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Abstract 

This paper is a continuation of the investigations of F-contractions. The aim of this article is 

to extend the concept of Ciric type F-contraction on a closed ball. We presented the notion of 

F-contraction on a closed ball and introduced a new approach of fixed point theorems for F-

contraction on a closed ball in a complete metric space. Our results are very useful for the 

contraction of the mapping only on closed ball instead of the whole space. Some comparative 

examples are constructed which illustrate the superiority of our results. Our results provide 

extension as well as substantial generalizations and improvements of several well-known 

results in the existing comparable literature. 
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1. INTRODUCTION  

In metric fixed point theory the contractive conditions on underlying functions play an important role 

for finding solutions of fixed point problems. Banach contraction principle [11] is a fundamental result 

in metric fixed point theory. Due to its importance and simplicity, several authors have 

generalized/extended it in different directions. From the application point of view the situation is not yet 

completely satisfactory because there are many situations in which the mappings are not contractive on 

the whole space but instead they are contractive on its subsets. However, by imposing a subtle restriction, 

one can establish the existence of a fixed point of such mappings. 

In 1971, Ciric [12] introduced generalized contractions and proved some fixed point theorems. Then a 

lot of generalization has been given in the literature see [13] and many others. Shoaib et al. [38] proved 

significant results concerning the existence of fixed points of the dominated self-mappings satisfying 

some contractive conditions on closed ball in a 0-complete quasi-partial metric space. Other results on 

closed ball can be seen in [6, 7, 9, 10]. Over the years, Fixed Point Theory has been generalized in 

different ways by several mathematicians (see [2, 5, 8, 15-17, 20, 22-26, 28, 32, 36-37]). 

For x ∈ X and 𝜀> 0; 𝐵(𝑥;  𝜀) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = {y ∈ X : d(x, y)≤ 𝜀 } is a closed ball in (X, d). 

Definition 1 ([39]). Let T: X→X and  : X×X→ [0,+∞). We say that T is 𝛼 -admissible if x, y ∈X, 𝛼(x, y)≥1 
implies that 𝛼( Tx , Ty)≥1. 

Definition 2 ([33]). Let T: X→X and , 𝜂 : X×X→ [0,+∞) be two functions. We say that T is 𝛼-admissible 

mapping with respect to 𝜂 if x, y ∈X, 𝛼(x, y) ≥ 𝜂(𝑥, 𝑦) implies that 𝛼(Tx , Ty)≥ 𝜂( Tx , Ty). 

If 𝜂 (x, y) = 1; then above Definition 2 reduces to Definition 1. If 𝛼(x, y)= 1; then T is called an 𝜂 -sub 

admissible mapping. 

http://dergipark.gov.tr/gujs
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Definition 3 [21] Let (X, d) be a metric space. Let T: X→X and , 𝜂 : X×X→ [0,+∞) be two functions.  We 

say that T is 𝛼 − 𝜂-continuous mapping on (X, d) if for given x ∈X, and sequence { 𝑥𝑛} with xn →x as 

n→ ∞, 𝛼(xn ,xn+1) ≥ 𝜂(xn ,xn+1) for all n ∈ N ⤇  

Txn→ Tx. 

In 2012, Wardowski [40] introduce a new type of contractions called F-contraction and proved new 

fixed point theorems concerning F-contraction. He generalized the Banach contraction principle in a 

different way than as it was done by different investigators see [1, 3, 4, 14, 18, 19, 29, 30, 34, 35]. 

Piri et al. [31] defined the F-contraction as follows. 

Definition 4 [31] Let (X, d) be a metric space. A mapping T: X→X is said to be an F contraction if there 

exists 𝜏> 0 such that 

∀ x, y ∈X, d(Tx, Ty) > 0 ) 𝜏+ F (d(Tx, Ty))≤F (d(x, y)).                    (1.1) 

Where F: R+ → R is a mapping satisfying the following conditions: 

(F1) F is strictly increasing, i.e. for all x, y ∈R+ such that x<y, F(x) <F(y);  

(F2) For each sequence {𝛼𝑛}𝑛=1
∞  of positive numbers, lim

𝑛→∞
𝛼𝑛  = 0 if and only if  lim

𝑛→∞
𝐹(𝛼𝑛) = -∞. 

