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Abstract 

While parameter estimation is done by the classical methods, there are a number of assumptions 

need to be satisfied, in the linear regression analysis. Key assumptions of linear regression are; 

no auto correlation, no or little multicollinearity, homoscedasticity and the errors have normal 

distribution. In this work, the case that independent variable has Pareto distribution to be 

discussed and an algorithm using adaptive networks suggested to parameter estimation where the 

𝑘 which is one of the parameters of the fuzzy membership functions is fuzzy. Also the parameter 

of fuzzy membership function is fuzzy the estimation process is based on type-II fuzzy logic. 
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1. INTRODUCTION  

The first serious step in fuzzy set theory has been taken in an article published in 1965 by Lotfi A. Zadeh 

which is introduced fuzzy set theory in detail. Over the last 30 years, studies on the theory of fuzzy sets 

have been conducted extensively [6, 17]. When there is an uncertainty about the membership functions 

fuzzy set is called as type-II fuzzy set. We can say that type-II fuzzy logic is a generalization of conventional 

fuzzy logic (type-I) in the sense that uncertainty is not only limited to the linguistic variables but also is 

present in the definition of the membership functions [2]. 

Studies on type-II fuzzy clusters briefly summarized as follows: 

Karnik and Mendel (1999), defined the uncertainty of the rules in a type-II fuzzy inference system that the 

rules are uncertain. They applied a type-II fuzzy logic system to time varying channel equalization. 

Türkşen (1999), proposed and discussed in fuzzy system development schema. For both the type-I and 

type-II fuzzy theory, they described the extraction of fuzzy sets and fuzzy rules with the application of an 

improved fuzzy clustering technique which is essentially an unsupervised learning of the fuzzy sets and 

rules from a given input-output data set. 

Mendel and John (2002), defined a new representation theorem of type-II fuzzy sets and introduced 

formulas for the union, intersection, and complement for type-II fuzzy sets. 

Mendel (2007), examined questions, such as "What is a type-II fuzzy set", "What is it different from a type-

I fuzzy set", "the importance of definition of type-II fuzzy sets", "How and why are type-II fuzzy sets used 

in rule-based systems" and "How are the detailed computations for an interval type-II fuzzy logic system" 

in study titled an introduction to type-II fuzzy sets and systems. 

Garg and Sharma (2012), developed a two-phase approach by taking the advantages of one of the 

evolutionary algorithms, namely the particle swarm optimization (PSO) for getting the global values of the 

distribution parameters. 

Garg, Rani, Sharma and Vishwakarma (2014), presents a methodology for solving the multi-objective 

reliability optimization model in which parameters are considered as imprecise in terms of triangular 

interval data. 

http://dergipark.gov.tr/gujs
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Garg (2016), studied the basic arithmetic operations for two generalized positive parabolic fuzzy numbers 

by using the concept of the distribution and complementary distribution functions. 

Singh and Garg (2016), proposed a concept of type-II intuitionistic fuzzy set and hence under this 

environment, a family of distance measures based on Hamming, Euclidean and Hausdorff metrics are 

presented. Some of its desirable properties have also been investigated in details. 

Almost all studies on parameter estimation in the literature realized under the condition of the data has 

normal distribution. In the real world problems normal distribution condition for independent variables may 

not achieved. Therefore, in this study, the case where the independent variable has the Pareto distribution 

is considered and the membership function which is obtained for Pareto distribution in this study is used 

for parameter estimation. Also, results are compare with the prediction values obtained from least square 

estimates. 

Remainder of this paper is organized as follows. In the second part of the study will be definitions of type-

II fuzzy logic method. In the third part, the membership function suitable for Pareto distribution is obtained. 

In the fourth part, an algorithm used fuzzy adaptive network based fuzzy inference system will be suggested 

to prediction of the unknown parameter of the regression model in the case of independent variable 

characterized by a Pareto membership function. A numerical application examining the work and validity 

of the suggested algorithm in the fifty part and in the last part a discussion and conclusion are provided. In 

section five a numerical application examining to show the validity of the suggested algorithm and in the 

last part the errors of the models obtained suggested adaptive network and the errors from least square 

method (LSM) are compared. 

