	Gazi University	
	Journal of Science	
	http://dergipark.gov.tr/gujs	

Common Fixed Point Theorems in Relatively Intuitionistic Fuzzy Metric Spaces

Taieb HAMAIZIA ${ }^{1, *}$, P. P. MURTHY ${ }^{2}$
${ }^{\prime}$ Department of Mathematics, Faculty of Sciences, Larbi Ben M'hidi University, Oum Elbouaghi, Algeria
${ }^{2}$ Department of Pure Applied Mathematics, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur(CG), 495 009, INDIA

Article Info

Received: 02/10/2016
Accepted: 18/11/2016

Abstract

Fixed points theorem in relatively two intuitionistic fuzzy metric spaces is obtained by generalizing a theorem of [6] in fuzzy metric space

Keywords

Intuitionistic fuzzy metric space
Common fixed point
Cauchy sequence

1. INTRODUCTION

The concept of fuzzy sets was introduced initially by Zadeh [12] in 1965. George and Veeramani [7] slightly modified the concept of fuzzy metric space introduced by Kramosil and Michalek [9]. In 1986, Atanassov [3] introduced and studied the concept of intuitionistic fuzzy sets by generalizing fuzzy sets. In 2004, Park [8] defined the concept of intuitionistic fuzzy metric space with the help of continuous t-norms and continuous t-conorms. Recently, in 2006, Alaca et al. [1] defined the concept of intuitionistic fuzzy metric space with the help of continuous t-norms and continuous t-conorms as a generalization of fuzzy metric space which is introduced by Kramosil and Michalek [7]. The aim of this paper is to obtain a common fixed point theorem for a pair of maps intuitionistic fuzzy metric space. Our theorem extend and generalize a theorem of Hamaizia and Aliouche [6].

2. PRELIMINARIES

First of all we recall the following basic properties of fuzzy metric space:
Definition 1. [8]. A binary operation $*:[0,1] \times[0,1] \rightarrow[0,1]$ is called a continuous t-norm if it satisfies the following conditions:

1) * is associative and commutative,
$2)$ * is continuous,
2) $a * 1=1$ for all $a \in[0,1]$,
3) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c \in[0,1]$.

Two typical examples of a continuous t-norm are $a * b=a b$ and $\min \{a, b\}$.
Definition 2. [8]. A binary operation $\diamond:[0,1] \times[0,1] \rightarrow[0,1]$ is called a continuous t-norm if it satisfies the following conditions:

1) \diamond is associative and commutative,
2) \diamond is continuous,
3) $a \diamond 0=0$ for all $a \in[0,1]$,
4) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c \in[0,1]$.

Alaca et al. [1] introduced the notion of intuitionistic fuzzy metric space which follows:
Definition 3. [1]. A 5-tuple ($X, M, N, *, \diamond$) is called an intuitionistic fuzzy metric space if X is an arbitrary (non-empty) set, $*$ is a continuous t -norm, Δ is a continuous t-conorm and M, N are a fuzzy sets on $\mathrm{X}^{2} \times(0,1)$ satisfying the following conditions :
(1) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})+\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{t}) \leq 1$ for all $\mathrm{x}, \mathrm{y} \in X$ and $\mathrm{t}>0$;
(2) $\mathrm{M}(\mathrm{x}, \mathrm{y}, 0)=0$ for all $\mathrm{x}, \mathrm{y} \in X$;
(3) $M(x, y, t)=1$ for all $x, y \in X$ and $t>0$ if and only if $x=y$;
(4) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\mathrm{M}(\mathrm{y}, \mathrm{x}, \mathrm{t})$ for all $\mathrm{x}, \mathrm{y} \in X$ and $\mathrm{t}>0$;
(5) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t}) * \mathrm{M}(\mathrm{y}, \mathrm{z}, \mathrm{s}) \leq \mathrm{M}(\mathrm{x}, \mathrm{z}, \mathrm{t}+\mathrm{s})$ for each $\mathrm{x}, \mathrm{y}, \mathrm{z} \in X$ and $\mathrm{t}, \mathrm{s}>0$;
(6) For all $x, y \in X, M(x, y,):.(0,1) \longrightarrow[0,1]$ is continuous;
(7) $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})=1$ for all $\mathrm{x}, \mathrm{y} \in X$ and $\mathrm{t}>0$;
(8) $\mathrm{N}(\mathrm{x}, \mathrm{y}, 0)=1$ for all $\mathrm{x}, \mathrm{y} \in X$;
(3) $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{t})=0$ for all $\mathrm{x}, \mathrm{y} \in X$ and $\mathrm{t}>0$ if and only if $\mathrm{x}=\mathrm{y}$;
(9) $N(x, y, t)=N(y, x, t)$ for all $x, y \in X$ and $t>0$;
(10) $N(x, y, t) \diamond N(y, z, s) \geq N(x, z, t+s)$,for each $x, y, z \in X$ and $t, s>0$;
(11) For all $N(x, y,):.(0,1) \longrightarrow[0,1]$ is continuous;
(12) $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{t})=0$ for all $\mathrm{x}, \mathrm{y} \in X$ and $\mathrm{t}>0$.