(F3) There exist k∈ (0, 1) such that lim
𝛼→+0

𝛼𝑘𝐹(𝛼)  = 0. 

We denote by ∆𝐹, the set of all functions satisfying the conditions (F1)-(F3). 

Example 5 [40] Let F: R+ → R be given by the formula F( 𝛼) = ln 𝛼. It is clear that F satisfied (F1)-(F2)-

(F3) for any k ∈ (0, 1). Each mapping T: X→X satisfying (1.1) is an F-contraction such that d(Tx, Ty) 
≤ 𝑒−𝜏 d(x, y), for all x, y ∈X such that T x≠T y. 

It is clear that for x, y ∈X such that T x=T y the inequality d(Tx, Ty) ≤ 𝑒−𝜏 d(x, y), also holds, i.e. T is a 

Banach contraction. 

Example 6 [40] If F( 𝛼) = ln 𝛼+ 𝛼, 𝛼 > 0 then F satisfies (F1)-(F3) and the condition (1.1) is of the form 
𝑑(𝑇𝑥,𝑇𝑦)

𝑑(𝑥,𝑦)
 ≤ 𝑒𝑑(𝑇𝑥,𝑇𝑦)−𝑑(𝑥,𝑦) ≤ 𝑒−𝜏  for all x, y ∈ X; T x≠T y. 

Remark 7 From (F1) and (1.1) it is easy to conclude that every F-contraction is necessarily continuous. 

Wardowski [40] stated a modified version of the Banach contraction principle as follows. 

Theorem 8 [40] Let (X, d) be a complete metric space and let T: X→X be an F contraction. Then T has a 

unique fixed point 𝑥∗ ∈ X and for every x ∈X the sequence {Tnx}n∈N converges to x . 

Hussain et al. [21] introduced the following family of new functions. 

Let ∆𝐺  denotes the set of all functions G: R+4 → R+ satisfying: 

(G) for all t1,t2,t3,t4 ∈ R+  with t1t2t3t4 = 0 there exists 𝜏> 0 such that G(t1,t2,t3,t4) =𝜏 . 

Definition 9 [21] Let (X, d) be a metric space and T be a self-mapping on X. Also suppose that , 𝜂 : 

X×X→ [0,+∞) be two function. We say that T is 𝛼-η-GF-contraction if for x, y ∈X, with η(x, Tx)≤ 𝛼(x, 

y) and d(Tx, Ty) > 0, we have 

G(d(x, Tx),d(y, Ty), d(x, Ty),d(y, Tx)) + F (d(Tx, Ty))≤ F (d(x, y)), 

where G∈ ∆𝐺 and F∈ ∆𝐹. 

The following result regarding the existence of the fixed point of the mapping satisfying a contractive 

condition on the closed ball is given in [27, Theorem 5.1.4]. The result is very useful in the sense that it 

requires the contraction of the mapping only on the closed ball instead on the whole space. 

Theorem 10 [27] Let (X, d) be a complete metric space, T: X → X be a mapping, r> 0 and x0 be an 

arbitrary point in X. Suppose there exists k ∈ [0, 1) with 
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d(Tx, Ty) ≤kd(x, y); for all x, y ∈ Y = 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

and d(x0,Tx0) < (1-k)r. Then there exists a unique point x in 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅  such that x = Tx. 

2. FIXED POINT THEOREM OF CIRIC TYPE F-CONTRACTION ON CLOSED BALL 

In this section, we introduce Banach fixed point theorem for modified F contraction on closed ball in 

complete metric spaces. Following theorem not only extend above theorem to metric spaces but also 

rectifies this mistake especially for those researchers who are utilizing the style of the proof of [27, 

Theorem 5.1.4] to study more general result. We define Ciric type F-contraction as follows: 

Definition 11 Let (X, d) be a metric space and T be a self-mapping on X. . Also suppose that , 𝜂 : X×X→ 
[0,+∞) be two function. We say that T is Ciric type is 𝛼-η-GF-contraction if for x, y ∈X, with η(x, Tx)≤
𝛼(x, y) and d(Tx, Ty) > 0 we have 

 

G(d(x, Tx),d(y, Ty), d(x, Ty),d(y, Tx)) + F (d(Tx, Ty))≤ F (M(x, y)), 

Where M(x, y)= max{ d(x, y), d(x, Tx), d(y, Ty),  
𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
}, 

G∈ ∆𝐺  and F∈ ∆𝐹. 