2. BASIC CONCEPTS OF TYPE-II FUZZY LOGIC 

Let 𝑋 be a classical set of objects, called the universe, whose generic elements are denoted by 𝑥. The 

membership in a crisp subset of 𝜇(𝑥) is often viewed as characteristic function 𝜇𝐴 from 𝑋 to {0, 1}. When 

a set is a classical set, its membership function can take on only two values 0 and 1.  If the valuation set is 

allowed to be the real interval [0, 1], 𝐴 is called a fuzzy set proposed by Zadeh [12, 19]. Fuzzy sets may be 

viewed as an extension and generalization of the basic concepts of classical sets [8]. If  𝑋 is a collection of 

objects denoted generically by 𝑥, then a "fuzzy set" 𝐴 in 𝑋 is defined as a set of ordered pairs: 

𝐴 = {(𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑋)}    (2.1) 

where 𝜇𝐴(𝑥) is called "membership function" for the fuzzy set 𝐴  defined as  𝜇𝐴(𝑥): 𝑋 → [0,1]. 𝜇𝐴(𝑥) 

indicates the degree of membership of  𝑥 in 𝑋 and its value lies between zero and one [2, 8, 12]. 

Type-II fuzzy systems are consist of fuzzy if-then rules that are includes type-II fuzzy sets. Basically, a 

type-II fuzzy set is a set in which we also have uncertainty about the membership function. We can say that 

type-II fuzzy logic is a generalization of traditional fuzzy logic (type- I). Uncertainty is not on the limited 

to the linguistic variable but also is present in the definition of the membership function [1, 2]. The concept 

of a type-II fuzzy set was introduced by Zadeh in 1975 as an extension of concept of an ordinary fuzzy set. 

A type-II fuzzy set is characterized by a fuzzy membership function, the membership degree of each 

element of this set is in [0, 1]. In this sense, differs from type-I fuzzy sets, because the degree of membership 

in the type-I fuzzy set is a crisp number in range of [0, 1]. Such sets can be used in situations where there 

is uncertainty about the membership degree and uncertainty in the shape of the membership function or in 

some of its parameters. The membership of an element in a set cannot determine as 0 or 1, type-I fuzzy set 

is used. Similarly, when the situation is so fuzzy that we have trouble determining the membership degree 

even as a crisp number in [0, 1], fuzzy sets of type-II is used. In many real-world problems the exact form 

of the membership degree may not be identified. In type-II fuzzy sets the membership degrees are obtained 

via membership function like in type-I fuzzy sets. 

Assuming that the fuzzy set has normal distribution, membership function is defined as; 

𝜇(𝑥) = exp {− [
𝑥−𝑚

𝜎
]

2
}                              (2.2) 
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where the parameter set of Normal Distribution are {𝑚, 𝜎} and this parameters are crisp number. If the 

fuzzy set characterized by normal membership function with standard deviation 𝜎 and mean can take values 

in [𝑚1, 𝑚2], the membership function is defined as; 

𝜇(𝑥) = exp {− [
𝑥−𝑚

𝜎
]

2
} ; 𝑚 ∈ [𝑚1, 𝑚2],                        (2.3) 

and in this case 𝜇(𝑥)is a fuzzy set [2]. 

3. DETERMINATION OF THE OPTIMAL MEMBERSHIP FUNCTION FOR PARETO 

DISTRIBUTION 

Membership functions may vary according to the structure of discussed problems. However, there are a 

number of common features of the membership functions; membership functions are continuous functions 

and converts the interval  [a, b] to interval [0,1] by aid of membership function 𝜇(𝑥). A membership 

function should provide the given conditions below for being an optimal membership function: 

 𝐸{𝜇(𝑥)│𝑥 is distributed according to the underlying probability density function} ≥ 0, 

 0 ≤ 𝜇(𝑥) ≤ 1, 

 ∫ 𝜇2(𝑥) 𝑑(𝑥) should be minimized. 

Under these conditions optimal membership function is given in the form; 

𝜇(𝑥) = {
𝜆𝑝(𝑥)

1
   𝑖𝑓

𝑖𝑓
   𝜆𝑝(𝑥)<1

𝜆𝑝(𝑥)≥1
               (3.1) 

Here, 

𝑝(𝑥): probability density function, 

𝜆: constant [4]. 

