moved in 2 dimensions on the image. In 1D-CNN models, 

the kernel is moved in only one dimension and used in time series data. On the other hand, transfer 

learning involves applying CNN models available in the literature to the ECG signal. In studies using 

1D-CNN, the raw data of the ECG signal and RR interval values are used [11], [15], [20], [31]–[33]. 

Spectrogram, log-scale spectrogram, Mel-spectrogram, bi-spectrum, ECG signal, and CQT images were 

used in studies using 2D-CNN and transfer learning [9], [10], [16], [18], [34]–[37]. Another deep 

learning model used in ECG classification studies is Long Short-Term Memory (LSTM). In studies 

using LSTM, raw data and RR interval values were used as input to the model [19], [21], [22], [32], 

[33], [38], [39]. 

 

If the studies involving the classification of ECG signals are evaluated in terms of success, the deep 

learning classification success is higher than the other methods, with success between 93%-99.7%. If 

the methods used in these studies are evaluated within themselves, the mel-spectrogram provides higher 

success than CQT [37]. 2D-CNN model provides higher success than 1D-CNN [31]. CNN models 

perform better than LSTM [33], [38]. Although recent studies have focused on deep learning models, 

the study using traditional classifiers (SVM and MLP) achieved 99.8% success using auto-regressive 

coefficients and discrete wavelet transform [12]. 

 

A general review of the research on ECG classification shows that most of the studies used CNN 

architectures, SVM, and k-NN classifiers proposed by the researchers. Raw data and RR intervals were 

mostly used as input for these methods. After the literature review, it was observed that the number of 

spectral image-based studies is limited, the current versions of traditional methods are not used, and 

there is no comparison between feature sets. 

 

In this study, the performance of waveform, spectrogram (SPEC), Gammatone Frequency Cepstral 

Coefficients (GFCC), Mel-spectrogram (MEL), Constant Q-transform (CQT), and scalogram (SCL) 

images were compared for ECG signal classification. For this purpose, the MIT-BIH [40] dataset was 

used. CNN models were created for feature extraction and classification. Furthermore, the time series 

values of the ECG signal are used for classification using 1D-CNN, and the results are compared with 

2D-CNN. Therefore, the contributions of this research paper are: 1) The classification performance of 

time-frequency image types of ECG signals is analyzed. 2) The classification performance of the 1D-

CNN model with raw signal data and hand-crafted features is compared. 3) Guidance on using visual 

features is provided to researchers working in ECG classification. The architecture of this study is given 

in Figure 2. 
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Figure 2. Flow diagram we used for ECG classification. 

 

In this study, eight different experiments were conducted to classify ECG signals. The first six 

experiments involve the classification of time-frequency dome images with 2D-CNN. The last two 

experiments involve the time series of the ECG signal and the classification of the features obtained 

from this series with 1D-CNN. The rest of this paper is organized as follows: Section 2 presents the 

materials and methods used in the study. Section 3 presents the experimental results. Section 4 contains 

conclusions and discussion. 

 

 

II. MATERIALS AND METHODS 
 

A. DATA DESCRIPTIONS 

 
This study used the MIT-BIH [40] database, widely used in the literature. The database contains 

heartbeat recordings collected by the Massachusetts Institute of Technology and Boston Hospital from 

47 participants. The recordings are 30 minutes long and 360 Hz and contain 48 ECG recordings. Each 

signal was filtered with a 0.1-100 Hz band-pass filter. The database contains arrhythmic signals labeled 

by two or more cardiologists. Each ECG recording includes two channels (MLII and V1-V5). The QRS 

is usually more prominent in signals from the MLII lead. Therefore, data from the MLII channel were 

used in our study. The MIT-BIH database is unbalanced due to the unequal number of ECG beats for 

each arrhythmia [10]. MIT-BIH includes the classes N (normal), S (supraventricular ectopic), V 

(ventricular ectopic), F (Normal and V), and Q (undefined) [41]. Heartbeat types according to AAMI 

standards and tags in the MIT-BIH database are given in Table 1. 

 
Table 1. Heartbeat types according to AAMI and tags in the MIT-BIH. 

 

AAMI MIT-BIH class1 Beat Count 

N N, L, R, e, j 90083 

S A, a, J, x 2972 

V V, !, E 7480 

F F 802 

Q Q 15 

 

By AAMI recommendations, four records in this database (102, 104, 107, and 217) were not used in 

the study [14]. The heartbeat types and the selected recordings to be used in this study are given in 

Table 2. In the selection of the recordings, those commonly used in the literature were preferred. 
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Table 2. Types and numbers of heartbeats used. 