Now we state our main result. 

Theorem 12 Let T be a continuous self-map in a complete metric space (X, d) and x0 be an arbitrary 

point in X. Assume that 𝜏> 0 and F∈ ∆𝐹 for all x, y ∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  with d(Tx, Ty) > 0 such that 

 

𝜏+ F(d(Tx, Ty))≤ F(M(x, y)),                                                            (2.1) 

where 

M(x, y)= max{ d(x, y), d(x, Tx), d(y, Ty),  
𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
}. 

Moreover  ∑ 𝑑(𝑥0, 𝑇𝑥0) ≤ 𝑟𝑁
𝑗=0  for all j∈N and r>0.                                (2.2) 

Then there exist a point x in 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  such that Tx = x. 

 

Proof. Choose a point x1 in X such that x1 = Tx0, continuing in this way, so we get xn+1 = Txn  for all n>0 
and this implies that (xn) is a non increasing sequence. First we show that xn ∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all n ∈ N by 

using mathematical induction. Since from (2.2), we have 

 d(x0, x1) = d(x0,Tx0)≤ r.                                                       (2.3) 

thus, x1 ∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Suppose x2…xj ∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ for some j ∈ N. Thus from (2.1), we obtain 

F(d(𝑥𝑗, 𝑥𝑗+1)) = F(d(𝑇𝑥𝑗−1, 𝑇𝑥𝑗)) ≤ F(M(𝑥𝑗−1, 𝑥𝑗)) – 𝜏 

M(𝑥𝑗−1, 𝑥𝑗) = max { d(𝑥𝑗−1, 𝑥𝑗), d(𝑥𝑗−1, 𝑥𝑗), d(𝑥𝑗, 𝑥𝑗+1),
d(𝑥𝑗−1,𝑥𝑗+1)+𝑑(𝑥𝑗,𝑥𝑗)  

2
 } 

= max { d(𝑥𝑗−1, 𝑥𝑗), d(𝑥𝑗−1, 𝑥𝑗), d(𝑥𝑗, 𝑥𝑗+1),
d(𝑥𝑗−1,𝑥𝑗+1)  

2
 } 

= max { d(𝑥𝑗−1, 𝑥𝑗), d(𝑥𝑗, 𝑥𝑗+1),
d(𝑥𝑗−1 ,   𝑥𝑗)+ d(𝑥𝑗,  𝑥𝑗+1) 

2
 } 

= max { d(𝑥𝑗−1, 𝑥𝑗), d(𝑥𝑗, 𝑥𝑗+1)} 

So, we have 
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F(d(xj, xj+1)) = F (d(Txj-1, Txj))≤ F (max { d(𝑥𝑗−1, 𝑥𝑗), d(𝑥𝑗, 𝑥𝑗+1)}). 

In this case max { d(𝑥𝑗−1, 𝑥𝑗), d(𝑥𝑗 , 𝑥𝑗+1)}= d(𝑥𝑗, 𝑥𝑗+1)is impossible, because 

F(d(xj , xj+1))≤ F(d(xj , xj+1)) 

which implies 𝜏 ≤0, a contradiction. So 

max { d(𝑥𝑗−1, 𝑥𝑗), d(𝑥𝑗 , 𝑥𝑗+1)}= d(𝑥𝑗−1, 𝑥𝑗). 

As F is strictly increasing, we have 

 

                                                                   d(xj , xj+1) <d(xj-1, xj) (2.4) 

 

Now, 

d(𝑥0, 𝑥𝑗+1) ≤ d(𝑥0, 𝑥1) + . . . + d(𝑥𝑗, 𝑥𝑗+1) 

≤ ∑ 𝑑(𝑥0, 𝑥1) ≤ 𝑟𝑁
𝑗=0 . 