In the given membership function the form of  𝑝(𝑥) is determinated as the probability density function 

related to the interested distribution. However, the fixed element 𝜆 can be obtained by solving the following 

problem; 

𝑃: 𝑚𝑖𝑛
𝜇

𝑓(µ) = 1

2
∫ 𝜇2(𝑥) 𝑑(𝑥)

+∞

−∞
, 

𝐺(𝜇) = 𝑐 − 𝐸{𝜇} = 𝑐 − ∫ 𝜇(𝑥)𝑝(𝑥) 𝑑(𝑥) ≤ 0
+∞

−∞
,    (3.2) 

𝜇 ∈ 𝛺 = {𝜇(𝑥)│0 ≤ 𝜇(𝑥) ≤ 1}. 

The problem 𝑃 formed with the conditions described for optimal membership function and this problem is 

can be solved with the method of Lagrange multipliers for obtaining the fixed element λ. For this, the 

Lagrange function is written 

𝐿(𝜇, 𝜆) =
1

2
∫ 𝜇2(𝑥)𝑑(𝑥)

+∞

−∞
+ 𝜆{𝑐 − ∫ 𝜇(𝑥)𝑝(𝑥)𝑑(𝑥)

+∞

−∞
}  .    (3.3) 

Where Lagrange multiplier λ ≥ 0 and constant c < 1. When the membership function values given in Eq. 

(3.1) are insert into Eq. (3.3), we can obtain the two forms of Lagrange function. First one is obtain from 

(λp(x)) ≤ 1  and the other one is obtain from  (λp(x)) > 1. However, if (λp(x)) > 1, then the solution of 

the Lagrange function is independent from 𝜆. Thus, the stage of (λp(x)) ≤ 1  is hold on and; 

if (𝜆𝑝(𝑥)) ≤ 1 ⟹  𝜇(𝑥) = 𝜆𝑝(𝑥). 

In this stage, the Lagrange functions for the determining of 𝜆 is obtained as 

𝐿 =
1

2
∫ 𝜆2𝑝2(𝑥)𝑑(𝑥) − 𝜆

+∞

−∞

∫ 𝜆𝑝2(𝑥)𝑑(𝑥)
+∞

−∞

+ 𝜆𝑐, 



 

254      Türkan ERBAY DALKILIÇ, Kamile ŞANLI KULA / GU J Sci, 30(1):251-258(2017)  

𝐿 =
1

2
∫ 𝜆2𝑝2(𝑥)𝑑(𝑥) − ∫ 𝜆2𝑝2(𝑥)𝑑(𝑥)

+∞

−∞

+∞

−∞

+ 𝜆𝑐 

𝐿 = −
1

2
∫ 𝜆2𝑝2(𝑥)𝑑(𝑥) + 𝜆𝑐.

+∞

−∞

 

When this function's derivative is taken with respect to the constant element 𝜆 and is equalized to zero, the 

equation 

𝜕𝐿

𝜕𝜆
= −𝜆 ∫ 𝑃2(𝑥)𝑑(𝑥)

+∞

−∞
+ 𝑐      (3.4) 

is obtained. With the solution of Eq. (3.4) the parameter 𝜆 is obtained as, 

𝜆 =
𝑐

∫ 𝑝2(𝑥)𝑑(𝑥)
+∞

−∞

      (3.5) 

If 𝑋 is a random variable from Pareto distribution it's probability density function is 

𝑓(𝑥; 𝑘, 𝑥𝑚) = 𝑘
𝑥𝑚

𝑘

𝑥𝑘+1    𝑥 ≥ 𝑥𝑚.       (3.6) 

Where 𝑥𝑚 is the (necessarily positive) minimum possible value of 𝑋, and 𝑘 is a positive parameter. The 

family of Pareto distributions is parameterized by two quantities, 𝑥𝑚 and 𝑘. When this distribution is used 

to model the distribution of wealth, then the parameter 𝑘 is called the Pareto index [5, 16, 20]. 

To obtain the optimal membership function suitable for Pareto distribution, firstly the λ parameter is 

determinated. For this, the probability density function given by Eq. (3.6) is inserted into Eq. (3.5), then the 

fixed element λ is obtained as 

𝜆 =
𝑐

∫ 𝑝2(𝑥)𝑑(𝑥)
+∞

𝑥𝑚

=
𝑐

∫ [𝑘
𝑥𝑚

𝑘

𝑥𝑘+1]
2

𝑑(𝑥)
+∞

𝑥𝑚

=
𝑐

𝑘2𝑥𝑚
2𝑘 ∫

1
        𝑥2(𝑘+1) 𝑑(𝑥)

+∞

𝑥𝑚

 

           𝜆 = 𝑐 
2(𝑘+1)𝑥𝑚 

𝑘2               (3.7) 

 The membership functions suitable for Pareto distribution is obtained using the λ parameter given by Eq. 