 

Beat Types Beat Count Record Numbers 

N 4868 103, 122, 220 

LBBB 3856 109, 111, 214 

RBBB 3613 118, 212, 231 

PVC 2278 116, 119, 208, 213, 215, 221 

 

The number of classes in the MIT-BIH database equals the number of tags. However, the database has 

an unbalanced distribution when tag-based beats are analyzed. Since data augmentation will not be used, 

the classes to be used were determined according to the balanced distribution. When selecting records, 

we tried to include records with a single beat type in the same class. In cases where this was not possible, 

other records were included. In this context, classification was made over four beat types. 

 

B. DATA PRE-PROCESSING 
 

Pre-processing includes normalization, filtering, and beat detection of the ECG signal before feature 

extraction and classification. Amplitude variations of ECG signals negatively affect the features. This 

variation creates significant variation in different patients for the same type of heartbeat [42]. With the 

normalization process, the amplitudes of the ECG signals are fixed to 1mV from peak to peak, and the 

offset of the signal is eliminated. Thus, the dependency of the features extracted from the ECG signal 

on demographic characteristics will be eliminated. The ECG signal will contain noise due to incorrect 

electrodes, patient movement, respiration, and various noises. Therefore, the DWT denoising method is 

used to remove the noise. Figure 3 shows the original, normalized, and denoised images of a sample 

ECG signal from the database. 

 

 
 

Figure 3. Original, normalized, and noise-removed images, for example, ECG signal from the MIT-BIH 

database. 

 

The last stage of the preprocessing step is extracting heartbeat regions from the ECG signals. The R and 

RR interval values in the ECG signal are used for this process. Figure 4 shows an image of the extraction 

of heartbeat regions. 
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Figure 4. Identification of heartbeat regions. 

 

RR intervals were calculated using the previous R-value and the next R-values for the heartbeat region 

to be determined. Then, the start and end points for the heartbeat to be received were determined by 

assessing the midpoint of these values. 

 

C. VISUALIZATION OF HEARTBEATS 
 

The main objective of this study is to classify ECG signals over images and to compare the performance 

of the methods used. For this purpose, SPEC, MEL, GFCC, CQT, and SCL images were obtained for 

each heartbeat obtained after the preprocessing step. 

 

SPEC allows a time-varying signal to be moved into the frequency domain by applying a Fourier 

transform. Thus, the signal is transferred to the frequency domain, and the signal's energy is represented 

by colors in the spectrogram. To obtain MEL images, the frequencies in the SPEC are converted to the 

mel scale. If gamma tone filters are used instead of the mel scale, GFCC images are obtained. When the 

wavelet transform is used instead of the Fourier transform in the transition from the time domain to the 

frequency domain, the images to be obtained are also expressed as SCL. CQT transforms by creating a 

logarithmic gap between STFT and frequency transitions [43], [44] —sample images to be obtained 

after these transformations are given in Figure 5.  
 

   
a) b) c) 

   
d) e) f) 

 

Figure 5. Visualization for an example heartbeat from the MIT-BIH database; a) Raw signal, b) SPEC, c) MEL, 

d) GFCC, e) CQT and f) SCL 

 

D. HAND-CRAFTED FEATURES 
Another experiment performed within the scope of the study is the hand-crafted features of the heartbeat 

signal. The features, linear spectrum, mel-spectrum, bark spectrum, MFCC, GTCC, spectral centroid, 

spectral entropy, pitch, and ZCR features were obtained from each heartbeat. These features were used 

as the input of the 1D-CNN model. In addition, the numerical values of the heartbeat signal were also 

used as input to the 1D-CNN model.  

R R R 
RR interval RR interval 

𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

2
 

𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

2
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E. CONVOLUTIONAL NEURAL NETWORK (CNN) 
 

Deep learning is an approach to machine learning in which the feature extraction process is performed 

in a network. The attributes to be used are realized in the network's learning process. Therefore, it 

provides higher success compared to classical methods [45]. Despite this high performance, deep 

learning models require more hardware and data. Thus, hardware with high processing power, such as 

GPUs, is needed.  