Then (M,N) is called an intuitionistic fuzzy metric on X. The functions $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ and $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ respectively denote the degree of nearness and degree of nonnearness between x and y with respect to t.
Remark 1. [2]Every fuzzy metric space (X,M, *) is an intuitionistic fuzzy metric space of the form $(X, M, 1-M, *, \diamond)$ such that t -norm $*$ and t -conorm Δ, are associated as $\mathrm{x} \oslash \mathrm{y}=1-((1-\mathrm{x}) *(1-\mathrm{y}))$ for all $\mathrm{x}, \mathrm{y} \in X$.

Remark 2. [2]In the intuitionistic fuzzy metric space ($X, M, N, *$,$\rangle), M(x, y, \cdot)$ is nondecreasing and $N(x$, $\mathrm{y}, \cdot)$ is non-increasing for all $\mathrm{x}, \mathrm{y} \in X$.
Definition 4. [1]. Let (X,M, 1-M,*, $)$ be an intuitionistic fuzzy metric space. Then
(a) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to a point x in X if and only if

$$
\lim _{n \rightarrow \infty} M\left(x_{n}, x, t\right)=1 \text { and } \lim _{n \rightarrow \infty} N\left(x_{n}, x, t\right)=0 \text { for each } t>0
$$

(b) A sequence $\left\{x_{n}\right\}$ in X is called Cauchy sequence if

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{M}\left(\mathrm{x}_{\mathrm{n}+\mathrm{p}}, \mathrm{x}, \mathrm{t}\right)=1 \text { and } \lim _{\mathrm{n} \rightarrow \infty} \mathrm{~N}\left(\mathrm{x}_{\mathrm{n}+\mathrm{p}}, \mathrm{x}, \mathrm{t}\right)=0 \text { for each } \mathrm{p}>0 \text { and } \mathrm{t}>0
$$

Definition 5. [1] An intuitionistic fuzzy metric space ($X, M, N, *, \diamond$) is said to be complete if and only if every Cauchy sequence in X is convergent.

Lemma 1. [2] Let $\left\{x_{n}\right\}$ is a sequence in a intuitionistic fuzzy metric space
($\mathrm{X}, \mathrm{M}, \mathrm{N}, *, \diamond$). If there exists a constant $\mathrm{k} \in(0,1)$ such that

$$
\begin{aligned}
& M\left(x_{n+1}, x_{n}, k t\right) \geq M\left(x_{n-1}, x_{n}, t\right) \\
& N\left(x_{n+1}, x_{n}, k t\right) \leq N\left(x_{n-1}, x_{n}, t\right)
\end{aligned}
$$

Then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Lemma 2. [2]Let ($\mathrm{X}, \mathrm{M}, \mathrm{N}, *, 0$) be an intuitionistic fuzzy metric space and for all x, y in $X, t>0$ and if there exists a number $k \in(0,1)$
$M(x, y, k t) \geq M(x, y, t)$ and $N(x, y, k t) \leq N(x, y, t)$
then $x=y$.
In the interest of our main result we shall recall a theorem proved by Hamaizia and A. Aliouche [6]:
Theorem 1. Let $\left(X, M_{1}, \theta_{1}\right)$ and $\left(Y, M_{2}, \theta_{2}\right)$ be complete fuzzy metric spaces with $\mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{t}\right) \rightarrow 1$ as $\mathrm{t} \rightarrow$ 1 for all $\mathrm{x}, \mathrm{x}^{\prime} \in \mathrm{X}$ and $\mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}^{\prime}, \mathrm{t}\right) \rightarrow 1$ as $\mathrm{t} \rightarrow 1$ for all $\mathrm{y}, \mathrm{y}^{\prime} \in \mathrm{Y}$. Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{S}: \mathrm{Y} \rightarrow \mathrm{X}$ be mappings satisfying:
$M_{1}\left(S T x, S T x^{\prime}, k t\right) \geq \min \left\{M_{1}\left(x, x^{\prime}, t\right), M_{1}(x, S T x, t), M_{1}\left(x^{\prime}, S T x^{\prime}, t\right), M_{2}\left(T x, T x^{\prime}, t\right)\right\}$
$M_{2}\left(T S y, T S y^{\prime}, k t\right) \geq \min \left\{M_{2}\left(y, y^{\prime}, t\right), M_{2}(y, T S y, t), M_{2}\left(y^{\prime}, T S y^{\prime}, t\right), M_{1}\left(S y, S y^{\prime}, t\right)\right\}$
for all $\mathrm{x}, \mathrm{x}^{\prime} \in \mathrm{X}, \mathrm{y}, \mathrm{y}^{\prime} \in \mathrm{Y}$ and for all $\mathrm{t}>0$, where $0<\mathrm{k}<1$. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, $T z=w$ and $S w=z$.