(3.7) as follows;  

𝜇(𝑥) = 𝜆𝑝(𝑥) = 𝑐
2(𝑘+1)𝑥𝑚

𝑘2 𝑘
𝑥𝑚

𝑘

𝑥𝑘+1 = 𝑐
2(𝑘+1)

𝑘
(

𝑥𝑚

𝑥
)

𝑘+1
        (3.8) 

Consider the fuzzy set characterized by Pareto membership function with  𝑥𝑚 is constant and Pareto index 

𝑘 can take values in  [𝑘1, 𝑘2], the membership function is defined as 

𝜇(𝑥) = 𝑐
2(𝑘+1)

𝑘
(

𝑥𝑚

𝑥
)

𝑘+1
𝑘 ∈ [𝑘1, 𝑘2]      (3.9) 

and, in this case, obtain a different membership function curve corresponding to each value of 𝑘. Thus, 

each element of 𝑋 is takes different membership degrees based values of 𝑘. 

In this study, the unknown parameters of regression model will be obtained in the event of the one of the 

independent variable is fuzzy set this characterized by Pareto membership function and Pareto index of the 

membership function is a fuzzy number like as 𝑘 ∈ [𝑘1, 𝑘2]. 

4. AN ALGORITHM FOR PARAMETER ESTIMATION BASED FUZZY INFERENCE SYSTEM 

Fuzzy adaptive network is a structure that allows the use fuzzy inference system to prediction the unknown 

parameters of fuzzy regression analysis. An adaptive network is a multilayer feed forward neural network. 

A good approach can be obtained for the regression function by using to learning algorithms and update 

approaches which are developed for fuzzy neural networks. Used for obtaining a good approach to 

regression functions and formed via neural and connections, such an adaptive network consist of five layers 

[9]. Each node in the first layer is produced the membership function based linguistic input, so the output 

of this layer is membership function. The nodes in second layer are produced 𝑤𝐿 weight based input signals 
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and number of nodes in this layer is equal to number of nodes combination which are located in sub group 

of first layer. Third layer includes normalization function of output from second layer. Each node in fourth 

layer corresponds to the result of if-then rule. Finally, the fifth layer is weighed sum of all output from 

fourth layer [3]. The process of determining parameters of regression model begins with determining class 

numbers of independent variables and a priori parameters. The priori parameters are characterized the 

distribution. In this work since the independent variables come from Pareto distribution, we are interested 

in parameters related to Pareto membership function. In the case of independent variables come from Pareto 

distribution, the algorithm to obtain the unknown parameter of regression model is determined as follows. 

STEP 1: Class numbers related to the data set associated with the independent variables are determined 

intuitively. 

STEP 2: Priori parameters are determined. 

STEP 3: Weights 𝑤𝐿 are counted, which are then used to form matrix 𝐵, to be used in forming the posteriori 

parameter set. �̅�𝐿 weights are outputs from the third layer of the adaptive network and calculated using the 

membership function of the distribution family of the independent variable. When independent variable 

numbers are indicated with 𝑝 and if the fuzzy class number associated with each variable is indicated by 

𝑙𝑖; 𝑖 = 1, … , 𝑝  the fuzzy rule number is indicated by 𝐿 = ∏ 𝑙𝑖
𝑝
𝑖=1 . The neural functions in the first layer of 

adaptive network are defined by membership function belonging to distribution of independent variable, as 

follows; 

𝑓1,ℎ = 𝜇𝐹ℎ
(𝑥𝑖). 

Different membership function can be defined for 𝐹ℎ. Since the independent variable from Pareto 

distribution with priori parameter set {𝑥𝑚ℎ
, 𝑘ℎ} the membership function is defined as 

𝜇(𝑥) = 𝑐
2(𝑘+1)

𝑘
(

𝑥𝑚

𝑥
)

𝑘+1
. 