 

CNN (Convolutional Neural Networks), often used in deep learning architecture, is a multilayer 

perceptron type. While CNN obtains more general features, such as edge information in the first layers, 

it obtains features representing the image in the advanced layers. CNN algorithms are used in many 

fields, such as image and audio processing, natural language processing, and biomedicine. The basic 

building blocks of any CNN consist of 4 main layers: convolution operator, ReLU, subsampling, and 

fully connected layer. These layers can be used more than once when building a CNN model. CNN 

models are modeled in 1D, 2D, and 3D. 1D-CNN is used for time series. 2D-CNN architecture is used 

in models using images as input. 3D-CNN, on the other hand, creates CNN models using 3D data as 

input.  

 

In this study, a 1D-CNN model was created for the numerical values of the heart-beat signal and the 

hand-crafted features. The model is given in Figure 6. 

 

 
 

Figure 6. Structure of the 1D-CNN model (FS: FilterSize, NF: NumFilters, S:Stride) 

 

For Exp7, the input to the model is the numerical data of the signal. For Exp8, the input is the hand-

crafted features extracted from each signal.  

 

A 2D-CNN model was created for the image of the heartbeat signal, and the SPEC, MEL, GFCC, CQT, 

and SCL images were obtained from this signal. The model is given in Figure 7. 
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Figure 7. Structure of the 2D-CNN model (FS: FilterSize, NF: NumFilters, S:Stride) 

 

The convolutional layer forms the basis of the CNN architecture and extracts features from the input. 

Since this process is performed by applying a filter to the data, the filter size, number, and stride value 

must be determined. Stride determines how many steps it takes to shift the filter on the input. The output 

of the convolutional layer is linear. However, the model also needs to learn non-linear problems. 

Therefore, activation functions are used, including various nonlinear activation functions such as 

sigmoid, tahn, and ReLU. However, ReLU is widely used because it gives faster results. Normalization 

is the normalization process between the layers of the CNN model and accelerates the training process. 

The pooling layer is used to reduce the number of features and computations. The dropout layer prevents 

overlearning by removing some neurons from the model during training. The dense layer is classified 

according to the information from convolution layers. The parameters used in the training phase of the 

CNN models are given in Table 3. 

 
Table 3. Parameters used for CNN models. 

 

Data selection for Training, Validation, and Testing Random permutation 

The portion of the data allocated for training 70% 

The portion of the data allocated for validation 15% 

The portion of the data allocated for the test 15% 

Optimizer Adam 

Learning Rate 0.001 

Epochs 30 

Mini Batch Size 512 

 

F. PERFORMANCE EVALUATION 

 
There are various methods used to evaluate the success of classification problems. The confusion matrix 

gives the correctly and incorrectly classified examples for each class. With the help of the confusion 

matrix, measures such as precision, recall, f-score, and accuracy are used for performance evaluation. 

The recall is the ratio of the number of correctly classified positive samples to the sum of the number of 

correctly classified positive samples and the number of misclassified negative samples. Precision is the 

ratio of the number of correctly classified positive samples to the total number of positive samples. The 

F-score is the harmonic mean of the sensitivity and precision values. Accuracy is the ratio of the number 

of correctly classified samples to the total number of samples [46].  

Conv2D (ReLU) 

FS: 3x3, NF: 64, S:2x2 

Normalization 

Pooling (Max) 

Dense 

Softmax 

Output Input 

Conv2D (ReLU) 

FS: 3x3, NF: 128, S:2x2 

Conv2D (ReLU) 

FS: 3x3, NF: 128, S:2x2 

Pooling (Max) 

Dropout(0.5) 

Conv2D (ReLU) 

FS: 3x3, NF: 256, S:2x2 

Conv2D (ReLU) 

FS: 3x3, NF: 256, S:2x2 

Pooling (Max) 

Dropout(0.5) 
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In the experiments, accuracy and loss graphs were obtained for training and validation during the 

training process of the models and given in the results section. A testing process was created and 

evaluated the success of the models with accuracy, precision, recall, and f-score criteria to evaluate the 

success of the models. For this purpose, 30% of the data was used for training, 15% for validation, and 

15% for testing. The equations for the performance metrics used are given in Equations 1, 2, 3 and 4 

[47]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

𝑓 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

 

 

II. EXPERIMENTAL RESULTS 

 
In this study, six different images were obtained from heartbeat sound signals to classify ECG signals. 

ECG classification was performed with 2D-CNN using these six different images. In addition, to 

compare the performance of image and audio signal data, classification was made with 1D-CNN using 

the numerical values of the signal and the features obtained by signal processing (hand-crafted). Thus, 

eight experiments were conducted to classify ECG signals, and the results were compared. The test data 

classification metrics of the models trained with 1D-CNN and 2D-CNN are given in Table 4. 

Table 4. Performance values obtained with the test dataset. 