Thus xj+1 ∈  𝐵 (𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Hence xn  ∈ 𝐵 (𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ for all n ∈ N. Continuing this process, we get 

F (d(xn, xn+1))   ≤ F (d(xn-1 , xn))- 𝜏 ≤F (d(Txn-2 , Txn 1)) - 𝜏 

≤F (d(xn-2 , xn 1)) - 2𝜏 

≤F (d(Txn-3 , Txn 2)) - 2𝜏 

. . . 

≤F (d(x0 , x1)) – n𝜏. 

This implies that 

F(d(xn , xn+1)) ≤F (d(x0 , x1)) - n𝜏.               (2.5) 

From (2.5), we obtain lim
𝑛→∞

  d(xn , xn+1) = -∞. Since F∈ ∆𝐹 ,  we have 

lim
𝑛→∞

 d(xn , xn+1) = 0: 

 

From (F3), there exists k∈ (0,1) such that 

(2.6) 

lim
𝑛→∞

 ((d(xn , xn+1)) F (d(xn , xn+1))) = 0. (2.7) 

 

From (2.5), for all n ∈ N, we obtain 

 

𝑑(𝑥𝑛 , 𝑥𝑛+1)𝑘 (F (d(xn , xn+1)) F (d(x0 , x1))) 

≤- 𝑑(𝑥𝑛 , 𝑥𝑛+1)𝑘n𝜏.                                        (2.8) 

 

 By using (2.6), (2.7) and letting n→ ∞ in (2.8), we have 

lim
𝑛→∞

 (n(𝑑(𝑥𝑛 , 𝑥𝑛+1)𝑘) ) = 0.                         (2.9) 
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We observe that from (2.9), then there exists n1 ∈ N; such that n(𝑑(𝑥𝑛 , 𝑥𝑛+1)𝑘)≤1 for all n≥n1, we get 

𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤
1

𝑛𝑘  for all n≥n1.                                                        (2.10) 

Now, m,n ∈N such that m>n≥n1. Then, by the triangle inequality and from (2.10) we have 

d(𝑥𝑛 , 𝑥𝑚) ≤ d(𝑥𝑛, 𝑥𝑛+1) + d(𝑥𝑛+1, 𝑥𝑛+2) + . . . + d(𝑥𝑚−1, 𝑥𝑚) 

≤ ∑ 𝑑(𝑥𝑖 , 𝑥𝑖+1)𝑚−1
𝑖=0 ≤ ∑

1

𝑖
1
𝑘

∞
𝑖=𝑛          (2.11) 

The series ∑
1

𝑖
1
𝑘

∞
𝑖=𝑛  is convergent. By taking limit as n→ ∞ in (2.11), we have lim

𝑛→∞
d(xn,xm) = 0. Hence 

{xn }is a Cauchy sequence. Since X is a complete metric space there exists x∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ such that xn → x 
as n→ ∞.  T is a continuous then xn+1 = Txn → Tx as n→ ∞. That is, x = Tx . 

Hence x is a fixed point of T. To prove uniqueness, let x, y∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and x≠ y be any two fixed point of 

T, then from (2.1), we have 

𝜏+ F (d(Tx, Ty)) F (M(x, y)) 

we obtain 

𝜏+ F (d(x, y)) F (d(x, y)). 

which is a contradiction. Hence, x = y. Therefore, T has a unique fixed point  

in a closed ball 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Example 13 Let X = R+ and d(x, y) = |x-y|. Then (X, d) is a complete metric space. Define the mapping T 
: X → X  

by, T(x)= {

𝑥

4
 𝑖𝑓 𝑥 ∈ [0,1]

𝑥 −
1

2
  𝑖𝑓 𝑥 ∈ (1, ∞)

}. 