Here 𝑘 is a fuzzy parameter and takes values in the range of 𝑘 ∈ [𝑘1, 𝑘2]. Membership degrees for the 

independent variables are determinate from the defined membership function. 𝑤𝐿 weights are obtained 

from the multiplication of these membership degrees and defined as 

𝑤𝐿 = 𝜇𝐹𝐿
(𝑥𝑖) ∙ 𝜇𝐹𝐿

(𝑥𝑗). 

 �̅�𝐿 weights are normalization of the 𝑤𝐿 and determined by �̅�𝐿 =
𝑤𝐿

∑ 𝑤𝐿𝑚
𝐿=1

  . 

STEP 4: When the one of the priori parameter 𝑘 is a fuzzy number, the posterior parameter set  𝑐𝑖
𝐿  which 

is the unknown coefficients of regression model obtained as a fuzzy number shape of 𝑐𝑖
𝐿 = (𝑎𝑖

𝐿 , 𝑏𝑖
𝐿) 

(𝑖 = 1, ⋯ , 𝑝). Under this condition, the equality  𝑍 = (𝐵𝑇𝐵)−1𝐵𝑇𝑌  is used for determining the a posteriori 

parameter set.  

Here 𝐵 and 𝑌 defined as 

𝐵 = [
�̅�1

1 ⋯ �̅�1
𝑚,

⋮ ⋱ ⋮
�̅�𝑛

1 ⋯ �̅�𝑛
𝑚,

   

�̅�1
1𝑥11 ⋯ �̅�1

𝑚𝑥11 ,   ⋯     ,

⋮ ⋱              �̅�𝑘
𝑙 𝑥𝑗𝑘

�̅�𝑛
1𝑥1𝑛 ⋯ �̅�𝑛

𝑚𝑥1𝑛 ,   ⋯     ,

 

�̅�1
1𝑥𝑝1 ⋯ �̅�1

𝑚𝑥𝑝1

⋮ ⋱ ⋮
�̅�𝑛

1𝑥𝑝𝑛 ⋯ �̅�𝑛
𝑚𝑥𝑝𝑛,

] 

𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 

 

STEP 5: By using the posteriori parameter set  𝑐𝑖
𝐿 = (𝑎𝑖

𝐿 , 𝑏𝑖
𝐿) obtained in Step 4, the regression model 

indicated by 

𝑌𝐿 = 𝑐0
𝐿 + 𝑐1

𝐿𝑥1 + 𝑐2
𝐿𝑥2 + ⋯ + 𝑐𝑝

𝐿𝑥𝑝 

Setting out from the models and weights specified in Step 3, the prediction values are obtained using Ŷ =
∑ �̅�𝐿𝑌𝐿𝑚

𝐿=1 . 
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STEP 6: Error related to the model is measured as 𝜀 =
∑ (𝑌𝑘−Ŷ𝑘)2𝑛

𝑘=1

𝑛
. If  𝜀 < ∅, then the posteriori parameter 

has been obtained as parameters of regression models to be formed, the process is determined. If 𝜀 ≥ ∅, 

then Step 6 begins. Here ∅ is a law stable value determined by decision maker. 

STEP 7: Priori parameters specified in Step 2, are updated. 

STEP 8: Predictions for each priori parameter obtained by change and error criterion related to these 

predictions are counted. The lowest of error criterion is defined. Priori parameters giving the lowest error 

specified, and prediction obtained via the models related to these parameters is taken as output. 

5. NUMERICAL EXAMPLE 

Table 1. Predictions and Error Values for Data Set 
Observed 

Number 
𝑋1 𝑋2 𝑌 �̂�(𝑁𝑒𝑡𝑤𝑜𝑟𝑘)𝑖

 𝑒(𝑁𝑒𝑡𝑤𝑜𝑟𝑘)𝑖
 �̂�(𝐿𝑆𝑀)𝑖

 𝑒(𝐿𝑆𝑀)𝑖
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

. 

. 

. 

665 

666 

667 

668 

669 

670 

671 

672 

7,08 

7,27 

5,83 

4,84 

7,92 

6,33 

5,37 

4,77 

5,54 

8,03 

5,94 

6,48 

5,83 

6,82 

7,54 

. 

. 

. 