 

Exp Model Input Precision Recall Accuracy F-score 

Exp1 2D-CNN SPEC 0.9969 0.9971 0.9975 0.9970 

Exp2 2D-CNN MEL 0.9975 0.9970 0.9977 0.9972 

Exp3 2D-CNN GFCC 0.9935 0.9933 0.9934 0.9934 

Exp4 2D-CNN CQT 0.9946 0.9962 0.9963 0.9954 

Exp5 2D-CNN SCL 0.9958 0.9958 0.9963 0.9958 

Exp6 2D-CNN Raw Signal 0.9992 0.9985 0.9991 0.9989 

Exp7 1D-CNN Raw Signal 0.3461 0.4598 0.4753 0.3830 

Exp8 1D-CNN Hand-crafted features 0.8754 0.8330 0.8524 0.8377 

 

When the test results in Table 4 are examined, the numerical signal data for ECG classification shows 

very low success. In addition, although the classification accuracy obtained with 1D-CNN in Exp8 is 

85.24%, the accuracy rates obtained with 2D-CNN models are higher. ECG classification successes with 

the 2D-CNN model are higher than the results of the studies in the literature. If the results obtained with 

the image datasets are examined, a success of over 99% has been achieved in all datasets. Among these, 

the highest success was achieved with the visualization of the ECG sound signal, as 99.91%. Details of 

each experiment are given below as sub-items. All experiments were performed on MacBook Pro (i7 

processor, 16GB RAM, and 512SSD). 
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A. CLASSIFICATION RESULTS WITH TIME-FREQUENCY DOMAIN IMAGES 
 

In this section, the results obtained in Exp1 (SPEC), Exp2 (MEL), Exp3 (GFCC), Exp4 (CQT), Exp5 

(SCL), and Exp6 are presented. The training, validation, and test data used in all six experiments were 

chosen to be the same for a more objective evaluation of the comparison results. The training and 

validation results obtained in the six experiments are given in Figure 8. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 

Figure 8. Training and validation results for 2D-CNN model a) Exp1, b) Exp2, c) Exp3, d) Exp4, e) Exp5, f) 

Exp6 

As can be seen in the accuracy and loss graphs obtained on the 2D-CNN model and image datasets, the 

accuracy value is high, and the training value is low in all image datasets. Also, when the training and 

validation curves are analyzed, it is seen that there is no overfitting problem. The class-based 

classification achievements were examined using the test data (15% of the entire data set) for these six 

training experiments. The results obtained are given in Table 5. 
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Table 5. Class-based classification achievements were obtained with the test dataset for the first six experiments. 

 

Experiments 
Accuracy (%) 

LBBB RBBB Normal PVC Overall 

Exp1 (SPEC) 99.74 99.82 99.93 99.27 99.75 

Exp2 (MEL) 99.66 100.00 99.79 99.56 99.77 

Exp3 (GFCC) 99.48 99.54 99.10 99.27 99.34 

Exp4 (CQT) 99.83 100.00 99.93 98.10 99.63 

Exp5 (SCL) 99.22 99.91 100.00 99.19 99.63 

Exp6 (Raw Signal) 99.74 100.00 99.93 100.0 99.91 

 

The class-based accuracy rates in Table 5 are obtained from the confusion matrix obtained by classifying 

the test dataset. In the six experiments, the class-based success rates are evenly distributed. Another 

finding from the confusion matrix is that the LBBB and PVC classes are similar in 2D-CNN 

experiments. As in the training process, the highest success rate was obtained with the raw signal image 

(Exp6) in the testing process. These findings show that all six image types can be used successfully in 

heartbeat classification. 

 

B. CLASSIFICATION RESULTS WITH 1D-CNN 

 
The 1D-CNN model was used to classify the signal with raw digital data (Exp7) and hand-crafted 

features (Exp8). The training and validation graphs of the 1D-CNN model for Exp7 and Exp8 are given 

in Figure 9. 

 

 
a) 

 
b) 

 

Figure 9. Training and validation results for 1D-CNN a) Exp7, b) Exp8 

 

The training and validation results of the experiment (Exp7) using the 1D-CNN model and the raw 

numerical data of the signal show that this dataset is unsuitable for heartbeat classification. Because both 

the loss value is high, and the training value is low. Therefore, the model fails. This situation is also seen 

more clearly in the class-based achievements obtained because of the classification of the test dataset 

for Exp7. Accuracy was 0% for LBBB, 25.46% for RBBB, 92.51% for Normal, and 65.95% for PVC. 