3. MAIN RESULT

We prove our main theorem (2) which is an extension of Theorem(1) of fuzzy metric space in to intuitionistic fuzzy metric space.
Theorem 2. Let ($\mathrm{X}, \mathrm{M}_{1}, \mathrm{~N}_{1}, *, \downarrow$) and $\left(\mathrm{Y}, \mathrm{M}_{2}, \mathrm{~N}_{2}, *, \diamond\right)$ be complete intuitionistic fuzzy metric spaces with $\mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{t}\right) \rightarrow 1$ as $\mathrm{t} \rightarrow 1$ for all $\mathrm{x}, \mathrm{x}^{\prime} \in \mathrm{X}$ and $\mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}^{\prime}, \mathrm{t}\right) \rightarrow 1$ as $\mathrm{t} \rightarrow 1$ for all $\mathrm{y}, \mathrm{y}^{\prime} \in \mathrm{Y}$. Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$, $S: Y \rightarrow X$ be mappings satisfying:

$$
\begin{align*}
& M_{1}\left(S T x, S T x^{\prime}, k t\right) \geq \min \left\{M_{1}\left(x, x^{\prime}, t\right), M_{1}(x, S T x, t), M_{1}\left(x^{\prime}, S T x^{\prime}, t\right), M_{2}\left(T x, T x^{\prime}, t\right)\right\} \tag{3.1}\\
& N_{1}\left(S T x, S T x^{\prime}, k t\right) \leq \max \left\{N_{1}\left(x, x^{\prime}, t\right), N_{1}(x, S T x, t), N_{1}\left(x^{\prime}, S T x^{\prime}, t\right), N_{2}\left(T x, T x^{\prime}, t\right)\right\} \tag{3.2}\\
& M_{2}\left(T S y, T S y^{\prime}, k t\right) \geq \min \left\{M_{2}\left(y, y^{\prime}, t\right), M_{2}(y, T S y, t), M_{2}\left(y^{\prime}, T S y^{\prime}, t\right), M_{1}\left(S y, S y^{\prime}, t\right)\right\} \tag{3.3}\\
& N_{2}\left(T S y, T S y^{\prime}, k t\right) \leq \max \left\{N_{2}\left(y, y^{\prime}, t\right), N_{2}(y, T S y, t), N_{2}\left(y^{\prime}, T S y^{\prime}, t\right), N_{1}\left(S y, S y^{\prime}, t\right)\right\} \tag{3.4}
\end{align*}
$$

for all $\mathrm{x}, \mathrm{x}^{\prime} \in \mathrm{X}, \mathrm{y}, \mathrm{y}^{\prime} \in \mathrm{Y}$ and for all $\mathrm{t}>0$, where $0<\mathrm{k}<1$. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Indeed $T z=w$ and $S w=z$, whenever T is continuous.
Proof. Let x be an arbitrary point in X. We define the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X and Y respectively by:

$$
S y_{n}=x_{n}, T x_{n-1}=y_{n}
$$

for $\mathrm{n}=1,2, \ldots$ Putting $\mathrm{x}=\mathrm{x}_{\mathrm{n}}$ and $\mathrm{y}=\mathrm{y}_{\mathrm{n}}$ for all n . Applying inequality (3.1),(3.2) we get

$$
\begin{align*}
& \left.M_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \geq \min \left\{M_{1}\left(x_{n}, x_{n-1}, t\right), M_{1}\left(x_{n}, x_{n+1}, t\right), M_{1}\left(x_{n-1}, x_{n}, t\right), M_{2}\left(y_{n+1}, y_{n}, t\right)\right\}, \tag{3.5}\\
& \left.N_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \leq \max \left\{N_{1}\left(x_{n}, x_{n-1}, t\right), N_{1}\left(x_{n}, x_{n+1}, t\right), N_{1}\left(x_{n-1}, x_{n}, t\right), N_{2}\left(y_{n+1}, y_{n}, t\right)\right\}, \tag{3.6}
\end{align*}
$$

Using inequalities (3.3),(3.4) we have

$$
\begin{align*}
& \left.M_{2}\left(y_{n+1}, y_{n}, k t\right)\right) \geq \min \left\{M_{2}\left(y_{n}, y_{n-1}, t\right), M_{2}\left(y_{n}, y_{n+1}, t\right), M_{2}\left(y_{n-1}, y_{n}, t\right), M_{1}\left(x_{n}, x_{n-1}, t\right)\right\}, \tag{3.7}\\
& \left.N_{2}\left(y_{n+1}, y_{n}, k t\right)\right) \leq \max \left\{N_{2}\left(y_{n}, y_{n-1}, t\right), N_{2}\left(y_{n}, y_{n+1}, t\right), N_{2}\left(y_{n-1}, y_{n}, t\right), N_{1}\left(x_{n}, x_{n-1}, t\right)\right\}, \tag{3.8}
\end{align*}
$$

involve, respectively

$$
\begin{equation*}
\left.M_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \geq \min \left\{M_{1}\left(x_{n}, x_{n-1}, t\right), M_{2}\left(y_{n+1}, y_{n}, t\right)\right\}, \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\left.\mathrm{N}_{1}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{kt}\right)\right) \leq \max \left\{\mathrm{N}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{t}\right), \mathrm{N}_{2}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}, \mathrm{t}\right)\right\}, \tag{3.10}
\end{equation*}
$$