8,09 

6,43 

9,40 

5,39 

7,66 

9,99 

9,78 

9,46 

0,00978 

0,00986 

0,00751 

0,00604 

0,00609 

0,00748 

0,00716 

0,00618 

0,00589 

0,00764 

0,00792 

0,00749 

0,00717 

0,00623 

0,00770 

. 

. 

. 

0,01639 

0,01417 

0,01155 

0,01127 

0,00992 

0,00701 

0,00586 

0,00560 

17,1510 

24,2520 

40,9530 

31,7880 

40,6780 

41,0380 

45,4170 

27,9600 

38,7620 

36,6670 

43,4360 

43,0870 

44,2140 

41,5770 

44,6000 

. 

. 

. 

30,9170 

42,9090 

45,6820 

24,3580 

35,7490 

47,4810 

45,5350 

53,3880 

(30.3686;3.0461) 

(31.6734;3.2014) 

(35.4948;3.6214) 

(37.0639;3.9012) 

(37.2324;3.7522) 

(37.4618;3.8210) 

(37.9336;3.7241) 

(38.6279;3.9240) 

(38.3834;3.8595) 

(36.3231;3.6012) 

(38.1646;3.8624) 

(38.5354;3.9425) 

(38.7200;3.9025) 

(39.4323;3.9525) 

(38.2569;3.7895) 

. 

. 

. 

(30.7690;3.0865) 

(33.7263;3.3565) 

(37.1599;3.6954) 

(37.5565;3.7556) 

(39.4029;3.9568) 

(43.0997;4.5624) 

(44.7210;4.4986) 

(45.1159;4.5565) 

-13.2176 

-7.4214 

5.4582 

-5.2759 

3.4456 

3.5762 

7.4834 

-10.6679 

0.3786 

0.3439 

5.2714 

4.5516 

5.4940 

2.1447 

6.3431 

. 

. 

. 

0.1480 

9.1827 

8.5221 

-13.1985 

-3.6539 

4.3813 

0.8140 

8.2721 

37.6245 

37.6096 

40.5707 

42.3774 

42.3246 

40.7614 

41.1616 

42.3289 

42.6363 

40.4830 

40.3231 

40.8490 

41.2239 

42.3446 

40.5768 

. 

. 

. 

32.2422 

34.9594 

38.1000 

38.4581 

40.1182 

43.5641 

45.0009 

45.3344 

-20.4735 

-13.3576 

0.3823 

-10.5894 

-1.6466 

0.2766 

4.2554 

-14.3689 

-3.8743 

-3.8160 

3.1129 

2.2380 

2.9901 

-0.7676 

4.0232 

. 

. 

. 

-1.3252 

7.9496 

7.5820 

-14.1001 

-4.3692 

3.9169 

0.5341 

8.0536 

ERROR 𝜀𝑁𝑒𝑡𝑤𝑜𝑟𝑘 = 40.2540 𝜀𝐿𝑆𝑀 = 41.1848 
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Data set used in the application is consists of two independent variables and one dependent variable. This 

set includes 672 observations and located in the Table 1. In addition, the predictions and errors are located 

in this table. 

According to the Kolmogrov-Smirnov goodness-of-fit test, independent variable 𝑋2 has Pareto distribution 

with  (𝑘 = 2.75 , 𝑥𝑚 = 0.005) parameters. The calculated values and the table values of the Kolmogorov-

Smirnov test are shown in Table 2. 

Table 2. Goodness-of-fit to Pareto Distribution 

𝑛 𝑘 K-S (calculated value) K-S (table) 

672 2.75 0.0386 <0.0629 

 

Applying least squares, the estimated regression model according to the data set given in Table 1 is obtained 

as; 

𝑌 = 48.4102 + 0.000036𝑋1 − 1029.4453𝑋2 

and the algorithm proposed in section four was counted with a program written in MATLAB. From the 

program, the regression models based fuzzy inference systems are as follows 

Ŷ1 = (736824.9045; 86,699) + (549.6362; 0.0642)𝑋1 + (9026.4144; 0.2733)𝑋2 

Ŷ2 = (−807771.2970 ; 95,0552) + (538.5523; 0.0637)𝑋1 − (11172.1242; 0.2665)𝑋2 

 

6. CONCLUSIONS 

The independent variable 𝑋2 comes from a Pareto distribution, and regression models are formed using 

membership functions that are appropriate to the Pareto distribution. Since the parameter 𝑘 located in Pareto 

membership function is fuzzy parameter and takes values in the range 𝑘 ∈ [𝑘1, 𝑘2] the unknown parameters 

of regression model are obtained as fuzzy numbers. The prediction values obtain from adaptive network 

and the prediction values obtained from least square estimates are compared. According to the indicated 

error criterion, the errors related to the predictions that are obtained from the network are less than errors 

obtained from the least square estimates. 