This model can be used for normal-abnormal heartbeat classification and is unsuitable for multi-class 

problems. 

 

Exp8 used the 1D-CNN model and hand-crafted features extracted from the heartbeat signal. This 

experiment's accuracy and loss curves show that the model can be used successfully in heartbeat 

classification. After a particular iteration, the accuracy value increased and went horizontal, while the 

loss value decreased and went horizontal. When the model is tested using the dataset allocated for 

testing, it cannot be said that the class-based accuracy rates are fully balanced. Accuracy was 94.83% 

for LBBB, 96.19% for RBBB, 82.31% for Normal, and 59.87% for PVC. The overall accuracy of the 

model is 85.24%. The unbalanced class-based accuracy rates are due to the PVC class, which has a 

lower accuracy rate than the other classes. Also, the PVC class is most like the LBBB class. 
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IV. DISCUSSION AND CONCLUSION 
 

This study uses raw signal data and time-frequency domain images for ECG signal classification. With 

these data, 1D-CNN and 2D-CNN models were created, and a comparative performance analysis was 

performed. For this purpose, ECG recordings from the MIT-BIH database were widely used in the 

literature. First, these recordings detected heartbeat regions, and digital and image datasets were created 

for these regions. The digital dataset contains raw digital signal data and hand-crafted features extracted 

from the signal. The heartbeat image, spectrogram, scalogram, CQT, GFCC, and mel-spectrogram 

images of the signal were used for the image dataset. In this context, eight experiments were performed, 

and each experiment's training, validation, testing, and loss results were analyzed. 

 

The first six experiments with the image dataset achieved a classification accuracy of over 99%. Among 

these, the heartbeat signal's highest success rate was 99.91%. The class-based accuracy rates were evenly 

distributed in these six experiments, and no overfitting problem occurred. The other two experiments 

use the numerical values of the heartbeat signal. In the seventh experiment, numerical values for the 

heartbeat obtained from the MIT-BIH database were used, and classification was performed with 1D-

CNN. The results obtained are unsuccessful according to the accuracy and loss values of the model. In 

addition, the class-based accuracy is high, especially for the normal class, but low for the other classes 

because of the classification performed on the test data. Especially in the LBBB class, the success rate 

is 0%. In the last experiment, feature extraction was performed on the numerical values obtained for a 

heartbeat, and training was performed with 1D-CNN. As a result of the training, both accuracy and loss 

curves show that the model can be used for the heartbeat. However, when the class-based accuracies are 

analyzed, the accuracy rate for the PVC class is low. The overall success of the model is 85.24%. 

 

When the results of the experiments performed within the scope of the study are compared with the 

studies in the literature, the success rates of the experiments using 2D-CNN and images are higher than 

in the literature. The comparison of our results with the recent studies using the MIT-BIH database is 

given in Table 6. 

 
Table 6. Comparison of the results obtained with the literature. 

 

Method/Feature Model/Classifier Accuracy (%) 

Our Exp. (Exp6-ECG signal) 2D-CNN 99.9 

Our Exp. (Exp1-SPEC) 2D-CNN 99.8 

Our Exp. (Exp2-MEL) 2D-CNN 99.8 

TERMA and FrFT SVM 99.8 [12] 

Grayscale ECG Signal 2D-CNN 99.7 [10] 

Our Exp. (Exp4-CQT) 2D-CNN 99.6 

Our Exp. (Exp5-SCL) 2D-CNN 99.6 

ECG Signal CNN and GRU 99.6 [11] 

ECG Signal, R-peaks, RR interval CNN 99.6 [16] 

SWT feature and RR interval 1D-CNN 99.4 [15] 

ECG Signal CNN 99.4 [35] 

Our Exp. (Exp3-GFCC) 2D-CNN 99.3 

ECG Signal CNN+ELM 98.8 [13] 

ECG Signal 2D-CNN 98.7 [48] 

ECG Signal 1D-CNN 98.5 [20] 

RR-intervals, higher-order-statistic features, DWT Random Forest 95.7 [14] 

Third Order Cumulant SqueezeNet 94.6 [49] 

Spectrogram ResNet-18 91.0 [18] 

Our Exp. (Exp8-handcrafted feat.) 1D-CNN 85.2 

Our Exp. (Exp7-raw signal) 1D-CNN 47.5 

 

When the results given in Table 6 are examined, the accuracy rate obtained with the image of the ECG 

signal is higher than the studies in the literature. The accuracy rate obtained with spectrogram and mel-
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spectrogram is the highest accuracy in the literature. The accuracy rates obtained with CQT, scalogram, 

and GFCC are between 0.2%-0.5% lower than the highest accuracy rates in the literature. Two 

experiments with 1D-CNN achieved lower accuracy than the studies in the literature. 