And

$$
\begin{align*}
& \left.M_{2}\left(y_{n+1}, y_{n}, k t\right)\right) \geq \min \left\{M_{2}\left(y_{n}, y_{n-1}, t\right), M_{1}\left(x_{n}, x_{n-1}, t\right)\right\}, \tag{3.11}\\
& \left.N_{2}\left(y_{n+1}, y_{n}, k t\right)\right) \leq \max \left\{N_{2}\left(y_{n}, y_{n-1}, t\right), N_{1}\left(x_{n}, x_{n-1}, t\right)\right\}, \tag{3.12}
\end{align*}
$$

using inequalities (3.1), (3.2) again, it follows that

$$
\begin{align*}
& \left.M_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \geq \min \left\{M_{1}\left(x_{n}, x_{n-1}, t\right), M_{2}\left(y_{n+1}, y_{n}, t\right)\right\}, \tag{3.13}\\
& \left.N_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \leq \max \left\{N_{1}\left(x_{n}, x_{n-1}, t\right), N_{2}\left(y_{n+1}, y_{n}, t\right)\right\}, \tag{3.14}
\end{align*}
$$

In the similar way, using inequality (3.3),(3.4) we get

$$
\begin{align*}
& \left.M_{2}\left(y_{n+1}, y_{n}, k t\right)\right) \geq \min \left\{M_{2}\left(y_{n}, y_{n-1}, t\right), M_{1}\left(x_{n}, x_{n-1}, t\right)\right\}, \tag{3.15}\\
& \left.M_{2}\left(y_{n}, y_{n-1}, k t\right)\right) \geq \min \left\{M_{2}\left(y_{n-1}, y_{n-2}, t\right), M_{1}\left(x_{n-1}, x_{n-2}, t\right)\right\}, \tag{3.16}
\end{align*}
$$

And

$$
\begin{align*}
& \left.N_{2}\left(y_{n+1}, y_{n}, k t\right)\right) \leq \max \left\{N_{2}\left(y_{n}, y_{n-1}, t\right), N_{1}\left(x_{n}, x_{n-1}, t\right)\right\}, \tag{3.17}\\
& \left.N_{2}\left(y_{n}, y_{n-1}, k t\right)\right) \leq \max \left\{N_{2}\left(y_{n-1}, y_{n-2}, t\right), N_{1}\left(x_{n-1}, x_{n-2}, t\right)\right\}, \tag{3.18}
\end{align*}
$$

Using inequalities (3.9),(3.15) and (3.10),(3.17), we have

$$
\begin{align*}
& \left.M_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \geq \min \left\{M_{1}\left(x_{n}, x_{n-1}, t\right), M_{2}\left(y_{n}, y_{n-1}, t\right)\right\}, \tag{3.19}\\
& \left.N_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \leq \max \left\{N_{1}\left(x_{n}, x_{n-1}, t\right), N_{2}\left(y_{n}, y_{n-1}, t\right)\right\}, \tag{3.20}
\end{align*}
$$

In a similar way by using inequalities (3.13),(3.16) and (3.14),(3.18), we get

$$
\begin{align*}
& \left.M_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \geq \min \left\{M_{1}\left(x_{n}, x_{n-1}, t\right), M_{2}\left(y_{n}, y_{n-1}, t\right)\right\}, \tag{3.21}\\
& \left.N_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \leq \max \left\{N_{1}\left(x_{n}, x_{n-1}, t\right), N_{2}\left(y_{n}, y_{n-1}, t\right)\right\}, \tag{3.22}
\end{align*}
$$

It now follows inequalities (3.15),(3.16),(3.19),(3.21) and (3.17),(3.18),(3.20),(3.22) that

$$
\begin{align*}
& \left.M_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \geq M_{2}\left(y_{n}, y_{n-1}, t\right), \tag{3.23}\\
& \left.M_{2}\left(y_{n+1}, y_{n}, k t\right)\right) \geq M_{1}\left(x_{n}, x_{n-1}, t\right), \tag{3.24}
\end{align*}
$$

and

$$
\begin{align*}
& \left.N_{1}\left(x_{n+1}, x_{n}, k t\right)\right) \geq N_{2}\left(y_{n}, y_{n-1}, t\right), \tag{3.25}\\
& \left.N_{2}\left(y_{n+1}, y_{n}, k t\right)\right) \geq N_{1}\left(x_{n}, x_{n-1}, t\right) . \tag{3.26}
\end{align*}
$$

Using (3.23),(3.24) and(3.25),(3.26) we have for $n=1,2$,

$$
\begin{aligned}
& \left.M_{1}\left(x_{n+1}, x_{n}, t\right)\right) \geq M_{2}\left(y_{n}, y_{n-1}, \frac{t}{k^{2}}\right), \\
& \left.M_{2}\left(y_{n+1}, y_{n}, t\right)\right) \geq M_{1}\left(x_{n}, x_{n-1}, \frac{t}{k^{2}}\right),
\end{aligned}
$$

and

$$
\begin{gathered}
\left.N_{1}\left(x_{n+1}, x_{n}, t\right)\right) \geq N_{2}\left(y_{n}, y_{n-1}, \frac{t}{k^{2}}\right) \\
\left.N_{2}\left(y_{n+1}, y_{n}, k t\right)\right) \geq N_{1}\left(x_{n}, x_{n-1}, \frac{t}{k^{2}}\right) .
\end{gathered}
$$