ACKNOWLEGEMENT 

This work was supported by the Scientific Research Projects Council of Ahi Evran University, Kırşehir, 

Turkey under Grant FBA-11-20. 

CONFLICT OF INTEREST  

No conflict of interest was declared by the authors 

REFERENCES 

[1] Aisbett, J., Rickart, J. T., Morgenthaler, D., Multivariate modeling and type-II fuzzysets, Fuzzy Sets and 

Systems 163: 78-95 (2011). 

[2] Castillo, O., Melin, P. Type-II fuzzylogic: theory and applications, Sipringer, (2008). 

[3] Cheng, C.B., Lee, E.S., Switching regression analysis by fuzzy adaptive network, Europen Journal of   

Operational Research 128: 647-668, (2001). 

[4] Civanlar , M.R., Trussell, H.J., Constructing membership functions using statistical data fuzzy sets and 

systems, 18: 1-13(1986). 

[5] Cramer, H.,Mathematical methods of statistics, Princeton University Press, (1963). 



 

258      Türkan ERBAY DALKILIÇ, Kamile ŞANLI KULA / GU J Sci, 30(1):251-258(2017)  

[6] Garg, H., Sharma, S. P., A two-phase approach for reliability and maintainability analysis of an 

industrial system, International Journal of Reliability, Quality and Safety Engineering, 19: 1250013 (19 

pages) (2012). 

[7] Garg, H., Rani, M., Sharma, S.P., Vishwakarma, Y., Intuitionistic fuzzy optimization technique for 

solving multi-objective reliability optimization problems in interval environment, Expert Systems with 

Applications 41: 3157–3167 (2014). 

[8] Garg, H.,  Arithmetic Operations on Generalized Parabolic Fuzzy Numbers and Its Application, Proc. 

Natl. Acad. Sci., India, Sect. A Phys. Sci. DOI 10.1007/s40010-016-0278-9, Springer, (2016). 

[9] Hisao, I., Manabu, N., Fuzzy regression using asymmetric fuzzy coefficients and fuzzied neural 

networks, Fuzzy Sets and Systems 119: 273-290 (2001). 

[10] Karnik N.K., Mendel, J.M.,Type-II Fuzzy logic systems, IEEE Transaction on FuzzySystems 7: 643-

658(1999). 

[11] Karnik N.K., Mendel, J.M., Operations on type-II fuzzy sets, Fuzzy Sets and Systems 122: 327-348 

(2002). 

[12] Lai, Y.Y and Hwang C.L., Fuzzy mathematical programming methods and application, Springer-

Verlag (1992). 

[13] Mendel, J.M., John, R.I.B., Type-II fuzzy sets made simple, IEEE Transaction on FuzzySystems 10: 

117-127 (2002). 

[14] Mendel, J. M., Type-2 fuzzy sets and systems: An overview, IEEE Computational Intelligence 

Magazine February 21-29 (2007). 

[15] Mendel, J. M., Advances in type-II fuzzy sets and systems, Information Sciences 177: 84-110 (2007). 

[16] Meyer, P.L.,Introductory probability and statistical applications, Second Edition, Addison-Wesley 

Publishing Company, USA, (1970). 

[17] Singh, S., Garg, H., Distance measures between type-II intuitionistic fuzzy sets and their application 

to multicriteria decision-making process, DOI 10.1007/s10489-016-0869-9, Springer 

Science+Business Media New York, Springer, (2016). 

[18] Türkşen, I.B., Type-I and Type-II fuzzy systems modelling, Fuzzy Sets and Systems 106: 11-34 

(1999). 

[19] Zadeh, L.A., Fuzzy sets, Information and Control 8: 338-353 (1965). 

[20] Zisheng O., Chi, X., Generalized Pareto distribution fit to medical insurance claim data, Appl. Math. 

J. Chinese Univ. Ser. B. 21: 21-29 (2006). 

 