 

The results of this study, which examined various inputs for deep learning, which has been widely used 

in the classification of ECG signals in recent years, showed that the numerical values of the signal for 

the heartbeat and the features to be obtained from these values showed low classification accuracy and 

could not entirely separate the similarity between the classes. The raw signal data and the 1D-CNN 

model showed low success for ECG classification. When 2D-CNN and six different image datasets were 

used for ECG classification, all images were highly successful for ECG classification. Among these, the 

highest success was achieved with the image of the heartbeat signal. An important issue encountered in 

the experiments is the high similarity rate in the classification of PVC and LBBB classes in image 

datasets compared to other classes. 

 

The strengths of this study are the comparison of the 1D-CNN model with the 2D-CNN model and the 

performance analysis of ECG classification with different input data. In future studies, the imbalance in 

the datasets can be eliminated with data augmentation, and performance comparisons can be made. In 

addition, the success of texture analysis methods during the conversion of heartbeat signals into images 

can be examined. 

 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

 

 

V. REFERENCES 

[1] O. M. A. Ali, S. W. Kareem, and A. S. Mohammed, “Evaluation of Electrocardiogram Signals 

Classification Using CNN, SVM, and LSTM Algorithm: A review,” presented at 8th International 

Engineering Conference on Sustainable Technology and Development (IEC), pp. 185–191, 2022. 

 

[2] “World health statistics 2018: monitoring health for the SDGs, sustainable development goals - 

RELACSIS | OPS/OMS,” Pan American Health Organization / World Health Organization, 2018. 

https://www3.paho.org/relacsis/index.php/es/noticias-relacsis/906-report-world-health-statistics-2018-

monitoring-health-for-the-sdgs-sustainable-development-goals (accessed Jan. 12, 2023). 

 

[3] E. J. Benjamin et al., “Heart disease and stroke statistics—2019 update: a report from the 

American Heart Association,” Circulation, vol. 139, no. 10, pp. e56–e528, 2019. 

 

[4] X. Liu, H. Wang, Z. Li, and L. Qin, “Deep learning in ECG diagnosis: A review,” Knowledge-

Based Systems, vol. 227, p. 107187, 2021. 

 

[5] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, A. Gertych, and R. San Tan, “A 

deep convolutional neural network model to classify heartbeats,” Computers in Biology and Medicine, 

vol. 89, pp. 389–396, 2017. 

 

[6] G. De Lannoy, D. François, J. Delbeke, and M. Verleysen, “Weighted conditional random fields 

for supervised interpatient heartbeat classification,” IEEE Transactions on Biomedical Engineering, vol. 

59, no. 1, pp. 241–247, 2011. 

 



758 

 

[7] H. V. Pipberger, R. J. Arms, and F. W. Stallmann, “Automatic screening of normal and 

abnormal electrocardiograms by means of a digital electronic computer,” Proceedings of the Society for 

Experimental Biology and Medicine, vol. 106, no. 1, pp. 130–132, 1961. 

 

[8] H. Malik, U. Bashir, and A. Ahmad, “Multi-classification neural network model for detection 

of abnormal heartbeat audio signals,” Biomedical Engineering Advances, vol. 4, p. 100048, 2022. 

 

[9] M. Cao, T. Zhao, Y. Li, W. Zhang, P. Benharash, and R. Ramezani, “ECG heartbeat 

classification using deep transfer learning with convolutional neural network and STFT technique,” 

arXiv preprint arXiv:2206.14200, 2022. 

 

[10] M. Degirmenci, M. A. Ozdemir, E. Izci, and A. Akan, “Arrhythmic heartbeat classification 

using 2d convolutional neural networks,” Irbm, vol. 43, no. 5, pp. 422–433, 2022. 

 

[11] G. Yao, X. Mao, N. Li, H. Xu, X. Xu, Y. Jiao, and J. Ni, “Interpretation of electrocardiogram 

heartbeat by CNN and GRU,” Computational and Mathematical Methods in Medicine, vol. 2021, 2021. 

 

[12] S. Aziz, S. Ahmed, and M.-S. Alouini, “ECG-based machine-learning algorithms for heartbeat 

classification,” Scientific reports, vol. 11, no. 1, pp. 1–14, 2021. 