From lemma 2, it follows that x_{n} and y_{n} are cauchy sequences in X and Y respec-tively. Hence x_{n} converges to z in X and y_{n} converges to w in Y . Now, suppose that T is continuous, then

$$
\lim \mathrm{Tx}_{\mathrm{n}-1}=\mathrm{Tz}=\lim \mathrm{y}_{\mathrm{n}}=\mathrm{w}
$$

and so $\mathrm{Tz}=\mathrm{w}$. Applying inequalities (3.1) and (3.2),we have

$$
\begin{aligned}
& \mathrm{M}_{1}\left(\mathrm{STz}, \mathrm{STx}_{\mathrm{n}-1}, \mathrm{kt}\right) \geq \min \left\{\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{1}(\mathrm{z}, \mathrm{STz}, \mathrm{t}), \mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{ST}_{\mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{Tz}, \mathrm{Tx}_{\mathrm{n}-1}, \mathrm{t}\right)\right\}, \\
& N_{1}\left(S T z, S T x_{n-1}, k t\right) \leq \max \left\{N_{1}\left(z, x_{n-1}, t\right), N_{1}(z, S T z, t), N_{1}\left(x_{n-1}, S T x_{n-1}, t\right), N_{2}\left(T z, T x_{n-1}, t\right)\right\},
\end{aligned}
$$

letting n tend to infinity, we have

$$
\begin{aligned}
& \mathrm{M}_{1}(\mathrm{Sw}, \mathrm{z}, \mathrm{kt}) \geq \min \left\{1, \mathrm{M}_{1}(\mathrm{z}, \mathrm{Sw}, \mathrm{t}), 1\right\} \\
& \mathrm{N}_{1}(\mathrm{Sw}, \mathrm{z}, \mathrm{kt}) \leq \max \left\{0, \mathrm{~N}_{1}(\mathrm{z}, \mathrm{Sw}, \mathrm{t}), 0\right\}
\end{aligned}
$$

so $S w=z$. In the same manner we can show that $T z=w$. Finally we show that the fixed point is unique. Suppose that ST has a second fixed point z^{\prime} in X Then, using inequalities (3.1) and (3.2), we have

$$
\begin{aligned}
& \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \min \left\{\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right)\right\} \\
& \mathrm{N}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \max \left\{\mathrm{N}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{N}_{2}\left(\mathrm{Tz}, \mathrm{Tz}^{\prime}, \mathrm{t}\right)\right\}
\end{aligned}
$$

Again, using inequality (3.3) and (3.4) we have

$$
\begin{align*}
& \mathrm{M}_{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \min \left\{\mathrm{M}_{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{~T} \mathrm{z}^{\prime}, \mathrm{T} \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{M}_{2}(\mathrm{~T} z, \mathrm{Tz}, \mathrm{t}), \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)\right\} \tag{3.29}\\
& \mathrm{N}_{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \max \left\{\mathrm{N}_{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{N}_{2}\left(\mathrm{~T} \mathrm{z}^{\prime}, \mathrm{T} \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{N}_{2}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{t}), \mathrm{N}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)\right\} \tag{3.30}
\end{align*}
$$

It now follows easily from inequalities (3.27), (3.28 and (3.29), (3.30) that

$$
\begin{gathered}
\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \mathrm{M}_{2}\left(\mathrm{Tz}, \mathrm{Tz} \mathrm{z}^{\prime}, \mathrm{t}\right) \\
\mathrm{N}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \mathrm{N}_{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& \mathrm{M}_{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right) \\
& \mathrm{N}_{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \mathrm{N}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)
\end{aligned}
$$

Thus, we see that,

$$
\begin{aligned}
& \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \frac{\mathrm{t}}{\mathrm{k}^{2}}\right) \\
& \mathrm{N}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \mathrm{N}_{1}\left(\mathrm{z}, \mathrm{z}^{\prime}, \frac{\mathrm{t}}{\mathrm{k}^{2}}\right)
\end{aligned}
$$

and so $\mathrm{z}=\mathrm{z}^{\prime}$. The uniqueness of w follows in a similar manner.
Now we shall establish a theorem involving quadratic terms and proof the theorem is basically depends on Theorem(2) of this paper.
Theorem 3. Let $\left(X, M_{1}, N_{1}, *, \diamond\right)$ and $\left(Y, M_{2}, N_{2}, *, \diamond\right)$ be complete intuitionistic fuzzy metric spaces with $\mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{t}\right) \rightarrow 1$ as $\mathrm{t} \rightarrow 1$ for all $\mathrm{x}, \mathrm{x}^{\prime} \in \mathrm{X}$ and $\mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}^{\prime}, \mathrm{t}\right) \rightarrow 1$ as $\mathrm{t} \rightarrow 1$ for all $\mathrm{y}, \mathrm{y}^{\prime} \in \mathrm{Y}$. Let $\mathrm{T}: X \rightarrow Y$, $S: Y \rightarrow X$ be mappings satisfying:

$$
\begin{align*}
& M_{1}^{2}\left(S T x, S T x^{\prime}, k t\right) \geq \min \left\{M_{1}^{2}\left(x, x^{\prime}, t\right), M_{1}(x, S T x, t) * M_{1}\left(x^{\prime}, S T x^{\prime}, t\right), M_{2}^{2}\left(T x, T x^{\prime}, t\right)\right\} \tag{3.31}\\
& N_{1}^{2}\left(S T x, S T x^{\prime}, k t\right) \leq \max \left\{N_{1}^{2}\left(x, x^{\prime}, t\right), N_{1}(x, S T x, t) \diamond N_{1}\left(x^{\prime}, S T x^{\prime}, t\right), N_{2}^{2}\left(T x, T x^{\prime}, t\right)\right\} \tag{3.32}\\
& M_{1}^{2}\left(T S y, T S y^{\prime}, k t\right) \geq \min \left\{M_{2}^{2}\left(y, y^{\prime}, t\right), M_{2}(y, T S y, t) * M_{2}\left(y^{\prime}, T S y^{\prime}, t\right), M_{1}^{2}\left(S y, S y^{\prime}, t\right)\right\} \tag{3.33}\\
& N_{1}^{2}\left(T S y, T S y^{\prime}, k t\right) \leq \max \left\{N_{2}^{2}\left(y, y^{\prime}, t\right), N_{2}(y, T S y, t) \diamond N_{2}\left(y^{\prime}, T S y^{\prime}, t\right), N_{1}^{2}\left(S y, S y^{\prime}, t\right)\right\} \tag{3.34}
\end{align*}
$$

for all $\mathrm{x}, \mathrm{x}^{\prime} \in \mathrm{X}, \mathrm{y}, \mathrm{y}^{\prime} \in \mathrm{Y}$ and for all $\mathrm{t}>0$, where $0<\mathrm{k}<1$. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Indeed $T z=w$ and $S w=z$, whenever T is continuous.
Proof. Let x be an arbitrary point in X. We define the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X and Y respectively by:

$$
S y_{n}=x_{n}, T x_{n-1}=y_{n},
$$

for $\mathrm{n}=1,2, \ldots$ Putting $\mathrm{x}=\mathrm{x}_{\mathrm{n}}$ and $\mathrm{y}=\mathrm{y}_{\mathrm{n}}$ for all n . Applying inequality (3.31),(3.32) we get

$$
\begin{equation*}
M_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) \geq \min \left\{M_{1}^{2}\left(x_{n}, x_{n-1}, t\right), M_{1}\left(x_{n}, x_{n+1}, t\right) * M_{1}\left(x_{n-1}, x_{n}, t\right), M_{2}^{2}\left(y_{n+1}, y_{n}, t\right)\right\} \tag{3.35}
\end{equation*}
$$

(3.36) $N_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) \leq \max \left\{N_{1}^{2}\left(x_{n}, x_{n-1}, t\right), N_{1}\left(x_{n}, x_{n+1}, t\right) \Delta N_{1}\left(x_{n-1}, x_{n}, t\right), N_{2}^{2}\left(y_{n+1}, y_{n}, t\right)\right\}$,

Using inequalities (3.33),(3.34) we have
(3.37) $M_{1}^{2}\left(y_{n+1}, y_{n}, k t\right) \geq \min \left\{M_{2}^{2}\left(y_{n}, y_{n-1}, t\right), M_{2}\left(y_{n}, y_{n+1}, t\right) * M_{2}\left(y_{n-1}, y_{n}, t\right), M_{1}^{2}\left(x_{n}, x_{n-1}, t\right)\right\}$,
(3.38) $N_{1}^{2}\left(y_{n+1}, y_{n}, k t\right) \leq \max \left\{N_{2}^{2}\left(y_{n}, y_{n-1}, t\right), N_{2}\left(y_{n}, y_{n+1}, t\right) \oslash N_{2}\left(y_{n-1}, y_{n}, t\right), N_{1}^{2}\left(x_{n}, x_{n-1}, t\right)\right\}$, involve, respectively

$$
\begin{align*}
M_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) & \geq \min \left\{M_{1}^{2}\left(x_{n}, x_{n-1}, t\right), M_{2}^{2}\left(y_{n+1}, y_{n}, t\right)\right\}, \tag{3.39}\\
N_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) & \leq \max \left\{N_{1}^{2}\left(x_{n}, x_{n-1}, t\right), N_{2}^{2}\left(y_{n+1}, y_{n}, t\right)\right\}, \tag{3.40}
\end{align*}
$$

and

$$
\begin{align*}
& M_{2}^{2}\left(y_{n+1}, y_{n}, k t\right) \geq \min \left\{M_{2}^{2}\left(y_{n}, y_{n-1}, t\right), M_{1}^{2}\left(x_{n}, x_{n-1}, t\right)\right\}, \tag{3.41}\\
& N_{2}^{2}\left(y_{n+1}, y_{n}, k t\right) \leq \max \left\{N_{2}^{2}\left(y_{n}, y_{n-1}, t\right), N_{1}^{2}\left(x_{n}, x_{n-1}, t\right)\right\},
\end{align*}
$$

using inequalities (3.31), (3.32) again, it follows that

$$
\begin{align*}
& M_{1}^{2}\left(x_{n-1}, x_{n}, k t\right) \geq \min \left\{M_{1}^{2}\left(x_{n-2}, x_{n-1}, t\right), M_{2}^{2}\left(y_{n}, y_{n-1}, t\right)\right\}, \tag{3.43}\\
& N_{1}^{2}\left(x_{n-1}, x_{n}, k t\right) \leq \max \left\{N_{1}^{2}\left(x_{n-2}, x_{n-1}, t\right), N_{2}^{2}\left(y_{n}, y_{n-1}, t\right)\right\},
\end{align*}
$$