 

x0 = 1, r = 2,  𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = [0,1]. If F(𝛼 ) = ln𝛼 > 0 and 𝜏> 0,  then d(1, T1)=|1-1/4|=3/4<r. If x, y ∈ 

𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then 

1

4
|𝑥 − 𝑦| < |𝑥 − 𝑦| 

|
𝑥

4
−

𝑦

4
| < |𝑥 − 𝑦| 

𝑑(𝑇𝑥, 𝑇𝑦) < 𝑑(𝑥, 𝑦) ≤ 𝑀(𝑥, 𝑦). 

This implies that 

𝜏+ F (d(Tx, Ty)) = 𝜏+ ln(d(Tx, Ty))≤ lnM(x, y) = F (M(x, y)).  If x,y∈ (1, ∞),  then 

|𝑥 −
1

2
− 𝑦 +

1

2
| = |𝑥 − 𝑦| 

𝜏 + |𝑇𝑥 − 𝑇𝑦| > |𝑥 − 𝑦| 

𝜏 + 𝐹(𝑑(𝑇𝑥, 𝑇𝑦)) > 𝐹(𝑑(𝑥, 𝑦)). 

Then the contractive condition does not hold on X.        
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3. FIXED POINT THEOREM FOR CIRIC TYPE GF-CONTRACTION ON CLOSED BALL 

In this section, we define a new contraction called - -GF-contraction on closed ball and obtained a new 

Banach fixed point theorems for such contraction in the setting of complete metric spaces. We de ne 

Ciric type 𝛼-η-GF-contraction on a closed ball as follows: 

Definition 14 Let T be a self-mapping in a metric space (X, d) and let x0 be an arbitrary point in X. Also 

suppose that , 𝜂 : X×X→ [0,+∞) two functions. We say that T is called Ciric type 𝛼-η-GF-contraction on 

a closed ball if for all x, y∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ⊆X, with η(x, Tx)≤ 𝛼(x, y) and d(Tx, Ty) > 0, we have 

G(d(x, Tx),d(y, Ty), d(x, Ty),d(y, Tx)) + F (d(Tx, Ty))≤ F (M(x, y)),          (3.1) 

Where M(x, y)= max{ d(x, y), d(x, Tx), d(y, Ty),  
𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
} and 

∑ 𝑑(𝑥0, 𝑇𝑥0) ≤ 𝑟𝑁
𝑗=0  for all j∈N and r>0.     (3.2) 

G∈ ∆𝐺  and F∈ ∆𝐹. 

Theorem 15 Let (X, d) be a complete metric space. Let T : X →X be a Ciric type 𝛼-η-GF-contraction 

mapping on a closed ball satisfying the following assertions: 

T is an 𝛼-admissible mapping with respect to η;  

there exists x0 ∈ X such that 𝛼(x0,Tx0)≥η(x0;Tx0); 

T is 𝛼-η -continuous. 

Then there exist a point x in closed ball 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  such that Tx = x. 

Proof. Let x0 in X such that 𝛼(x0,Tx0)≥η(x0,Tx0). For x0 ∈X, we construct a sequence {𝛼𝑛}𝑛=1
∞  such that 

x1 = Tx0, x2 = Tx1 = T2x0. Continuing this way, xn+1 = Txn = Tn+1x0, for all n ∈ N: Now since, T is an 𝛼-

admissible mapping with respect to η then 𝛼(x0,x1) = 𝛼(x0;Tx0)≥η(x0,Tx0) =η (x0,x1). By continuing in 

this process we have, 

η(xn 1,Txn 1) =η (xn 1, xn)≤ 𝛼(xn 1, xn),  for all n∈N.           (3.3) 

If there exists n ∈ N such that d(xn, Txn) = 0, there is nothing to prove. So, 

we assume that xn ≠xn+1 with 

d(Txn 1, Txn) = d(xn, Txn) > 0; ∀n∈ N: 

 

First we show that xn ∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all n ∈ N. Since T be a Ciric type 𝛼-η-GF-contraction on closed ball, 

we have 

d(x0, x1) = d(x0, Tx0)≤ r.                                                      (3.4) 

 

Thus, x1∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . Suppose x2…xj ∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ for some j ∈ N,  such that 

G(d(xj 1,Txj 1),d(xj,Txj),d(xj 1,Txj),d(xj,Txj 1))+F (d(Txj 1, Txj))≤F (M(xj 1, xj)) 

which implies 

G(d(xj 1,xj),d(xj, xj+1);d(xj 1, xj+1),0)+F (d(Txj 1, Txj))≤F (M(xj 1, xj)).             (3.5) 

Now by definition of G, d(xj 1, xj).d(xj, xj+1).d(xj 1,xj+1).0 = 0, so there exists 𝜏> 0 such that, 

G(d(xj 1, xj), d(xj, xj+1),d(xj 1;xj+1),0) =𝜏.  