 

[13] S. Zhou, and B. Tan, “Electrocardiogram soft computing using hybrid deep learning CNN-

ELM,” Applied soft computing, vol. 86, p. 105778, 2020. 

 

[14] T. Wang, C. Lu, W. Ju, and C. Liu, “Imbalanced heartbeat classification using EasyEnsemble 

technique and global heartbeat information,” Biomedical Signal Processing and Control, vol. 71, p. 

103105, 2022. 

 

[15] D. Zhang, H. Zhou, F. Li, L. Zhang, and J. Wang, “A reparameterization multifeature fusion 

CNN for arrhythmia heartbeats classification,” Computational and Mathematical Methods in Medicine, 

vol. 2022, 2022. 

 

[16] A. Tyagi and R. Mehra, “Intellectual heartbeats classification model for diagnosis of heart 

disease from ECG signal using hybrid convolutional neural network with GOA,” SN Applied Sciences, 

vol. 3, no. 2, pp. 1–14, 2021. 

 

[17] Y. Xu, S. Zhang, Z. Cao, Q. Chen, and W. Xiao, “Extreme learning machine for heartbeat 

classification with hybrid time-domain and wavelet time-frequency features,” Journal of Healthcare 

Engineering, vol. 2021, 2021. 

 

[18] E. Jing, H. Zhang, Z. Li, Y. Liu, Z. Ji, and I. Ganchev, “ECG heartbeat classification based on 

an improved ResNet-18 model,” Computational and Mathematical Methods in Medicine, vol. 2021, 

2021. 

 



759 

 

[19] E. Essa and X. Xie, “An ensemble of deep learning-based multi-model for ECG heartbeats 

arrhythmia classification,” IEEE access, vol. 9, pp. 103452–103464, 2021. 

 

[20] E. Maghawry, T. F. Gharib, R. Ismail, and M. J. Zaki, “An efficient heartbeats classifier based 

on optimizing convolutional neural network model,” IEEE access, vol. 9, pp. 153266–153275, 2021. 

 

[21] S. K. Pandey, R. R. Janghel, and V. Vani, “Patient specific machine learning models for ECG 

signal classification,” Procedia Computer Science, vol. 167, pp. 2181–2190, 2020. 

 

[22] S. L. Oh, E. Y. Ng, R. San Tan, and U. R. Acharya, “Automated diagnosis of arrhythmia using 

combination of CNN and LSTM techniques with variable length heart beats,” Computers in biology and 

medicine, vol. 102, pp. 278–287, 2018. 

 

[23] R. J. Martis, U. R. Acharya, and L. C. Min, “ECG beat classification using PCA, LDA, ICA and 

discrete wavelet transform,” Biomedical Signal Processing and Control, vol. 8, no. 5, pp. 437–448, 

2013. 

 

[24] Y. H. Hu, W. J. Tompkins, J. L. Urrusti, and V. X. Afonso, “Applications of artificial neural 

networks for ECG signal detection and classification,” Journal of electrocardiology, vol. 26, pp. 66–73, 

1993. 

 

[25] N. Izeboudjen and A. Farah, “A new neural network system for arrhythmia’s classification,” 

NC, vol. 98, pp. 23–25, 1998. 

 

[26] J.-S. Wang, W.-C. Chiang, Y.-L. Hsu, and Y.-T. C. Yang, “ECG arrhythmia classification using 

a probabilistic neural network with a feature reduction method,” Neurocomputing, vol. 116, pp. 38–45, 

2013. 

 

[27] C. V. Banupriya and S. Karpagavalli, “Electrocardiogram beat classification using probabilistic 

neural network,” Int. J. Comput. Appl.(IJCA), vol. 1, no. 7, pp. 31–37, 2014. 

 

[28] N. Acır, “Classification of ECG beats by using a fast least square support vector machines with 

a dynamic programming feature selection algorithm,” Neural computing & applications, vol. 14, no. 4, 

pp. 299–309, 2005. 

 

[29] M. Moavenian and H. Khorrami, “A qualitative comparison of artificial neural networks and 

support vector machines in ECG arrhythmias classification,” Expert Systems with Applications, vol. 37, 

no. 4, pp. 3088–3093, 2010. 

 

[30] M. H. Song, J. Lee, S. P. Cho, K. J. Lee, and S. K. Yoo, “Support vector machine based 

arrhythmia classification using reduced features,” Artificial Intelligence in Medicine, vol.44, no:1, pp. 

51-64, 2005. 