In the similar way, using inequality (3.33),(3.34) we get

$$
\begin{align*}
& \mathrm{M}_{2}^{2}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}, \mathrm{kt}\right) \geq \min \left\{\mathrm{M}_{2}^{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{1}^{2}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{t}\right)\right\}, \tag{3.45}\\
& \mathrm{M}_{2}^{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}, \mathrm{kt}\right) \geq \mathrm{min}\left\{\mathrm{M}_{2}^{2}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-2}, \mathrm{t}\right), \mathrm{M}_{1}^{2}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-2}, \mathrm{t}\right)\right\},
\end{align*}
$$

and

$$
\begin{align*}
& N_{2}^{2}\left(y_{n+1}, y_{n}, k t\right) \leq \max \left\{N_{2}^{2}\left(y_{n}, y_{n-1}, t\right), N_{1}^{2}\left(x_{n}, x_{n-1}, t\right)\right\}, \tag{3.47}\\
& N_{2}^{2}\left(y_{n}, y_{n-1}, k t\right) \leq \max \left\{N_{2}^{2}\left(y_{n-1}, y_{n-2}, t\right), N_{1}^{2}\left(x_{n-1}, x_{n-2}, t\right)\right\}, \tag{3.48}
\end{align*}
$$

Using inequalities (3.39),(3.45) and (3.40),(3.47), we have

$$
\begin{align*}
& M_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) \geq \min \left\{M_{1}^{2}\left(x_{n}, x_{n-1}, t\right), M_{2}^{2}\left(y_{n}, y_{n-1}, t\right)\right\}, \tag{3.49}\\
& N_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) \leq \max \left\{N_{1}^{2}\left(x_{n}, x_{n-1}, t\right), N_{2}^{2}\left(y_{n}, y_{n-1}, t\right)\right\}, \tag{3.50}
\end{align*}
$$

In a similar way by using inequalities (3.43),(3.46) and (3.44),(3.48), we get

$$
\begin{align*}
& M_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) \geq \min \left\{M_{1}^{2}\left(x_{n}, x_{n-1}, t\right), M_{2}^{2}\left(y_{n}, y_{n-1}, t\right)\right\}, \tag{3.51}\\
& N_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) \leq \max \left\{N_{1}^{2}\left(x_{n}, x_{n-1}, t\right), N_{2}^{2}\left(y_{n}, y_{n-1}, t\right)\right\}, \tag{3.52}
\end{align*}
$$

It now follows inequalities (3.45),(3.46),(3.49),(3.51) and (3.47),(3.48),(3.50),(3.52) that

$$
\begin{align*}
& M_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) \geq M_{2}^{2}\left(y_{n}, y_{n-1}, t\right), \tag{3.53}\\
& M_{2}^{2}\left(y_{n+1}, y_{n}, k t\right) \geq M_{1}^{2}\left(x_{n}, x_{n-1}, t\right), \tag{3.54}
\end{align*}
$$

and
$N_{1}^{2}\left(x_{n+1}, x_{n}, k t\right) \geq N_{2}^{2}\left(y_{n}, y_{n-1}, t\right)$,

$$
\begin{equation*}
N_{2}^{2}\left(y_{n+1}, y_{n}, k t\right) \geq N_{1}^{2}\left(x_{n}, x_{n-1}, t\right) . \tag{3.55}
\end{equation*}
$$

Using (3.53),(3.54) and(3.55),(3.56) we have for $\mathrm{n}=1,2$,

$$
\begin{aligned}
& M_{1}^{2}\left(x_{n+1}, x_{n}, t\right) \geq M_{2}^{2}\left(y_{n}, y_{n-1}, \frac{t}{k^{2}}\right), \\
& M_{2}^{2}\left(y_{n+1}, y_{n}, t\right) \geq M_{1}^{2}\left(x_{n}, x_{n-1}, \frac{t}{k^{2}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{N}_{1}^{2}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right) \geq \mathrm{N}_{2}^{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}, \frac{\mathrm{t}}{\mathrm{k}^{2}}\right) \\
& \mathrm{N}_{2}^{2}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}, \mathrm{kt}\right) \geq \mathrm{N}_{1}^{2}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \frac{\mathrm{t}}{\mathrm{k}^{2}}\right)
\end{aligned}
$$

By lemma 2, it follows that x_{n} and y_{n} are cauchy sequences in X and Y respectively. Hence x_{n} converges to z in X and y_{n} converges to w in Y. Now, suppose that T is continuous, then

$$
\lim \mathrm{T}_{\mathrm{x}-1}=\mathrm{T} \mathrm{z}=\lim \mathrm{y}_{\mathrm{n}}=\mathrm{w}
$$

and so $\mathrm{T} z=\mathrm{w}$. Applying inequalities (3.31) and (3.32),we have

$$
\begin{aligned}
& M_{1}^{2}\left(S T z, S T x_{n-1}, k t\right) \geq \min \left\{M_{1}^{2}\left(z, x_{n-1}, t\right), M_{1}(z, S T z, t) * M_{1}\left(x_{n-1}, S T x_{n-1}, t\right), M_{2}^{2}\left(T z, T x_{n-1}, t\right)\right\}, \\
& N_{1}^{2}\left(S T z, S T x_{n-1}, k t\right) \leq \max \left\{N_{1}^{2}\left(z, x_{n-1}, t\right), N_{1}(z, S T z, t) \diamond N_{1}\left(x_{n-1}, S T x_{n-1}, t\right), N_{2}^{2}\left(T z, T x_{n-1}, t\right)\right\},
\end{aligned}
$$