Therefore 
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F (d(xj, xj+1)) = F (d(Txj 1, Txj)) F (M(xj 1, xj)) : (3.6) 

Rest of the proof follows the similar lines of Theorem 12. Since X is a complete metric space there exists 

x ∈ 𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  such that xn→x as n→ ∞.  T is an 𝛼-η -continuous and η (xn 1, xn)≤ 𝛼(xn 1, xn),  for all n∈N, 
then xn+1 = Txn → Tx as n→ ∞.   That is, x = Tx . Hence x is a fixed point of T.  

Example 16 Let X = R+ and d be the usual metric on X. Define T : X→X, 𝛼, 𝜂 : X×X→ [0,+∞), (R+)4 → R+ 

and F : R+ →R by  

𝑇𝑥 = {
√𝑥 𝑖𝑓 𝑥 ∈ [0,1]

2𝑥  𝑖𝑓 𝑥 ∈ (1, ∞)
  𝛼(𝑥, 𝑦) = {

𝑒𝑥+𝑦 𝑥 ∈ [0,1]
1

3
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   

η(𝑥, 𝑦) =
1

2
 for all x,y ∈ 𝑋. G(t1, t2, t3, t4) = 𝜏> 0 and F(t) = lnt with t>0. x0 = 

1

2
, r = 1,  𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

[0,1], 𝑡ℎ𝑒𝑛 

𝑑 (
1

2
, 𝑇

1

2
) = |

1

2
−

1

√2
| = 0.30710 < 𝑟. 

If x,y ∈  𝐵(𝑥0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  then 𝛼(𝑥, 𝑦) = 𝑒𝑥+𝑦 ≥
1

2
= η(𝑥, 𝑦). 

On the other hand, 

Tx ∈[0,1] for all x ∈ [0;1]. Then 𝛼(Tx, Ty)≥ η(x, Tx) with d(Tx, Ty) = |√𝑥 − √𝑦|> 0: clearly 𝛼 (0, T0) ≥ 

η (0, T0): Hence we have 

𝑑(𝑇𝑥, 𝑇𝑦 ) = |(
√𝑥 − √𝑦  × √𝑥 + √𝑦)

√𝑥 + √𝑦)
| = |

𝑥 − 𝑦

√𝑥 + √𝑦)
| < |𝑥 − 𝑦| ≤ 𝑀(𝑥, 𝑦). 

Consequently,  

𝜏+ F (d(Tx, Ty)) =𝜏+ lnd(Tx, Ty)≤ lnM(x;y) = F (M(x;y)). 

2|𝑥 − 𝑦| ≥ |𝑥 − 𝑦| 

|2𝑥 − 2𝑦| ≥ |𝑥 − 𝑦| 

|𝑇𝑥 − 𝑇𝑦| ≥ |𝑥 − 𝑦| 

𝜏 + 𝐹(𝑑(𝑇𝑥, 𝑇𝑦)) ≥ 𝐹(𝑑(𝑥, 𝑦)). 

  

Then the contractive condition does not hold on X. 

 

4. CONCLUSION 

In this connection, the main aim of our paper is to present new concepts of Ciric type F-contraction on 

closed ball and different from F-contractions given in [21, 31, 40]. Existence of fixed point results of such 

type of F-contraction on closed ball in complete metric space are established. The study of results are very 

useful in the sense that it requires the F-contraction mapping only on the closed ball instead of the whole 

space. The new concepts lead to further investigations and applications. It will be also interesting to apply 

these concepts in a different metric spaces. 
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