 



760 

 

[31] A. B. A. Qayyum, T. Islam, and M. A. Haque, “ECG heartbeat classification: A comparative 

performance analysis between one and two dimensional convolutional neural network,” in 2019 IEEE 

International Conference on Biomedical Engineering, Computer and Information Technology for 

Health (BECITHCON), 2019, pp. 93–96. 

 

[32] C. Chen, Z. Hua, R. Zhang, G. Liu, and W. Wen, “Automated arrhythmia classification based 

on a combination network of CNN and LSTM,” Biomedical Signal Processing and Control, vol. 57, p. 

101819, 2020. 

 

[33] H. Shi, C. Qin, D. Xiao, L. Zhao, and C. Liu, “Automated heartbeat classification based on deep 

neural network with multiple input layers,” Knowledge-Based Systems, vol. 188, p. 105036, 2020. 

 

[34] Q. Xie, S. Tu, G. Wang, Y. Lian, and L. Xu, “Feature enrichment based convolutional neural 

network for heartbeat classification from electrocardiogram,” IEEE Access, vol. 7, pp. 153751–153760, 

2019. 

 

[35] X. Xu, and H. Liu, “ECG heartbeat classification using convolutional neural networks’, IEEE 

Access, vol. 8, pp. 8614–8619, 2020. 

 

[36] T. F. Romdhane, H. Alhichri, R. Ouni, and M. Atri, “Electrocardiogram heartbeat classification 

based on a deep convolutional neural network and focal loss,” Computers in Biology and Medicine, vol. 

123, p. 103866, 2020. 

 

[37] K. Yadav, S. Tiwari, A. Jain, and A. K. Y. Dafhalla, “Deep learning based cardiovascular 

disease diagnosis system from heartbeat sound,” International Journal of Speech Technology, pp. 1-12, 

2021. 

 

[38] W. Ullah, I. Siddique, R. M. Zulqarnain, M. M. Alam, I. Ahmad, and U. A. Raza, “Classification 

of arrhythmia in heartbeat detection using deep learning,” Computational Intelligence and 

Neuroscience, pp. 1–13, 2021. 

 

[39] Y. Liang, S. Yin, Q. Tang, Z. Zheng, M. Elgendi, and Z. Chen, “Deep learning algorithm 

classifies heartbeat events based on electrocardiogram signals,” Frontiers in Physiology, vol. 11, 2020. 

 

[40] G. B. Moody, and R. G. Mark, “The impact of the MIT-BIH arrhythmia database,” IEEE 

Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001. 

 

[41] Ö. Yakut, S. Solak, and E. Bolat, “IIR based digital filter design for denoising the ECG signal,” 

Journal Of Polytechnic, vol. 21, no. 1, 2018. 

 

[42] Z. Dokur, “Yapay sinir ağları ve genetik algoritmalar kullanılarak EKG vurularının 

sınıflandırılması,” Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2023. 

 



761 

 

[43] J. K. Das, A. Ghosh, A. K. Pal, S. Dutta, and A. Chakrabarty, “Urban sound classification using 

convolutional neural network and long short term memory based on multiple features,” in 2020 Fourth 

International Conference On Intelligent Computing in Data Sciences (ICDS), 2020. 

 

[44] Z. Huang, C. Liu, H. Fei, W. Li, J. Yu, and Y. Cao, “Urban sound classification based on 2-

order dense convolutional network using dual features,” Applied Acoustics, vol. 164, p. 107243, 2020. 

 

[45] M. A. Kızrak ve B. Bolat, “Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma,” 

Bilişim Teknolojileri Dergisi, vol. 11, no. 3, pp. 263–286, 2018. 

 

[46] A.-M. Šimundić, “Measures of Diagnostic Accuracy: Basic Definitions,” EJIFCC, vol. 19, no. 

4, pp. 203–211, 2009. 

 

[47] P. Eusebi, “Diagnostic Accuracy Measures,” Cerebrovascular Diseases, vol. 36, no. 4, pp. 267–

272, 2013. 

 

[48] H. Xie, H. Liu, S. Zhou, T. Gao, and M. Shu, “A lightweight 2-D CNN model with dual attention 

mechanism for heartbeat classification,” Applied Intelligence, 2022. 

 

[49] A. M. Alqudah, S. Qazan, L. Al-Ebbini, H. Alquran, and I. A. Qasmieh, “ECG heartbeat 

arrhythmias classification: a comparison study between different types of spectrum representation and 

convolutional neural networks architectures,” J Ambient Intell Human Comput, vol. 13, no. 10, pp. 

4877–4907, 2022. 

 

 

 

 