letting n tend to infinity, we have

$$
\begin{aligned}
& \mathrm{M}_{1}^{2}(\mathrm{Sw}, \mathrm{z}, \mathrm{kt}) \geq \min \left\{1, \mathrm{M}_{1}^{2}(\mathrm{z}, \mathrm{Sw}, \mathrm{t}), 1\right\} \\
& \mathrm{N}_{1}^{2}(\mathrm{Sw}, \mathrm{z}, \mathrm{kt}) \leq \max \left\{0, \mathrm{~N}_{1}^{2}(\mathrm{z}, \mathrm{Sw}, \mathrm{t}), 0\right\}
\end{aligned}
$$

so $S w=z$. In the same manner we can show that $T z=w$. Finally we show that the fixed point is unique. Suppose that ST has a second fixed point z^{\prime} in X Then, using inequalities (3.31) and (3.32), we have

$$
\begin{align*}
& \mathrm{M}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \min \left\{\mathrm{M}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{M}_{2}^{2}\left(\mathrm{~T} \mathrm{z}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right)\right\} \tag{3.57}\\
& \mathrm{N}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \max \left\{\mathrm{N}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{N}_{2}^{2}\left(\mathrm{~T} \mathrm{z}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right)\right\} \tag{3.58}
\end{align*}
$$

Again, using inequality (3.33) and (3.34) we have

$$
\begin{align*}
& \mathrm{M}_{2}^{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \min \left\{\mathrm{M}_{2}^{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{~T} \mathrm{z}^{\prime}, \mathrm{T} \mathrm{z}^{\prime}, \mathrm{t}\right) * \mathrm{M}_{2}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{t}), \mathrm{M}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)\right\} \tag{3.59}\\
& \mathrm{N}_{2}^{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \max \left\{\mathrm{N}_{2}^{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right), \mathrm{N}_{2}\left(\mathrm{~T} \mathrm{z}^{\prime}, \mathrm{T} \mathrm{z}^{\prime}, \mathrm{t}\right) \diamond \mathrm{N}_{2}(\mathrm{Tz}, \mathrm{~T} \mathrm{z}, \mathrm{t}), \mathrm{N}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)\right\} \tag{3.60}
\end{align*}
$$

It now follows easily from inequalities (3.57), (3.58 and (3.59), (3.60 that

$$
\begin{aligned}
& \mathrm{M}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \mathrm{M}_{2}^{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right) \\
& \mathrm{N}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \mathrm{N}_{2}^{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{t}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{M}_{2}^{2}\left(\mathrm{Tz}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \mathrm{M}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right) \\
& \mathrm{N}_{2}^{2}\left(\mathrm{~T} \mathrm{z}, \mathrm{~T} \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \mathrm{N}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)
\end{aligned}
$$

Thus, we see that,

$$
\begin{aligned}
& \mathrm{M}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \geq \mathrm{M}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \frac{\mathrm{t}}{\mathrm{k}^{2}}\right) \\
& \mathrm{N}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{kt}\right) \leq \mathrm{N}_{1}^{2}\left(\mathrm{z}, \mathrm{z}^{\prime}, \frac{\mathrm{t}}{\mathrm{k}^{2}}\right)
\end{aligned}
$$

and so $\mathrm{z}=\mathrm{z}^{\prime}$. The uniqueness of w follows in a similar manner.

ACKNOWLEDGEMENT

Second author is thankful to University Grants Commission, New Delhi, India for financial assistance through Major Research Project File number 42-32/2013 (SR)

CONFLICT OF INTEREST

No conflict of interest was declared by the authors

REFERENCES

[1] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Smallerit Choas, Solitons \& Fractals, 29(5)(2006), 1073-1078.
[2] C. Alaca, I. Altun and D. Turkoglu, On Compatible Mappings of Type (I) and (II) in Intu-itionistic Fuzzy Met-ric Spaces, Communications of the Korean Mathemati-cal Society, Vol. 23, No. 3, 2008, pp. 427-446.
[3] K. Atanassov, Intuitionistic Fuzzy sets, Fuzzy sets and system, 20(1986) 87-96.
[4] George, P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), 395-399.
[5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385-389.
[6] T. Hamaizia, A. Aliouche, Fixed points theorems on two complete fuzzy metric spaces, Acta Universitatis Apulensis, No. 40/2014, pp. 113-122.
[7] Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces , Kybernetica., 11 (1975), 326-334.
[8] H. Park, Intuitionistic fuzzy metric spaces, chaos, Solitions \& Fractals 22(2004), 1039-1046.
[9] J. Rodriguez, S. Ramaguera, The Hausdor fuzzy metric on compact sets , Fuzzy Sets Sys., 147 (2004), 273-283.
[10] B. Schweizer, A. Sklar, Statistical metric spaces , Pacific J. Math. 10 (1960), 313-334.
[11] Telci, Fixed points on two complete and compact metric spaces , Applied Mathematics and Mechanics., 22 (5) (2001), 564-568..
[12] A. Zadeh, Fuzzy sets , Inform and Control., 8 (1965), 338-353.

